
RESULTS ON APPROXIMATE CONTROLLABILITY FOR
QUASILINEAR DIFFUSION EQUATIONS

Angel Manuel RAMOS
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Introduction

The study of the approximate controllability property for parabolic problems was treated
firstly for the linear case in the book of Lions [15]. The study of this property for nonlinear
parabolic equations seems to have its origins in the work of Henry [14]. Since then, many
other results are today available in the literature (see some references in Dı́az [8]) but, to
the best of our knowledge, always restricted to the case of semilinear parabolic equations.
This paper extends the recent results of the works of Dı́az and Ramos [9], [10]. We
consider this property for the, so called, nonlinear diffusion equation





yt −∆ϕ(y) = h in Q := Ω× (0, T ),
ϕ(y) = 0 on Σ := ∂Ω× (0, T ),
y(0) = v in Ω,

(1)

where Ω is a bounded open subset of IRN of class C4, T > 0, ϕ is a continuous non-
decreasing real function, h ∈ L2(0, T : H−1(Ω)) is a prescribed datum and v represents
the searched output control answering the following approximate controllability property:
Fixed γ > 0, we find v such that ‖ y(t; v) − yd ‖H−(1+γ)(Ω)≤ δ for a given δ > 0 and
for some desired state yd ∈ L2(Ω). We recall that, with this regularity on the data,
y(v) ∈ C([0, T ] : H−1(Ω)) (see Brezis [4]).
We prove that the approximate controllability holds for a certain class of functions ϕ
which are essentially linear at infinity. This class of functions includes the one associated
to some type of two phase Stefan problem (ϕ(s) = ks for s < 0, ϕ(s) = 0 in [0, L] and
ϕ(s) = ks for s > L, for some positive constants k and L). The result is obtained through
the application of a variation of the main theorem of Dı́az and Ramos [11], adaptated to
the vanishing viscosity higher order problem





yt + ε∆2y −∆ϕ(y) = h in Q,
y = ∆y = 0 on Σ,
y(0) = v in Ω

(2)

(ε > 0 arbitrary) and posterior passing to the limit ε → 0. This argument seems to lead to
approximate controllability results for a very large class on nonlinear parabolic equations
even in non divergence form as yt −F(t, x, y,∇y, D2y) = 0.

An approximate controllability result when ϕ is essentially linear at infinity

The main result of this section is the following:
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Theorem 1 Let ϕ be a continuous nondecreasing function with ϕ(0) = 0. Assume that
there exists k > 0 such that





ϕ ∈ C1(IR\[−M1,M1]) and |ϕ′(s)− k| ≤ C1

|s| if |s| > M1,

for some positive constants C1 and M1

(3)

and
|ϕ(s)− ks| ≤ C2 ∀ s ∈ IR.(4)

Then, if ϕ′(s) ≥ c > 0 a.e. s ∈ IR or h ∈ L2(Q), then problem (1) satisfies the approx-
imate controllability property in H−(1+γ)(Ω) for any γ > 0, i.e., given yd ∈ H−(1+γ)(Ω)
and δ > 0 there exists v ∈ L2(Ω) such that ‖ y(T ; v)− yd ‖H−(1+γ)(Ω)< δ.

Remark 2 Corollaries 14 and 15 of the Appendix contain some sufficient conditions,
easier to verify than (3) and (4).

As mentioned at the Introduction, the proof of Theorem 1 will be obtained through the
study of the approximate controllability for the vanishing viscosity higher order problem
(2).

Theorem 3 Assume ϕ ∈ C0(IR) (non necessarily nondecreasing) satisfying

|ϕ(s)| ≤ C(1 + |s|) for |s| > M2 (C,M2 > 0).

Let yd ∈ H−(1+γ)(Ω) and δ > 0. Then, for any ε > 0 there exists a control vε ∈ L2(Ω)
such that if y(t; v) is the corresponding solution of (2) we have

‖ y(T ; vε)− yd ‖H−(1+γ)(Ω)< δ.(5)

If in addition ϕ satisfies (3) and (4), then there exists a positive constant K, depending
on k, C1, C2 and M1 but independent of ε, such that the above controls vε can be taken
satisfying

‖ vε ‖L2(Ω)≤ K, for any ε > 0.(6)

The proof of the first part of Theorem 3 is an special formulation of the main result
(Theorem 1) of Dı́az and Ramos [11] (and one can show that property even in the space
L2(Ω)). The second part reproduces some of the steps of the proof of Theorem 1 of
Dı́az and Ramos [11] that here will be merely sketched but putting emphasis on the
new arguments needed to arrive to the conclusion. The first step consists in proving
the approximate controllability for a linearized problem (a posterior fixed point argument
will extend the conclusion to the nonlinear problem). Since assumption (3) clearly implies
that ϕ′(s) → k as |s| → ∞, it is natural to define the function

ϕ0(s) := ϕ(s)− ks, s ∈ IR(7)

(so that ϕ′0(s) → 0 as |s| → ∞). Then, it suffices to linearize function ϕ0 which (by
convenience) will be done near a point sε ∈ IR depending on ε in a suitable way as shows
the following result (proved in the appendix):
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Lemma 4 Let ϕ ∈ C0(IR) (non necessarily nondecreasing) satisfying (3). For any ε > 0
there exists sε ∈ IR such that the function

gε(s) :=
ϕ0(s)− ϕ0(sε)

s− sε

(8)

satisfies gε ∈ L∞(IR) ∩ C(IR) and

‖ gε ‖L∞(IR)≤
√

ε.(9)

If in addition ϕ satisfies (4), then there exists a positive constant K2, depending on C1,
C2 and M1 but independent of ε, such that

|gε(s)sε| ≤ K2, for any ε > 0 and any s ∈ IR.(10)

Now we return to our linearizing process. Since ϕ0(s) = ϕ0(sε) + gε(s)s − gε(s)sε, we
shall start by considering the approximate controllability for a linear problem obtained
by replacing the term ϕ(y) by

ky + gε(z)y + ϕ0(sε)− gε(z)sε,

where z is an arbitrary function in L2(Q). Notice that when z = y this expression
coincides with ϕ(y) and that if we denote

hε(z) := ∆ (ϕ0 (sε)− gε(z)sε) = −∆ (gε (z)sε) ,

then hε(z) ∈ L∞(0, T : H−2(Ω)) for all z ∈ L2(Q) and for all ε > 0. Now, we consider the
approximate controllability property corresponding to the linear problem





yt + ε∆2y − k∆y −∆ (gε(z)y) = h + hε(z) in Q,
y = ∆y = 0 on Σ,
y(0) = uε in Ω.

(11)

Let us denote E := H2(Ω) ∩ H1
0 (Ω). The existence and uniqueness of a solution y ∈

L2(0, T : E), with yt ∈ L2(0, T : E ′) is similar to Proposition 4 of Dı́az and Ramos [11].
In order to state an approximate controllability result for this problem, following Lions
[17], we try to solve the optimal control problem

inf
v∈L2(Ω)

{
1

2

∫

Ω
v2dx, yε,z(T, v) ∈ yd + δB−(1+γ)

}
,

where B−(1+γ) is the unit ball in H−(1+γ)(Ω). Then, as in [17], by duality theory in Convex
Analysis, it is easy to prove that the above optimal control problem is equivalent to the
following one:

inf
p0∈H1+γ

0 (Ω)
Jε(p

0),

with Jε = Jε(·; z, yd) : H1+γ
0 (Ω) → IR defined by

Jε(p
0) =

1

2
‖ p(x, 0) ‖2

L2(Ω)+δ ‖ p0 ‖H1+γ
0 (Ω) − < yd, p

0 >H−(1+γ)(Ω)×H1+γ
0 (Ω) .(12)
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Here p denotes the solution of the parabolic backward problem




−pt + ε∆2p− k∆p− gε(z)∆p = 0 in Q,
p = ∆p = 0 on Σ,
p(T ) = p0 in Ω,

(13)

for any p0 ∈ H1+γ
0 (Ω) given. The existence and uniqueness of a solution p ∈ L2(0, T : E),

with pt ∈ L2(0, T : E ′) was given in Proposition 1 of Dı́az and Ramos [11]. The connection
between both minimizing problems is that the solution u ∈ L2(Ω) of the first one is
u = p̂(x, 0), where p̂ is the solution of (13) with p̂(T ) = p̂0.
Now, some easy modifications of the arguments given in Fabre, Puel and Zuazua [12], [13]
for a functional similar to this one and the backward uniqueness theorem of Bardos and
Tartar [3] (when applied to the present situation, the hipothesis B(t) ∈ L2(0, T : L(V, H))
of Theorem II.1 in [3] yields gε(z) ∈ L2(0, T : L∞(Ω)) allow to show that the functional
Jε(·; z, yd) is continuous, strictly convex on H1+γ

0 (Ω) and satisfies

lim inf
‖p0‖

H
1+γ
0

(Ω)
→∞

Jε(p
0; z, yd)

‖ p0 ‖H1+γ
0 (Ω)

≥ δ.(14)

Then Jε(·; z, yd) attains its minimum at a unique point p̂0
ε in H1+γ

0 (Ω). Furthermore,
p̂0

ε = 0 iff ‖ yd ‖H−(1+γ)(Ω)≤ δ.

Now we shall give an approximate controllability result for an special case:

Lemma 5 Let z ∈ L2(Q) and yd ∈ H−(1+γ)(Ω). Then, for any δ > 0 there exists
vε ∈ L2(Ω) such that the solution yε of the problem





yt + ε∆2y − k∆y −∆ (gε(z)y) = 0 in Q,
y = ∆y = 0 on Σ,
y(0) = vε in Ω

(15)

satisfies
‖ yd − yε(T ) ‖H−(1+γ)(Ω)≤ δ.

Remark 6 We could prove the approximate controllability property in L2(Ω) for any
ε > 0 but, in order to be able to pass to the limit when ε → 0, we obtain this property
merely in H−(1+γ)(Ω).

Proof of Lemma 5. If q0 ∈ H1+γ
0 (Ω) and q, p̂ are the solutions of (13) satisfying

q(T ) = q0 and p̂ε(T ) = p̂0
ε respectively, then, from the characterization of the minimum

(see, for instace, Proposition 3 in page 187 and Theorem 16 in page 198 of Aubin-Ekeland
[2]), we obtain that

−
∫

Ω
p̂ε(x, 0)q(x, 0)dx+ < yd, q

0 >H−(1+γ)×H1+γ≤

lim
h→0+

δ ‖ p̂0
ε + hq0 ‖H1+γ

0 (Ω) −δ ‖ p̂0
ε ‖H1+γ

0 (Ω)

h
≤ δ ‖ q0 ‖H1+γ

0 (Ω) ∀q0 ∈ H1+γ
0 (Ω).

Now if we take vε ≡ p̂(x, 0) and multiply in the equation of (15) by q we obtain that

< yε(T, vε), q
0 >H−(1+γ)×H1+γ=

∫

Ω
p̂ε(x, 0)q(x, 0)dx
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and therefore

< yd − yε(T ; vε), q
0 >H−(1+γ)(Ω)×H1+γ

0 (Ω)≤ δ ‖ q0 ‖H1+γ
0 (Ω) ∀ q0 ∈ H1+γ

0 (Ω),

which shows that
‖ yd − yε(T ; vε) ‖H−(1+γ)(Ω)≤ δ

and concludes the proof of Lemma 5.
Concerning the approximate controllability for the linearized problem (11) we have

Theorem 7 Let z ∈ L2(Q) and yd ∈ H−(1+γ)(Ω). Assume gε satisfying (9) and (10).
Let ‖ yd − y(T ; z, 0) ‖H−(1+γ)(Ω)> δ and let p̂ε be the solution of (13) corresponding to
p̂(T ) = p̂0

ε, with p̂0
ε minimum of Jε(·; z, yd − y(T ; z, 0)), where in general y(t; z, u) denotes

the solution of (11) corresponding to the control u. Then the solution yε of




yt + ε∆2y − k∆y −∆ (gε(z)y) = h + hε(z) in Q,
y = ∆y = 0 on Σ,
y(0) = p̂ε(x, 0) in Ω,

satisfies
‖ yε(T )− yd ‖H−(1+γ)(Ω)≤ δ.(16)

Moreover, if ‖ yd − y(T ; z, 0) ‖H−(1+γ)(Ω)≤ δ, then property (16) holds for the control
vε ≡ 0. Finally, there exists a positive constant K, depending on k, C1, C2 and M1 but
independent of ε, such that the above funtions p̂ε satisfy

‖ p̂ε ‖C([0,T ]:L2(Ω))≤ K, for any ε > 0 and any z ∈ L2(Q).(17)

Remark 8 Theorem 7 solves the approximate controllability problem for (11) with con-
trol uε := p̂ε(x, 0). Therefore

‖ uε ‖L2(Ω)≤ K.(18)

Proof of Theorem 7. We put yε = Lε + Yε, where Lε = Lε(z) ∈ C([0, T ] : L2(Ω))
satisfies 




Lt + ε∆2L− k∆L−∆ (gε(z)L) = h + hε(z) in Q,
L = ∆L = 0 on Σ,
L(0) = 0 in Ω

(19)

and Yε = Yε(z) is taken associated to the approximate controllability problem




Yt + ε∆2Y − k∆Y −∆ (gε(z)Y ) = 0 in Q,
Y = ∆Y = 0 on Σ,
Y (0) = uε(z) in Ω,

with desired state yd − Lε(T ), i.e. such that ‖ Yε(T ) − (yd − Lε(T )) ‖H−(1+γ)(Ω)≤ δ. We
find the control uε in the same way as in Lemma 5. Therefore, if p̂ε is the solution of (13)
with final data M(ε, z, yd − Lε(T )), where

M : (0, R]× L2(Q)×H−(1+s)(Ω) −→ L2(Ω)
(ε, z, yd) → p̂0

ε,

then the control uε(z) := p̂ε(x, 0) leads to ‖ Y (T ) − ŷd ‖H−(1+γ)(Ω)≤ δ, where ŷd :=
yd − Lε(T ) (in the case ‖ ŷd ‖H−(1+γ)(Ω)≤ δ it suffices to take uε ≡ 0). For the proof of
(17) we need the following four lemmas:
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Lemma 9 Assume (9) and (10). Let z ∈ L2(Q). Let p0 ∈ L2(Ω) be given. Then, if pε is
the solution of (13), we have

‖ pε ‖C([0,T ]:L2(Ω))≤ eT ‖ p0 ‖L2(Ω) for any ε > 0 and any z ∈ L2(Q).(20)

Proof. If we ”multiply” in (13) by pε, for any t ∈ (0, T ] we obtain

1

2
‖ pε(t) ‖2

L2(Ω) +ε ‖ ∆pε ‖2
L2((t,T )×Ω) +k ‖ ∇pε ‖2

L2((t,T )×Ω)≤

1

2
‖ pε(T ) ‖2

L2(Ω) + ‖ gε(z(t, x)) ‖L∞(Q)‖ ∆pε ‖L2((t,T )×Ω)‖ pε ‖L2((t,T )×Ω) .

Then, applying Young’s inequality, we have that

1

2
‖ pε(t) ‖2

L2(Ω) +
ε

2
‖ ∆pε ‖2

L2((t,T )×Ω)≤
1

2
‖ pε(T ) ‖2

L2(Ω) +
1

2
‖ pε ‖2

L2((t,T )×Ω) .

Then we obtain that

‖ pε(t) ‖2
L2(Ω)≤‖ pε(T ) ‖2

L2(Ω) +
∫ T

t
‖ pε(τ) ‖2

L2(Ω) dτ.

Applying Gronwall’s inequality, we deduce the following inequality leading to (20)

‖ pε(t) ‖2
L2(Ω)≤‖ pε(T ) ‖2

L2(Ω) eT−t ∀ t ∈ [0, T ].

Lemma 10 The mappings

Sε : E −→ H2m,1(Q)
p0 → p

and
Tε : H1+γ

0 (Ω) −→ L2(0, T : H
5
2
−α(Ω))

p0 → p,

where p is the solution of (13) asociated to p0, are linear and continuous for any ε > 0
and any γ ≥ −1/2.

Proof. The first case is a simple corollary of the results in Section 4.13.3 of Lions-Magenes
[18]. To prove the second case we notice that p0 ∈ H1+γ(Ω) ⊂ H2(− 3

8
−α

4
+ 1

2
)2(Ω) =

H
1
2
−α(Ω) for any α > 0, then applying the results of section 4.15.1 of Lions and Ma-

genes [18] we obtain that Tε is a continuous mapping (even from H
1
2
−α(Ω)) on L2(0, T :

H4(− 3
8
−α

4
+1)(Ω)) = L2(0, T : H

5
2
−α(Ω)).

Remark 11 In the case of operator Tε, it seems (very likely) that, since p0 satisfies the
compatibility relation p0(x) = 0 in ∂Ω, then the associated solution p of (13) belongs to
{p ∈ L2(0, T : H3(Ω)) : p, ∆p ∈ L2(0, T : H1

0 (Ω))} (see Remark 4.14.3 and Section 4.15.1
of Lions-Magenes [18]) but we don’t know a rigurous proof of this fact

Lemma 12 If K is a compact subset of H−(1+γ)(Ω) then M((0, R] × L2(Q) × K) is a
bounded subset of H1+γ

0 (Ω).
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Proof. If Lemma 12 is not true there will be three sequences {zn}n∈IN ⊂ L2(Q),
{yn

d}n∈IN ⊂ K and {εn}n∈IN ⊂ (0, R] such that

‖ p0(εn, zn, y
n
d ) ‖H1+γ

0 (Ω)=‖ M(εn, zn, yn
d ) ‖H1+γ

0 (Ω)

n→∞−→ ∞.(21)

Then we can suppose (by renaming the sequences) that

gεn

n→∞
⇀ a in the weak- ∗ topology of L∞(Q),

yn
d → yd in the strong topology of H−(1+γ)(Ω)

and
εn → ε̃ in IR

(notice that, due to (9), if ε̃ = 0 then a ≡ 0).
Now, in order to obtain a contradiction, let us prove that for any sequence {p0

n}n∈IN ⊂
H1+γ

0 (Ω) such that ‖ p0
n ‖H1+γ

0 (Ω)

n→∞−→ ∞ we have that

lim inf
n→∞

Jεn(p0
n; zn, yn

d )

‖ p0
n ‖H1+γ

0 (Ω)

≥ δ.(22)

Let us suppose that (22) is not true. Then, there exists a sequence {p0
n}n∈IN ⊂ H1+γ

0 (Ω)
such that ‖ p0

n ‖H1+γ
0 (Ω)

n→∞−→ ∞ and

lim inf
n→∞

Jεn(p0
n; zn, y

n
d )

‖ p0
n ‖H1+γ

0 (Ω)

< δ.(23)

Let us denote p̃0
n =

p0
n

‖ p0
n ‖H1+γ

0 (Ω)

and p̃n the solution of (13) associated to zn, εn and with

p̃n(T ) = p̃0
n. Then

‖ p̃n(x, 0) ‖2
H1+γ

0 (Ω)
→ 0 as n →∞,(24)

because in other case

lim inf
n→∞

Jεn(p0
n; zn, y

n
d )

‖ p0
n ‖H1+γ

0 (Ω)

≥

lim inf
n→∞

(
1

2
‖ p0

n ‖H1+γ
0 (Ω)‖ p̃n(x, 0) ‖2

L2(Ω) +δ− ‖ yn
d ‖H−(1+γ)(Ω)

)
= ∞,

which is a contradiction with (23).
Now, we can suppose (again by relabeling the sequence) that there exists p̃0 ∈ H1+γ

0 (Ω)
such that

p̃0
n ⇀ p̃0 in the weak topology of H1+γ

0 (Ω).

Then, by Lemma 9, we obtain that p̃n is uniformly bounded in C([0, T ] : L2(Ω)) and
therefore there exists p̃ ∈ L∞(0, T : L2(Ω)) such that p̃n ⇀ p̃ in the weak topolgy of
L2(Q). This is not sufficient to pass to the limit in the equation satisfied by p̃n (because
of the terms gεn(zn)∆p̃n).
In order to pass to the limit in the equation satisfied by p̃n we distinguish three different
cases: a) ε̃ > 0, b) ε̃ = 0 and k > 0 and c) ε̃ = 0 and k = 0.
To pass to the limit in the three cases above we would like to be able to “multiply” in (13)
by −∆p. Now, if p0 ∈ H1+γ

0 (Ω), then it seems (very likely) that the associated solution p
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of (13) belongs to {p ∈ L2(0, T : H3(Ω)) : p, ∆p ∈ L2(0, T : H1
0 (Ω))} (see Remark 11) and

therefore we could “multiply” in the equation of (13) by −∆p by means of the duality
product < ·, · >H−1(Ω)×H1

0 (Ω). Nevertheless, we don’t know a rigurous proof of this fact
and we have to use a different strategy.
From Lemma 10 and the dense imbedding E ⊂ H1

0 (Ω), we know that for every n ∈ IN we
can choose pn

0 ∈ E such that ‖ p̃0
n − p0

n ‖H1
0 (Ω)≤ 1 and

‖ p̃n − pn ‖L2(0,T :H
5
2−α(Ω))

≤ 1.(25)

Now, since pn ∈ {p ∈ H2m,1(Q) : p, ∆p ∈ L2(0, T : H1
0 (Ω))} we can “multiply” by −∆pn

in the equation satisfied by pn and we obtain that there exists K independent of n ∈ IN
such that

‖ p0
n ‖H1

0 (Ω) +ε̃ ‖ ∇∆pn ‖L2(Q) + ‖ √εn∇∆pn ‖L2(Q) +k ‖ ∆pn ‖L2(Q)≤ K.(26)

Now, let us pass to the limit in the three different cases:
In case a), from estimates (25) and (26), we deduce that there exists p̃ ∈ L2(0, T : L2(0, T :

H
5
2
−α(Ω)) such that p̃n ⇀ p̃ in the weak topology of L2(0, T : L2(0, T : H

5
2
−α(Ω)).

Then, from the equation satisfied by p̃n, we deduce that ∂p̃n

∂t
is uniformly bounded in

L2(0, T : H− 3
2
−α(Ω)). Now, since H

5
2
−α(Ω) ⊂ H2(Ω) ⊂ H− 3

2
−α(Ω) (for α > 0 small

enough) with compact imbeddings (see Theorem 1.16.1 of Lions [18]), we have (see Aubin
[1] or Theorem 1.5.1 of Lions [16]) that {p̃n}n∈IN is relatively compact in L2(0, T : H2(Ω))
(and L2(0, T : E)) and so in {p ∈ L2(0, T : E) : pt ∈ L2(0, T : E ′)} ⊂ C([0, T ] : L2(Ω)).
Therefore, gεn(zn)∆p̃n → a∆p in the weak topology of L2(Q), which allows us to pass to
the limit in the equation satisfied by p̃n and deduce that p̃ is solution of





−p̃t + ε̃∆2p̃− k∆p̃− a∆p̃ = 0 in Q,
p̃ = ∆p̃ = 0 on Σ,
p̃(T ) = p̃0 in Ω.

In case b), again from estimates (25) and (26), we deduce that there exists p̃ ∈ L2(0, T : E)
such that p̃n ⇀ p̃ in the weak topology of L2(0, T : E) (and therefore ∆p̃n ⇀ ∆p̃ in the
weak topology of L2(Q)). Now in this case, since ε̃ = 0 and gεn satisfies (9), gεn(zn) → 0
in the strong topology of L∞(Q). Therefore, gεn(zn)∆p̃n ⇀ a∆p ≡ 0 in the weak topology
of L2(Q), which allows us to pass in the limit in the equation satisfied by p̃n and deduce
that p̃ is solution of {

−p̃t − k∆p̃ = 0 in Q,
p̃ = 0 on Σ.

Then, p̃ ∈ {p ∈ L2(0, T : E) : pt ∈ L2(Q)} ⊂ C([0, T ] : H1
0 (Ω)). Now, in order to see

what is the final data p̃(T ), for all u ∈ L2(Q) we consider ϕ(u) solution of





ϕt −∆ϕ = u in Q,
ϕ = 0 on Σ
ϕ(0) = 0 in Ω.

Then ϕ(u) ∈ {ϕ ∈ L2(0, T : E) : ϕt ∈ L2(Q)} and we have that

−
∫

Ω
(p̃0

n − p̃(T ))ϕ(T )dx +
∫

Q
(p̃n − p̃)ϕtdxdt +

∫

Q
εn∆p̃n∆ϕdxdt
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−
∫

Q
k∆(p̃n − p̃)ϕdxdt−

∫

Q
gεn(zn)∆p̃nϕdxdt = 0 for any u ∈ L2(Q).

Now, passing to the limit as n →∞, we obtain

−
∫

Ω
(p̃0 − p̃(T ))ϕ(T )dx = 0

for any u ∈ L2(Q), which shows that p̃(T ) = p̃0, since

{ϕ(T ; u) : u ∈ L2(Q)} is a dense subset of L2(Ω)

(see, for instance, Section 3.10.2 of Lions [15]). Therefore, p̃ is solution of





−p̃t − k∆p̃ = 0 in Q,
p̃ = 0 on Σ,
p̃(T ) = p̃0 in Ω.

In case c), again from estimates (25) and (26), we deduce that there exists p̃ ∈ L2(0, T :
H1

0 (Ω)) such that p̃n ⇀ p̃ in the weak topology of L2(0, T : H1
0 (Ω)). Hence,

√
εn∆p̃n → 0 in the strong topology of L2(0, T : H−1(Ω)).(27)

Further, also from estimates (25) and (26), we know that
√

εnp̃n is uniformly bounded in

the topology of L2(0, T : H
5
2
−α(Ω)). Then, in a way similar to that of the case a), we

obtain that
√

εn
∂p̃n

∂t
is uniformly bounded in L2(0, T : H− 3

2
−α(Ω)) and, therefore

√
εnp̃n

is relatively compact in L2(0, T : E). Then, from (27), we deduce that
√

εn∆p̃n → 0 in
the strong topology of L2(Q). Thus,

gεn(zn)∆p̃n =
gεn(zn)√

εn

√
εn∆p̃n ⇀ 0 in the weak topology of L2(Q),

which allows us to pass in the limit in the equation satisfied by p̃n and deduce that p̃ is
solution of

−p̃t = 0 in Q.

Then, p̃ ∈ L2(0, T : H1
0 (Ω)) and p̃(x, t) = p̃(x, T ) for all t ∈ [0, T ]. Further, if we take

ϕ(u) as in case b), for any u ∈ L2(Q) we have that

−
∫

Ω
(p̃0

n − p̃(T ))ϕ(T )dx +
∫

Q
(p̃n − p̃)ϕtdxdt +

∫

Q
εn∆p̃n∆ϕdxdt

−
∫

Q
gεn(zn)∆p̃nϕdxdt = 0 for any u ∈ L2(Q).

Now, passing to the limit as n →∞, we obtain

−
∫

Ω
(p̃0 − p̃(T ))ϕ(T )dx = 0

for any u ∈ L2(Q), which shows (as in case b)) that p̃(T ) = p̃0. Hence, p̃ is solution of





−p̃t = 0 in Q,
p̃ = 0 on Σ,
p̃(T ) = p̃0 in Ω.

9



Let us see that p̃(x, 0) ≡ 0 in the three different cases:
In case a) we have proved that p̃n → p̃ in C([0, T ] : L2(Ω)) and therefore p̃n(x, 0) → p̃(x, 0).
Then, from (24), we obtain that p̃ ≡ 0.
In cases b) and c) we have that

∫

Ω
p̃n(x, 0)− p̃(0))ϕdx−

∫

Ω
(p̃0

n − p̃(T ))ϕdx +
∫

Q
εn∆p̃n∆ϕdxdt

+
∫

Q
k∇(p̃n − p̃)∇ϕdxdt−

∫

Q
gεn(zn)∆p̃nϕdxdt = 0 for any ϕ ∈ E.

Finally, passing to the limit as n → ∞, we obtain that p̃n(x, 0) ⇀ p̃(0) in the weak
topology of L2(Ω). Then, from (24), we obtain that p̃(x, 0) ≡ 0. Now, since p̃ satisfies
a suitable linear parabolic equation for any of the cases a), b) or c), we can apply a
backward uniqueness result (see Theorem II.1 of Bardos and Tartar [3]) and deduce that
p̃ ≡ 0 in Q. Therefore p̃0 ≡ 0 in Ω.
Thus,

lim inf
n→∞

Jεn(p0
n; zn, yn

d )

‖ p0
n ‖H1+γ

0 (Ω)

≥ lim inf
n→∞

(
δ− < yn

d , p̃0
n >H−(1+γ)(Ω)×H1+γ

0 (Ω)

)
= δ,

which contradicts (23) and proves (22).
Finally we point out that Jεn(p̂0(εn, zn, yn

d ); zn, y
n
d ) ≤ Jεn(0; zn, y

n
d ) = 0, which is a contra-

diction with (22) and (21) and concludes the result.

Lemma 13 The solutions Lε(z) of (19), with arbitrary ε > 0 (small emough) and z ∈
L2(Q), are uniformly bounded in C([0, T ] : H−1(Ω)) ∩ L2(Q).

Proof. For all ε > 0 and z ∈ L2(Q) we denote by ψ = ψε(z) to the solution of
{
−∆ψ(t) = L(t) in Ω
ψ = 0 on ∂Ω

for all t ∈ [0, T ].

Then, since L = Lε(z) ∈ C([0, T ] : L2(Ω)) for all ε > 0 and z ∈ L2(Q) (recall {L ∈
L2(0, T : E) : Lt ∈ L2(0, T : E ′)} ⊂ C([0, T ] : L2(Ω)); see e.g. Lions-Magenes [18]), we
have that ψε(z) ∈ C([0, T ] : E). Now if we take t ∈ (0, T ] and “multiply” in (19) by ψ, by
using the duality product < ·, · >L2(0,t:E′)×L2(0,t:E), we obtain

1

2
‖ ∇ψε(t) ‖2

L2(Ω) +ε ‖ ∇Lε ‖2
L2(0,t:L2(Ω)) +k ‖ Lε ‖2

L2((0,t)×Ω)

+
∫ t

0

∫

Ω
gε(z(x, t))L2

ε(x, t)dxdt ≤
‖ h ‖L2(0,t:H−1(Ω))‖ ∇ψε ‖L2((0,t)×Ω) + ‖ gε(z(t, x))sε ‖L∞(Q)‖ L ‖L2((0,t)×Ω) .

Here we point out that
‖ ∇ψε(t) ‖2

L2(Ω)=‖ Lε(t) ‖2
H−1(Ω) .

Then, if we take ε small enough and use Young and Gronwall’s inequalities, we easily
deduce (taking into account that in the case k = 0, ϕ = ϕ0 is a nondecreasing function
and therefore gε(z) ≥ 0) that there exists a constant K3 > 0 independent of ε, z and t
such that

‖ Lε(t) ‖2
H−1(Ω) + ‖ Lε ‖2

L2((0,t)×Ω)≤ K3,

10



which concludes the result.
Completion of proof of Theorem 7. From Lemma 13 we can deduce that there exists
a constant K3, depending on C1, C2 and M1 but independent of ε, such that

‖ Lε(z) ‖C([0,T ]:H−1(Ω))≤ K3 for any ε > 0 and any z ∈ L2(Q).

Then {Lε(z; T ), for any ε > 0 and any z ∈ L2(Q)} is a relatively compact subset of
H−(1+γ)(Ω) for all γ > 0. Then, applying Lemma 12, there exists a constant K4, depending
on C1, C2 and M1 but independent of ε, such that, if p̂0

ε is the minimum of Jε(·; z, yd −
Lε(T )), we have ‖ p̂0

ε ‖L2(Ω)≤ K4 for any ε > 0 and any z ∈ L2(Q). Lemma 9 implies (17)
with K = eT K4.

Proof of Theorem 3. The first part is similar to that proved in Theorem 1 of Dı́az and
Ramos [11] by applying Kakutani’s fixed point theorem to the operator Λε : L2(Q) →
P(L2(Q)) defined by Λε(z) := {yε satisfying (11), (16), with a control uε satisfying (18)},
where the constant K of (18) depends on ε. Finally, if ϕ satisfies (3) and (4), then
Theorem 7 shows that (17) holds (i.e. K does not depend on ε), which leads to (6).

Proof of Theorem 1. First step. Assume additionally that ϕ ∈ C1(IR). For any
ε > 0, let vε and yε be the functions given in Theorem 3. Since the equation of (2) holds
on L2(0, T : E ′), multiplying by yε ∈ L2(0, T : E) and applying Young and Gronwall
inequalities we obtain, thanks to the uniform estimate (6) and the assumptions on ϕ′ or
h, that there exists a constant C > 0 independent of ε such that

‖ yε ‖L∞(0,T :L2(Ω)) +
∫

Q
ϕ′(yε)|∇yε|2dxdt ≤ C.(28)

Therefore, from (28) we obtain that yε is uniformly bounded in L∞(0, T : L2(Ω)) and
by the equation of (2), (yε)t is uniformly bounded in L∞(0, T : H−4(Ω)). Then, since
L2(Ω) ⊂ H−1(Ω) ⊂ H−4(Ω) with compact imbeddings, we have (see Aubin [1] or Theorem
1.5.1 of Lions [16]) that yε is relatively compact in C([0, T ] : H−1(Ω)). Further, from (28)
and the boundedness of function ϕ′ (notice that ϕ′ ∈ L∞(IR) by (3)), we deduce that
there exists a constant K > 0 independent of ε such that

∫ T

0
‖ ∇ϕ(yε) ‖2

L2(Ω) dt =
∫

Q
ϕ′(yε(x, t)) ϕ′(yε(x, t))|∇(yε(x, t))|2dxdt < K.

Thus, there exist y ∈ L∞(0, T : L2(Ω)) and ζ ∈ L2(0, T : H1
0 (Ω)) (recall that ϕ(0) = 0)

such that yε → y strongly in L2(0, T : H−1(Ω)) and ϕ(yε) ⇀ ζ weakly in L2(0, T : H1
0 (Ω)).

But the operator Au := −∆ϕ(u), D(A) := {u ∈ H−1(Ω) : ϕ(u) ∈ H1
0 (Ω)} is a maximal

monotone operator on the space H−1(Ω) (see Brézis [4]). Thus, the extension operator A
of A is also a maximal monotone operator on L2(0, T : H−1(Ω)) (see Brézis [5]), Example
2.33). Finally, as any maximal monotone operator is strongly-weakly closed (see Brézis [5],
Proposition 2.5), we obtain that ζ = ϕ(y) in L2(0, T : H1

0 (Ω)). Moreover, from estimate
(6) we have that vε ⇀ v weakly in L2(Ω), with

‖ v ‖L2(Ω)≤ K.(29)

Then we deduce that y ∈ C([0, T ] : H−1(Ω)) is solution of (1). Further, since yε(T ) → y(T )
strongly in H−1(Ω), we deduce that

‖ y(T )− yd ‖H−(1+γ)(Ω)= lim
ε→0

‖ yε(T )− yd ‖H−(1+γ)(Ω)≤ δ.
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Second step. Let ϕ as in the statement of Theorem 1. It is clear that we can approximate
ϕ by ϕn ∈ C1(IR), ϕn nondecreasing, satisfying (3) and (4) with the same constants k,
C1, C2 and M1 that the ones for ϕ. Then the respective controls vn build as in step 1 are
uniformly bounded (recall (29)) and therefore the conclusion comes from the well-known
result expressing the continuous dependence in C([0, T ] : H−1(Ω)) on ϕ of solutions of (1)
(see e.g. Damlamian [7], Theorem 2.3).

Appendix

Proof of Lemma 4. We can choose sε ∈ IR large enough such that |sε| > 2M1 and

|ϕ′0(s)| <
√

ε

2
for any s ∈ IR with |s| ≥ |sε|

2
.(30)

Indeed, (30) is implied by the assumption (3). Moreover, if ϕ0 ∈ L∞(IR) then we can
choose sε satisfying (30) such that

‖ ϕ0 ‖L∞(IR)

|sε| ≤
√

ε

8

and if ϕ0 is a not bounded function then we claim that we can choose sε satisfying (30)
such that

|ϕ0(s)| ≤ |ϕ0(sε)| ∀ s ∈ IR such that |s| ≤ |sε|
2

(31)

and

|ϕ0(
+− sε)|
|sε| <

√
ε

8
.(32)

In fact, (32) is implied by assumption (3). In order to verify (31), if we define sN ∈ [−N, N ]
such that |ϕ0(sN)| = max{|ϕ0(s)| : s ∈ [−N, N ]}, then, since ϕ0 ∈ C0(IR) and it is a not
bounded function, it is clear that {sN} → +∞ as N → +∞. Then, taking sε = sN , with
N large enough, properties (30) and (31) are simultaneously verified.
Let us supoose that sε > 0 (the other case is similar to this one). Then it is easy to
check property (9) by taking into account last properties with s in the separate intervals

[
sε

2
,∞), (−sε

2
,
sε

2
) and (−∞,−sε

2
].

In the case s ∈ [
sε

2
,∞) we have

|g(s)| ≤ sup
ξ∈[ sε

2
,∞)

|ϕ′0(ξ)| ≤
√

ε

2
<
√

ε.

When s ∈ (−sε

2
,
sε

2
) we have that

|g(s)| ≤ |ϕ0(s)− ϕ0(sε)|
sε/2

≤ 2

(√
ε

8
+

√
ε

8

)
<
√

ε.

Finally, in the case s ∈ (−∞,−sε

2
] there exists θ(s) ∈ (−∞,− sε

2
] such that

|gε(s)| ≤ |ϕ0(s)− ϕ0(−sε)|
|s− (−sε)| +

|ϕ0(−sε)|
|s− sε| +

|ϕ0(sε)|
|s− sε|
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(since |s− sε| ≥ |s− (−sε)|)
≤ |ϕ′0(θ(s))|+

|ϕ0(−sε)|
|sε| +

|ϕ0(sε)|
|sε| (since |s− sε| ≥ |sε|)

≤
√

ε

2
+

√
ε

8
+

√
ε

8
<
√

ε.

Let us check that (10) holds under the additional condition (4). Assume s ∈ [
sε

2
,∞):

Then, by the mean value theorem, there exists θ(s) ∈ [ sε

2
,∞) such that

|gε(s)sε| = |ϕ′0(θ(s))θ(s)||
sε

θ(s)
| ≤ 2|ϕ′0(θ(s))θ(s)| ≤ 2C1

(recall (3)). When s ∈ (−sε

2
,
sε

2
)

|gε(s)sε| ≤ |ϕ0(s)|
|s− sε| |sε|+ |ϕ0(sε)|

|s− sε| |sε| ≤ 2|ϕ0(s)|+ 2|ϕ0(sε)| ≤ 4C2

(since |s− sε| ≥ |sε|
2

). Finally, if s ∈ (−∞,−sε

2
], then there exists θ(s) ∈ (−∞,− sε

2
] such

that

|gε(s)sε| ≤ |ϕ0(s)− ϕ0(−sε)|
|s− (−sε)| |sε|+ |ϕ0(−sε)|

|s− sε| |sε|+ |ϕ0(sε)|
|s− sε| |sε|

(since |s− sε| ≥ |s− (−sε)|)
≤ |ϕ′0(θ(s))θ(s)|

|sε|
|θ(s)| + |ϕ0(−sε)|+ |ϕ0(sε)| (since |s− sε| ≥ |sε|)

≤ 2C1 + 2C2.

The following two corollaries give two different sufficient conditions in order to obtain (9),
(10):

Corollary 14 Let us suppose that ϕ0 satisfies:

• ϕ0 is a bounded function (with ϕ0(0) = 0),

• there exists s > 0 such that

{
ϕ′′0(s) ≤ 0 ∀ s ≥ s,
ϕ′′0(s) ≥ 0 ∀ s ≤ −s,

• ϕ0 is a non-decreasing function in (−∞,−s] ∪ [s, +∞).

Then (10) is satisfied.

Proof. From the assumptions, for all s ∈ (s, +∞) there exists γ(s) ≥ s such that

|ϕ′0(s)s| ≤ |ϕ′0(s)γ(s)| ≤ |ϕ′0(s)(γ(s)− s)|+ |ϕ′0(s)s|
= |ϕ0(γ(s))− ϕ0(s)|+ |ϕ′0(s)s|

≤ 2 ‖ ϕ0 ‖L∞(IR) + ‖ ϕ′0 ‖L∞(s,+∞) |s|.
In a way similar to this one, for all s ∈ (−∞,−s) there exists γ(s) ≤ −s such that

|ϕ′0(s)s| ≤ 2 ‖ ϕ0 ‖L∞(IR) + ‖ ϕ′0 ‖L∞(−∞,s) |s|.
The result is concluded by applying Lemma 4.
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Corollary 15 Let us suppose that ϕ0 satisfies:

• ϕ0 is a bounded function (with ϕ0(0) = 0),

• there exists s > 0 such that

{
ϕ′′0(s) ≤ 0 ∀ s ≥ s,
ϕ′′0(s) ≥ 0 ∀ s ≤ −s.

Then (10) is satisfied.

Proof. The proof is easily deduced from the above corollary since necessarily ϕ0 is a
non-decreasing function in (−∞,−s] ∪ [s, +∞).
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