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1 Introduction.

Let Ω be a bounded open subset of IRN of class C2m, T > 0, ω a nonempty open subset of Ω, f a continuous
real function and k ∈ IN such that 0 ≤ 2k ≤ m. The main goal of this work is the study of the approximate
controllability of the following semilinear equation with Dirichlet boundary conditions:





yt + (−∆)my + (−∆)kf(y) = h + vχω in Q := Ω× (0, T ),
∂jy

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ := ∂Ω× (0, T ),

y(0) = y0 in Ω,

(1)

where v is a suitable output control, χω is the characteristic function of ω, ν is the unit outward normal
vector, h ∈ L2(0, T : H−m(Ω)) and y0 ∈ L2(Ω). Due to the term χω the controls are assumed supported on
the set O := ω × (0, T ). Problems as (1), sometimes known as Cahn-Hilliard problems, appear, with m = 2,
in the study of phase separation in cooling binary solutions and in other contexts generating spatial pattern
formation (see [6], [8] and the references cited therein).

We recall that problem (1) satisfies the approximate controllability property, at time T with states space
X and controls space Y , if the set

{ y(T, · : v) : v ∈ Y, y solution of (1)}
is dense in X.

The main goal of this paper is to extend the approximate controllability results on second order problems,
m = 1 and k = 0 (see e.g. [9], [10] and [7]) to the case of higher order equations for which the maximum
principle does not hold, in general. Our first result gives a positive answer when f is assumed to be sublinear
at the infinity:

Theorem 1 Assume that f satisfies the following conditions: there exist some positive constants c1 and c2

such that
|f(s)| ≤ c1 + c2|s| for all s ∈ IR(2)

and
there exists f ′(s0) for some s0 ∈ IR.(3)

Then problem (1) satisfies the approximate controllability property at time T with states space X = L2(Ω)
and controls space Y = L2(O).
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In contrast to the above result, we shall prove that when f is superlinear the approximate controllability
property does not hold in general, as explained in Section 4. Therefore if, for instance, f(s) = |s|p−1s
Theorem 1 gives a positive approximate controllability result for 0 < p ≤ 1. The results of section 6 provide
a negative approximate controllability answer when 1 < p < ∞. The similar alternative was obtained in
Dı́az-Ramos [7] for second order parabolic semilinear problems.

We remark that the existence of solutions in the class

y ∈ L2(0, T ; Hm
0 (Ω)) ∩ C([0, T ];L2(Ω)), f(y) ∈ L2(Q), ∆kf(y) ∈ L2(0, T ;H−m(Ω)),

is also obtained as a by-product of Theorem 1 for a suitable subclass of controls. The uniqueness of solutions
can be easily proved if, for instance, f is nondecreasing or Lipschitz continuous. Those uniqueness results
are not needed in our arguments.

2 Approximate Controllability for an Associated Linear problem.

In order to prove Theorem 1 we follows the same scheme of proof than in [9], [10] and [7]. We define the
function

g(s) =
f(s)− f(s0)

s− s0
.

From assumptions (2) and (3) we have that g ∈ L∞(IR)∩ C(IR). The conclusion will be derived from a fixed
point argument. As f(s) = f(s0)+g(s)s−g(s)s0, we shall start by considering the approximate controllability
for a linear problem obtained by replacing the term f(y) by

g(z)y + f(s0)− g(z)s0,

where z is an arbitrary function in L2(Q). Notice that when z = y this expression coincides with f(y) and
that if we denote g(z(t, x)) := a(t, x) and

h(a) := −(−∆)kf(s0) + (−∆)k(a(t, x)s0),(4)

then a ∈ L∞(Q) and h(a) ∈ L∞(0, T ; H−2k(Ω)). More in general, given a ∈ L∞(Q) and h(a) defined by (4),
we consider the approximate controllability property corresponding to the linear problem





yt + (−∆)my + (−∆)k(a(t, x)y) = h + h(a) + uχω in Q := Ω× (0, T ),
∂jy

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ := ∂Ω× (0, T ),

y(0) = y0 in Ω.

(5)

Before stating an approximate controllability result for this problem, following Lions [14] and Fabre-Puel-
Zuazua [9], [10], we consider ε > 0 and yd ∈ L2(Ω) and we introduce the functional J = J(·; a, yd) : L2(Ω) →
IR defined by

J(ϕ0; a, yd) = J(ϕ0) =
1
2

(∫

O
|ϕ(t, x)|dxdt

)2

+ ε ‖ ϕ0 ‖L2(Ω) −
∫

Ω

yd ϕ0, dx(6)

where ϕ(t, x) is the solution of the backward problem





−ϕt + (−∆)mϕ + a(t, x)∆kϕ = 0 in Q := Ω× (0, T ),
∂jϕ

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ := ∂Ω× (0, T ),

ϕ(T ) = ϕ0 in Ω.

(7)

To study the above backward problem we introduce the space

W := {y ∈ L2(0, T ; Hm
0 (Ω)), yt ∈ L2(0, T ; H−m(Ω))}.

The following result will be used later
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Proposition 1 Given h ∈ L2(0, T ; H−m(Ω)) and y0 ∈ L2(Ω), there exists a unique function y ∈ W satisfying




yt + (−∆)my + a(t, x)∆ky = h in Q,
∂jy

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

y(0) = y0 in Ω.

(8)

Furthermore, we have the estimate

‖y‖L2(0,T ;Hm
0 (Ω)) + ‖yt‖L2(0,T ;H−m(Ω)) ≤ C

(‖h‖L2(0,T ;H−m(Ω)) + ‖y0‖L2(Ω)

)
,(9)

where the constant C depends only on M :=‖ a ‖L∞(Q) (provided that Ω, T and m are kept fixed). Moreover,
if h ∈ L2(Q), the solution y also satisfies that

y ∈ L2(δ, T ;H2m(Ω)) and yt ∈ L2((δ, T )× Ω) for all δ ∈ (0, T ).(10)

Proof. For all n ∈ IN we define yn+1 as the solution of the following iterative problem




yn+1
t + (−∆)myn+1 = h− a(t, x)∆kyn in Q,

∂jyn+1

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

yn+1(0) = y0 in Ω,

where y0(t) := 0 for all t ∈ [0, T ]. The existence of a solution yn ∈ W can be found, for instance, in Theorem
3.4.1 of Lions-Magenes [15]. Thus, for all n ∈ IN\{0, 1}, yn+1 − yn satisfies





(yn+1 − yn)t + (−∆)m(yn+1 − yn) = −a(t, x)∆k(yn − yn−1) in Q,
∂j(yn+1 − yn)

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

(yn+1 − yn)(0) = 0 in Ω

(11)

and therefore
yn+1 − yn ∈ H1,2m(Q) := H1(0, T ;L2(Ω)) ∩ L2(0, T ; H2m(Ω))

and
‖ yn+1 − yn ‖H1,2m(Q)≤ c1 ‖ a∆k(yn − yn−1) ‖L2(Q)

(see, for instance, Theorem 4.6.1 of Lions-Magenes [16]). Then, since

H1,2m(Q) ⊂ C([0, T ];Hm(Ω))

with continuous imbedding (see, for instance, Theorems 1.3.1 and 1.9.6 of Lions-Magenes [15]), there exists
c2 = c2(T ) such that

‖ yn+1 − yn ‖C([0,T ];Hm
0 (Ω))≤ c2 ‖ a∆k(yn − yn−1) ‖L2(Q) .

Further, it is clear that we can choose C2 = C2(T ) such that for all t ∈ [0, T ]

‖ yn+1 − yn ‖C([0,t];Hm
0 (Ω))≤ C2 ‖ a∆k(yn − yn−1) ‖L2((0,t)×Ω) .

Hence,

‖ (yn+1 − yn)(t) ‖2Hm
0 (Ω)≤ (C2M)2

∫ t

0

‖ ∆k(yn − yn−1)(τ) ‖2L2(Ω) dτ, for all t ∈ [0, T ]

and therefore, by using the Poincaré inequality, there exists a constant K, independent of M , such that

‖ (yn+1 − yn)(t) ‖2Hm
0 (Ω)≤ (KM)2

∫ t

0

‖ (yn − yn−1)(τ) ‖2Hm
0 (Ω) dτ, for all t ∈ [0, T ].

Then, for every t ∈ [0, T ] we deduce that

‖ (yn+1 − yn)(t) ‖2Hm
0 (Ω)≤ (K2M2)n−1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

‖ (y2 − y1)(τn) ‖2Hm
0 (Ω) dτn · · · dτ1
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≤ (K2M2)n−1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

‖ y2 − y1 ‖2C([0,T ];Hm
0 (Ω)) dτn · · · dτ1

≤ (K2M2)n−1 tn−1

(n− 1)!
‖ y2 − y1 ‖2C([0,T ];Hm

0 (Ω))

≤ (K2M2T )n−1

(n− 1)!
‖ y2 − y1 ‖2C([0,T ];Hm

0 (Ω)),

which implies that
‖ yn+1 − yn ‖C([0,T ];Hm

0 (Ω))→ 0 as n →∞
and therefore, by (11), we deduce that

‖ (yn+1 − yn)t ‖L2(0,T ;H−m(Ω))→ 0 as n →∞.

Then, there exists y ∈ W such that
yn → y in W as n →∞.

In order to prove that y satisfies (8) we point out that

∆myn → ∆my in L2(0, T ;H−m(Ω)) as n →∞,

∆kyn → ∆ky in L2(Ω) as n →∞,

and
yn

t → yt in L2(0, T ;H−m(Ω)) as n →∞.

this implies (passing to the limit) that y is the solution of (8). In order to prove (9), we “multiply” in (8) by
y. Then it is easy to see that

‖y‖L2(0,T ;Hm
0 (Ω)) + ‖yt‖L2(0,T ;H−m(Ω)) ≤ C

(‖h‖L2(0,T ;H−m(Ω)) + ‖y0‖L2(Ω) + ‖y‖L2(Q)

)
.(12)

Furthermore,

‖ y(t) ‖2L2(Ω)≤
(
‖ y(0) ‖2L2(Ω) +c2 ‖ h ‖2L2(0,T ;H−m(Ω))

)
+ c3

∫ t

0

‖ y(s) ‖2L2(Ω) ds.

Then, applying Gronwall’s inequality (see, for instance, Lemma 4 of Haraux [11]), we deduce that

‖ y(t) ‖2L2(Ω)≤
(
‖ y(0) ‖2L2(Ω) +c2 ‖ h ‖2L2(0,T ;H−m(Ω))

)
ec3t ∀ t ∈ [0, T ].

From here, we obtain that

‖ y ‖L2(Q)≤ c4

(‖h‖L2(0,T ;H−m(Ω)) + ‖y0‖L2(Ω)

)

which implies, together with (12), inequality (9). Now, thanks to (9) and the linearity of Problem (8), we
deduce the uniqueness of solution.

Finally, if h ∈ L2(Q), since y(δ) ∈ Hm
0 (Ω) for all δ ∈ (0, T ), taking y(δ) as initial datum and applying

Theorem 4.6.1 of [16], we get (10).

As usual in Controllability Theory we shall use a unique continuation property for solutions of the dual
problem (in our case Problem (7)).

Lemma 1 Let ω be a nonempty open subset of Ω. Assume that

ϕ ∈ L2(0, T ;Hm
0 (Ω)) ∩ C([0, T ];L2(Ω))

satisfies (7) and that ϕ ≡ 0 in O = ω × (0, T ). Then ϕ ≡ 0 in Q.

Proof. From Proposition 1 (applied with backward time) we deduce that ϕ ∈ L2(0, T − δ; H2m(Ω)) for all
δ ∈ (0, T ). Then Lemma 1 follows from Theorem 3.2 of Saut-Scheurer [17].

The following two results are easy adaptations (by using Lemma 1) of the similar ones given in [9], [10]
for second order parabolic problems.
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Proposition 2 The functional J(·; a, yd) is continuous, strictly convex on L2(Ω) and verifies

lim inf
‖ϕ0‖L2(Ω)→∞

J(ϕ0; a, yd)
‖ ϕ0 ‖L2(Ω)

≥ ε.(13)

Further J(·; a, yd) attains its minimum at a unique point ϕ̂0 in L2(Ω) and

ϕ̂0 = 0 ⇔ ‖ yd ‖L2(Ω)≤ ε.(14)

Proposition 3 Let M be the mapping

M : L∞(Q)× L2(Ω) → L2(Ω)
(a(t, x), yd) −→ ϕ̂0.

If B is a bounded subset of L∞(Q) and K is a compact subset of L2(Ω), then M(B×K) is a bounded subset
of L2(Ω).

In order to characterize the duality of problem (7), we recall that given a convex and proper function
V : X → IR ∪ {+∞} on the Banach space X, it is said that a element p0 of V ′ belongs to the set ∂V (x0)
(subdifferential of V at x0 ∈ X) if

V (x0)− V (x) ≤ (p0, x0 − x) ∀ x ∈ X.

It is well known that that if V is Gateaux differentiable its differential coincides with its subdifferential and
that x0 minimizes V over X (or over a convex subset of X) if and only if 0 ∈ ∂V (x0). Finally, if V is a lower
semicontinuous function, then p0 ∈ ∂V (x0) if and only if

(p0, x) ≤ lim
h→0+

V (x0 + hx)− V (x0)
h

(< +∞) ∀ x ∈ X.

(See, for instance, Aubin-Ekeland [3]). Coming back to the functional J we have:

Lemma 2 For every ϕ0 ∈ L2(Ω) (ϕ0 6= 0), if ϕ is the solution of (7) satisfying ϕ(T ) = ϕ0, we have that

∂J(ϕ0; a, yd) = {ξ ∈ L2(Ω), ∃ v ∈ sgn(ϕ)χO satisfying

∫

Ω

ξ(x)θ0(x)dx =
(∫

O
|ϕ(t, x)|dΣ

)(∫

O
v(t, x)θ(t, x)dΣ

)

+ε

∫

Ω

ϕ0(x)
‖ ϕ0 ‖L2(Ω)

θ0(x)dx−
∫

Ω

yd(x)θ0(x)dx ∀θ0 ∈ L2(Ω)},

where θ is the solution of (7) satisfying θ(T ) = θ0.

Proof. It is an easy modification of Proposition 2.4 of [10].

Let us prove the approximate controllability property for an special version of the linear problem given
in (5).

Theorem 2 If ‖ yd ‖L2(Ω)> ε and ϕ̂ is the solution of (7) corresponding to ϕ̂(T ) = ϕ̂0, with ϕ̂0 minimum
of J(·; a, yd). Then there exists v ∈ sgn(ϕ̂)χO such that the solution of





yt + (−∆)my + (−∆k)(a(t, x)y) =‖ ϕ̂ ‖L1(O) vχO in Q,
∂jy

∂νj
= 0 (j = 0 · · · (m− 1)) on Σ,

y(0) = 0 in Ω,

(15)

satisfies

y(T ) = yd − ε
ϕ̂0

‖ ϕ̂0 ‖L2(Ω)
,

and then ‖ y(T )− yd ‖L2(Ω)= ε.
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Remark 1 In the case ‖ yd ‖L2(Ω)≤ ε, if we use the null control, we obtain y = 0 and therefore ‖ y(T ) −
yd ‖L2(Ω)≤ ε.

First of all we prove the existence and uniqueness to problem given by (5).

Proposition 4 Assumed y0 ∈ L2(Ω), h ∈ L2(0, T ; H−m(Ω)) and a(t, x) ∈ L∞(Q), there exists a unique
function y ∈ W satisfying 




yt + (−∆)my + ∆k(a(t, x)y) = h in Q,
∂jy

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

y(0) = y0 in Ω.

(16)

Moreover, we have the estimate

‖y‖L2(0,T ;Hm
0 (Ω)) + ‖yt‖L2(0,T ;H−m(Ω) ≤ C

(‖h‖L2(0,T ;H−m(Ω)) + ‖y0‖L2(Ω)

)
,(17)

where the constant C depends only on M (provided that Ω, T and m are kept fixed).

Proof. For all n ∈ IN we define again yn+1 as the solution of the iterative problem




yn+1
t + (−∆)myn+1 = h−∆k(a(t, x)yn) in Q,

∂jyn+1

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

yn+1(0) = y0 in Ω,

where y0(t) := 0 for all t ∈ [0, T ]. The existence of a solution yn ∈ W can be found, for instance, in Theorem
3.4.1 of Lions-Magenes [15]. Thus, for all n ∈ IN\{0, 1}, yn+1 − yn is solution of





(yn+1 − yn)t + (−∆)m(yn+1 − yn) = −∆k[a(t, x)(yn − yn−1)] in Q,
∂j(yn+1 − yn)

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

(yn+1 − yn)(0) = 0 in Ω

(18)

and therefore (see again Theorem 3.4.1 of Lions-Magenes [15]) yn+1 − yn ∈ W and

‖ yn+1 − yn ‖W≤ c1 ‖ a(yn − yn−1) ‖L2(Q) .(19)

Then, since W ⊂ C([0, T ];L2(Ω)) with continuous imbedding (see, for instance, [12] or [15]), we have that

‖ yn+1 − yn ‖C([0,T ];L2(Ω))≤ c2 ‖ a(yn − yn−1) ‖L2(Q) .

Further, as in the proof of Proposition 1, we can choose C2 = C2(T ) such that

‖ yn+1 − yn ‖C([0,t];L2(Ω))≤ C2 ‖ a(yn − yn−1) ‖L2((0,t)×Ω), for all t ∈ [0, T ].

Hence,

‖ (yn+1 − yn)(t) ‖2L2(Ω)≤ (C2M)2
∫ t

0

‖ (yn − yn−1)(τ) ‖2L2(Ω) dτ, for all t ∈ [0, T ]

Then, for every t ∈ [0, T ] we deduce that

‖ (yn+1 − yn)(t) ‖2L2(Ω)≤ (C2
2M2)n−1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

‖ (y2 − y1)(τn) ‖2L2(Ω) dτn · · · dτ1

≤ (C2
2M2)n−1

∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

‖ y2 − y1 ‖2C([0,T ];L2(Ω)) dτn · · · dτ1

≤ (C2
2M2)n−1 tn−1

(n− 1)!
‖ y2 − y1 ‖2C([0,T ];L2(Ω))

≤ (C2
2M2T )n−1

(n− 1)!
‖ y2 − y1 ‖2C([0,T ];L2(Ω)),
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which implies that
‖ yn+1 − yn ‖C([0,T ];L2(Ω))→ 0 as n →∞

and therefore, by (19), we deduce that

‖ yn+1 − yn ‖W→ 0 as n →∞.

Then, there exists y ∈ W such that
yn → y in W as n →∞.

The end of the proof is similar to the end of the proof of Proposition 1.

Proof of Theorem 2. Using the subdifferentiability of J(.; a, yd) at ϕ̂0 ( 6= 0 by (14)), we know that

0 ∈ ∂J(ϕ̂0),

which is equivalent, from Lemma 2, to the existence of v ∈ sgn(ϕ̂)χO, such that

− ‖ ϕ̂ ‖L1(O)

(∫

O
v(x, t)θ(x, t)dxdt

)
=

ε

‖ ϕ̂0 ‖L2(Ω)

∫

Ω

ϕ̂0(x)θ0(x)dx(20)

−
∫

Ω

yd(x)θ0(x)dx.

On the other hand, as y ∈ W , if we “multiply” by θ in (15) we obtain, by (7), that
∫

Ω

y(T, x)θ0(x)dxdt =‖ ϕ̂ ‖L1(O)

(∫

O
v(x, t)θ(x, t)dxdt

)
(21)

Then, from (20) and (21), we obtain
∫

Ω

y(T, x)θ0(x)dxdt =
∫

Ω

(yd(x)− ε
ϕ̂0(x)

‖ ϕ̂0 ‖L2(Ω)
)θ0(x)dxdt ∀ θ0 ∈ L2(Ω)

and we conclude that y(T ) = yd − ε
ϕ̂0

‖ ϕ̂0 ‖L2(Ω)
.

Now we are ready to prove a linear version of Theorem 1 for problem (5)

Corollary 1 Let ‖ yd ‖L2(Ω)> ε and ϕ̂ the solution of (7) corresponding to ϕ̂(T ) = ϕ̂0, with ϕ̂0 minimum of
J(·; a, yd − y(T ; a, 0)), where in general y(t; a, u) denotes the solution of (5) corresponding to the control u.
Then there exists v ∈ sgn(ϕ̂)χO such that the solution of





yt + (−∆)my + (−∆k)(a(t, x)y) = h + h(a)+ ‖ ϕ̂ ‖L1(O) vχO in Q,
∂jy

∂νj
= 0 (j = 0 · · · (m− 1)) on Σ,

y(0) = y0 in Ω,

satisfies
‖ y(T )− yd ‖L2(Ω)≤ ε.

Proof. We put y = L + Y , where L = L(a) satisfies




Lt + (−∆)mL + (−∆k)(a(t, x)L) = h + h(a) in Q,
∂jL

∂νj
= 0 (j = 0 · · · (m− 1)) on Σ,

L(0) = y0 in Ω

(22)

and Y = Y (a) is taken associated to the approximate controllability problem




Yt + (−∆)mY + (−∆k)(a(t, x)Y ) = u(a)χO in Q,
∂jY

∂νj
= 0 (j = 0 · · · (m− 1)) on Σ,

Y (0) = 0 in Ω,
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with desired state yd − L(T ), i.e. such that ‖ Y (T )− (yd − L(T )) ‖≤ ε. Notice that the existence of such a
control u(a) is consequence of Theorem 2. In particular, if ‖ yd − L(T ) ‖≤ ε, we can take u(a) ≡ 0 and if
‖ yd−L(T ) ‖> ε, then we take u(a) =‖ ϕ̂(a) ‖L1(Ω) v(a), where v(a) ∈ sgn(ϕ̂(a))χO and ϕ̂(a) is the solution
of (7) with initial value M( (a(x, t), yd −L(T )) ) defined in Proposition 3. It is obvious that such function y
and such control u(a) lead to the conclusion.

3 Controllability for the nonlinear problem.

As mentioned before, we shall use a fixed point argument to prove Theorem 1. In fact we shall deal with
multivalued operators. Let us recall a well-known result: the Kakutani’s fixed point Theorem. The usual
continuity assumption in other fixed pont theorems is replaced here by the following notion:

Definition 1 Let X, Y two Banach spaces and, Λ : X → P(Y ) a multivalued function. We say that Λ is
upper hemicontinuous at x0 ∈ X, if for every p ∈ Y ′, the function

x → σ(Λ(x), p) = sup
y∈Λ(x)

< p, y >Y ′×Y

is upper semicontinuous at x0. We say that the multivalued function is upper hemicontinuous on a subset K
of X, if it satisfies this properties for every point of K.

Theorem 3 (Kakutani’s fixed point Theorem). Let K ⊂ X be a convex and compact subset and
Λ : K → K an upper hemicontinuous application with convex, closed and nonempty values. Then, there
exists a fixed point x0, of Λ.

For a proof see, for instance, Aubin [2].

Proof of Theorem 1. We fix yd ∈ L2(Ω) and ε > 0. By using Corollary 1, for each z ∈ L2(Q) and ε > 0 it
is possible to find two functions ϕ(z) ∈ L1(Q) and v(z) ∈ sgn(ϕ(z))χO such that the solution y = yz of





yt + (−∆)my + (−∆)k(g(z)y) = h + h(g(z)) + uχO in Q,
∂jy

∂νj
= 0 , j = 0, 1, · · ·m− 1 on Σ,

y(0) = y0 in Ω,

(23)

(where u = u(z) = |ϕ(z)|L1(O)v(z)) satisfies

|y(T )− yd|L2(Ω) ≤ ε.(24)

Here ϕ(z) is the solution of (7) with initial value M( (g(z), yd−L(z; T )) ) (see Proposition 3) and a(t, x) = g(z),
where is L(z;T ) the solution of (22), with a = g(z), at time T .

Lemma 3 The set
{yd − L(z;T ), z ∈ L2(Q)},

is relatively compact in L2(Ω).

Proof of Lemma 3. Applying Proposition 4 it is easy to see that the set of solutions L(z) of




Lt + (−∆)mL + (−∆)k(g(z)y) = h + h(g(z)) in Q,
∂jL

∂νj
= 0 , j = 0, 1, · · ·m− 1 on Σ,

L(0) = y0 in Ω,

(25)

satisfy
‖ L(z) ‖W≤ K(1+ ‖ y0 ‖L2(Ω) + ‖ h ‖L2(0,T ;H−m(Ω))) ∀ z ∈ L2(Q)(26)

with K > 0 independent of z. Recall that ‖ g(z) ‖L∞(Q)≤ M with M independent of z. Now, let L(zn) be a
sequence of solutions (25) with zn ∈ L2(Q). We must prove that there exists a subsequence (that we rewrite
as L(zn)), such that

‖ L(zn; T )− L(zn+1;T ) ‖L2(Ω)→ 0 as n →∞.
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By a compactness result due to Aubin [1], we know that

W ⊂ L2(0, T ; Hm−1(Ω)) with compact imbedding.

Therefore, by (26), we can suppose that

‖ L(zn)− L(zn+1) ‖L2(0,T ;Hm−1(Ω))→ 0 as n →∞.

Further, it is easy to prove that L(zn)− L(zn+1) satisfies

‖ L(zn;T )− L(zn+1; T ) ‖2L2(Ω)

≤ −
∫ T

0

< Dk (g(zn)L(zn)− g(zn+1)L(zn+1)) , Dk (L(zn)− L(zn+1)) >H−k(Ω)×Hk
0 (Ω) dt

+
∫ T

0

< Dk (g(zn)s0 − g(zn+1)s0) , Dk (L(zn)− L(zn+1)) >H−k(Ω)×Hk
0 (Ω) dt.

Then, by (26), since k ≤ m− 1 (notice that k = 0 if m = 1),

‖ L(zn; T )− L(zn+1; T ) ‖2L2(Ω)≤ K̃ ‖ L(zn)− L(zn+1) ‖2L2(0,T ;Hm−1(Ω))→ 0 as n →∞

and the proof ends.

Completion of Proof of Theorem 1. From Lemma 3, we obtain that yd − L(z; T ) belongs to a compact
set for all z ∈ L2(Q) and so, by using Propositions 3 and 1, we obtain that

{‖ ϕ(z) ‖L1(O) v(z), z ∈ L2(Q)} is bounded in L∞(Q)(27)

Thus
K1 = sup

z∈L2(Q)

‖ ϕ(z) ‖L1(O)< ∞.(28)

Obviously, u = u(z) satisfies
‖ u ‖L2(Q)≤ K2.(29)

Therefore, if we define the operator
Λ : L2(Q) → P(L2(Q))

by
Λ(z) = {y satisfies (23), (24) for some u satisfying (29) },

we have seen that for each z ∈ L2(Q), Λ(z) 6= ∅. In order to apply Kakutani’s fixed point theorem, we have
to check that the next properties hold:

(i) There exists a compact subset U of L2(Q), such that for every z ∈ L2(Q), Λ(z) ⊂ U .

(ii) For every z ∈ L2(Q), Λ(z) is a convex, compact and nonempty subset of L2(Q).

(iii) Λ is upper hemicontinuous.

The proof of these properties is as follows:

(i) From Proposition 4 we know that, there exists a bounded subset U of W such that for every z ∈ L2(Q),
Λ(z) ⊂ U . Now, to see that we can choose U compact we shall prove that the set

Y = {y satisfying (23) for some z ∈ L2(Q) and u satisfying (29)}

is a relatively compact subset of L2(Q). But this is easy to prove by using that

W ⊂ L2(Q) with compact imbedding(30)

(see Lions [12] or Simon [18]).
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(ii) We have already seen that for every z ∈ L2(Q), Λ(z) is a nonempty subset of L2(Q). Further Λ(z) is
obviously convex, because B(yd, ε) and {u ∈ L2(Q) : satisfying (29)} are convex sets. Then, we have to see
that Λ(z) is a compact subset of L2(Q). In (i) we have proved that Λ(z) ⊂ U with U compact. Let (yn)n

be a sequence of elements of Λ(z) which converges in L2(Q) to y ∈ U . We have to prove that y ∈ Λ(z). We
know that there exist un ∈ L2(Q) satisfying (29) such that





yn
t + (−∆)myn + (−∆)k(g(z)yn) = h + h(g(z)) + unχO in Q,

∂jyn

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

yn(0) = y0 in Ω,
|yn(T )− yd|2 ≤ ε.

(31)

Now, by using that the controls un are uniformly bounded, we deduce that un → u in the weak topology of
L2(Q) and u satisfies (29) (see Proposition III.5 of Brezis [5]). Then, using (31) and Proposition 4 we can
see that (yn)n converges to y in the weak topology of W (and so, by (30), strongly in L2(Q)). Therefore,
passing to the limit in (31) we obtain





yt + (−∆)my + (−∆)k(g(z)y) = h + h(g(z)) + uχO in Q,
∂jy

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

y(0) = y0 in Ω.

Further, vn = y − yn is solution of




vn
t + (−∆)mvn + (−∆)k(g(z)vn) = (u− un)χO in Q,

∂jvn

∂νj
= 0 , j = 0, 1, ...,m− 1 on Σ,

vn(0) = 0 in Ω

(32)

and satisfies vn ∈ W (see Proposition 4). Further, if we “multiply” in (32) by vn and integrate, we obtain
that

‖ vn(T ) ‖2L2(Ω)≤ k

∫

Q

(u− un)χOvndxdt → 0 as n →∞.

Thus yn(T ) converges to y(T ) in the strong topology of L2(Ω) and ‖ y(T ) − yd ‖2≤ ε. This prove that
y ∈ Λ(z) and concludes the proof of (ii).

(iii) We must prove that for every z0 ∈ L2(Q)

lim sup
zn

L2(Q)−→ z0

σ(Λ(zn), k) ≤ σ(Λ(z0), k), ∀ k ∈ L2(Q).

We have seen in (ii) that Λ(z) is a compact set, which implies that for every n ∈ IN there exists yn ∈ Λ(zn)
such that

σ(Λ(zn), k) =
∫

Q

k(x, t)yn(x, t)dxdt.

Now, by (i), (yn)n ⊂ U (compact set of L2(Q)). Then, there exists y ∈ L2(Q) such that (after extracting
a subsequence) yn → y in L2(Q). We shall prove that y ∈ Λ(z0). We know that there exist un ∈ L2(Q)
satisfying (29) such that





yn
t + (−∆)myn + (−∆)k(g(zn)yn) = h + h(zn) + unχO in Q,

∂jyn

∂νj
= 0 , j = 0, 1, · · · ,m− 1 on Σ,

yn(0) = y0 in Ω,
|yn(T )− yd|2 ≤ ε.

(33)

Then there exists u ∈ L2(Q) satisfying (29) such that un → u in the weak topology of L2(O). On the other
hand, by using the smoothing effect of the parabolic linear equation (in a similar way to the proof of (ii)) and
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that g ∈ L∞(IR) ∩ C(IR), we deduce that y satisfies (23) and (24) with z = z0 for some u ∈ L2(Q) satisfying
(29), which implies that y ∈ Λ(z0). Then, for every k ∈ L2(Q),

σ(Λ(zn), k) =
∫

Q

k(x, t)yn(x, t)dxdt →
∫

Q

k(x, t)y(x, t)dxdt

≤ sup
y∈Λ(z0)

∫

Q

k(x, t)y(x, t)dxdt = σ(Λ(z0), k),

which proves that Λ is upper hemicontinuous and conclude the proof of (iii).

Finally, if we restrict Λ to K = conv(U) (the convex envelope of U), which is a compact set of L2(Q), it
satisfies the assumptions of Kakutani’s fixed point theorem. Then, Λ has a fixed point y ∈ K. Further, by
construction, there exists a control u ∈ L2(Q) satisfying (29) such that





yt + (−∆)my + (−∆)k(f(y)) = h + uχO in Q,
∂jy

∂νj
= 0 , j = 0, 1, · · ·m− 1 on Σ,

y(0) = y0 in Ω,
|y(T )− yd|2 ≤ ε.

(34)

Therefore, y is the solution that we were looking for.

Remark 2 Several generalizations seem possible. For instance, the equation of (1) could be replaced by
other ones with a more general nonlinearity

yt + (−∆)my +
k∑

i=0

(−∆)ifi(y) = h + vχω

or a more general lower order differential operator

yt + (−∆)my + L(f(y)) = h + vχω,

with L suitable linear partial differential operator of degree lower than 2m. The key point in those gener-
alizations is that the unique continuation result of Lemma 1, for the associated dual problem, remains true
thanks to Theorem 3.2 of Saut-Scheurer [17] and the rest of arguments of the proof of Theorem 1 apply.

4 Non-controllability for superlinear problems.

In this section we assume k = 0. We shall prove a result of non-controllability for a superlinear nonlinear
term with ω ⊂ Ω.

Theorem 4 Let p > 1 and let y(t; u) = y ∈ L2(0, T ;Hm(Ω)) ∩ C([0, T ]; L2(Ω)) a function satisfying
{

yt + (−∆)my + |y|p−1y = uχω in Q,
y(0) = y0 in Ω,

associated to any “natural” boundary condition and with control u ∈ L2(Q). Then we can choose yd ∈ L2(Ω)
and ε > 0 such that

‖ y(T ; u)− yd ‖L2(Ω)> ε for any u ∈ L2(Q).(35)

In order to prove Theorem 4 we introduce, previously, some auxiliar functions. Given R > 0 we define,
on IRN , the functions

ξR(x) = (R2 − |x|2)/R if |x| < R, ξR(x) = 0 if |x| ≥ R

and
dR(x) = R− |x| if |x| < R, dR(x) = 0 if |x| ≥ R.(36)
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It is clear that
dR(x) ≤ ξR(x) ≤ 2dR(x)(37)

for all x ∈ IRN .

The following result was proved in Bernis [4].

Proposition 5 Let s ≥ 2m and R > 0. Then, for each ε > 0 there exist a constant C depending only on
N, m, s and ε (thus independent of R) such that the following inequality holds for all y ∈ Hm

loc(IR
N ):

((−∆)my, ξs
Ry)H−m

loc
(IRN )×Hm

c (IRN ) ≥ (1− ε)
∫

IRN

ξs
R|Dmy|2dx− C

∫

IRN

ξs−2m
R y2dx.

Remark 3 Since s ≥ 2m, ξs
R ∈ W 2m,∞

c (IRN ). Hence ξs
R ∈ Cm

c (IRN ) (see e.g. Corollary IX.13 of [5]) and
ξs
Ru ∈ Hm

c (IRN ) (see e.g. Note IX.4 of [5]).

Corollary 2 Let s ≥ 2m and R > 0 such that BR ⊂ Ω. Then, for each ε > 0 there exist a constant C
depending only on N, m, s and ε (thus independent of R) such that the following inequality holds for all
y ∈ Hm(Ω):

((−∆)my, ξs
Ry)H−m(Ω)×Hm

0 (Ω) ≥ (1− ε)
∫

Ω

ξs
R|Dmy|2dx− C

∫

Ω

ξs−2m
R y2dx.

Proof. Let y ∈ Hm(Ω) such that y = y in Ω (such y exists by standar results: see, e.g., Chapter IX of Brezis
[5]). Then, by Proposition 5, the inequality holds for y, but as BR ⊂ Ω we obtain the result.

Theorem 5 Let p > 1, r = p + 1, y0 ∈ L2(Ω) and u ∈ Lr′(Q). Then any solution y ∈ Lr(Q) ∩
L2(0, T ; Hm(Ω)) of {

yt + (−∆)my + |y|p−1y = u in D′(Q),
y(0) = y0 on Ω,

(38)

with any “natural” boundary condition, satisfies the local estimate

sup
0<t<T

∫

BR

y(x, t)2dx +
∫

BR×(0,T )

(|Dmy|2 + |y|r)dxdt

≤ K

(
1 +

∫

BR1×(0,T )

|u|r′dxdt +
∫

BR1

y2
0dx

)

if BR1 ⊂ Ω and 0 < R ≤ R1. Moreover, the constant K depends only on N, m, p, R, R1 and T .

Proof of Theorem 5. We take Xr = Lr(Q) ∩ L2(0, T ;Hm
0 (Ω). Then the equation of (38) is satisfied in

X ′
r = Lr′(Q) + L2(0, T ; H−m(Ω)). Then, if s ≥ 2m, we can multiply (38) by ξs

Ry with the duality product
(·, ·)X′

r×Xr and we obtain

1
2

∫

BR

ξs
Ry(x, T )2dx + ((−∆)my, ξs

Ry)L2(0,T ;H−m(Ω))×L2(0,T ;Hm
0 (Ω)) + (|y|p−1y, ξs

Ry)Lr′ (Q)×Lr(Q)

=
1
2

∫

BR

ξs
Ry0(x)2dx + (u, ξs

Ry)Lr′ (Q)×Lr(Q).

Now, from Corollary 2 it follows that

1
2

∫

BR

ξs
Ry(x, T )2dx +

∫

BR×(0,T )

ξs
R(|Dmy|2 + |y|r)dxdt

≤ C

∫

BR

ξs
Ry0(x)2dx + C

∫

BR×(0,T )

ξs−2m
R y2dxdt + C

∫

BR×(0,T )

ξs
Ruydxdt.

(39)

By (36) and (37) we can replace in (39) ξR(x) by R − |x| (modifying the constants). Further, writing
s− 2m = 2s/r + (s(r− 2)/r)− 2m, we can apply Hölder’s or Young’s inequality with exponents q = r/2 and
q′ = r/r − 2 and we obtain ∫

BR×(0,T )

(R− |x|)s−2my2dxdt

12



≤ ε

∫

BR×(0,T )

(R− |x|)s|y|rdxdt + K(ε, q)
∫

BR×(0,T )

(R− |x|)s−γdxdt

with
K(ε, q) =

1
q′(qε)q′/q

and γ =
2mr

r − 2
.

Hence, if we choose s > γ − 1, the last integral is finite and equal to C̃Rs+N−γ . On the other hand, we can
apply again Young’s inequality and we have

∫

BR×(0,T )

(R− |x|)suydxdt ≤ ε

∫

BR×(0,T )

(R− |x|)s|y|rdxdt + k(ε, r)
∫

BR×(0,T )

(R− |x|)s|u|r′dxdt.

Thus, by changing the constants, we deduce that

1
2

∫

BR

(R− |x|)sy(x, T )2dx +
∫

BR×(0,T )

(R− |x|)s(|Dmy|2 + |y|r)dxdt

≤ C

(∫

BR

(R− |x|)sy0(x)2dx + Rs+N−γ +
∫

BR×(0,T )

(R− |x|)s|u|r′dxdt

)
.

Finally, by replacing R by R1 and by taking into account that R1−|x| ≥ R1−R and R1−|x| ≤ R1 if |x| ≤ R
we deduce the result with

K = max

{
C(

R1

R1 −R
)s,

CRs+N−γ
1

(R1 −R)s

}
.

Proof of Theorem 4. It is a trivial consequence of Theorem 5 since, if R1 satisfies BR1 ⊂ Ω\ω, then

‖ y(u; T ) ‖2L2(Ω)≤ K(1+ ‖ y0 ‖2L2(Ω)) ∀u ∈ Lr′(Q).

Therefore, taking yd with ‖ yd ‖L2(Ω) large enough, we obtain (35) for ε > 0 small enough.
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[1] Aubin, J.P.: Un théorème de compacité. C. R. Acad. Sci., Paris, Serie I, T. 256, pp. 5042-5044, (1963).
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Paris, (1968).
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