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Abstract

This work deals with some numerical experiments regarding the distributed control of
semilinear parabolic equations of the type

yt − yxx + f(y) = uχω in (0, 1)× (0, T ),

with Neumann and initial auxiliary conditions, where ω is an open subset of (0, 1), f is
a C1 nondecreasing real function, u is the output control and T > 0 is (arbitrarily) fixed.
Given a target state yT we study the associated approximate controllability problem (given
ε > 0, find u ∈ L2(0, T ) such that ‖y(T ; u)− yT ‖L2(0,1) ≤ ε) by passing to the limit (when
k → ∞) in the penalized optimal control problem (find uk as the minimum of Jk(u) = 1

2

‖u‖2
L2(0,T ) + k

2 ‖y(T ; u)− yT ‖2
L2(0,1)). In the superlinear case (e.g. f(y) = |y|n−1 y, n > 1)

the existence of two obstruction functions Y±∞ shows that the approximate controllability
is only possible if Y−∞(x, T ) ≤ yT (x) ≤ Y∞(x, T ) for a.e. x ∈ (0, 1). We carry out some
numerical experiences showing that, for a fixed k, the ”minimal cost” Jk(u) (and the
norm of the optimal control uk) for a superlinear function f becomes much larger when
this condition is not satisfied. We also compare the values of Jk(u) (and the norm of the
optimal control uk) for a fixed yT associated with two nonlinearities: one sublinear and
the other one superlinear.

1 INTRODUCTION

This work deals with some numerical experiences regarding the control of semilinear equa-
tions of the type
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†Supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain under a “Ramón y Cajal” research contract,

and by the Spanish ’Plan Nacional de I+D+I (2000-2003) del MCYT’, through the AGL2003-06862-C02-02
project.
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P (u)





yt − yxx + f(y) = uχω in (0, 1)× (0, T ),
∂y
∂x(0, t) = ∂y

∂x(1, t) = 0 for t ∈ (0, T ),
y(x, 0) = y0(x) in (0, 1),

where f is a C1 nondecreasing real function, u is the output control, ω is an open subset of
(0, 1), T > 0 is (arbitrarily) fixed, and y0 is a given function (for instance y0 ∈ H1

0 (0, 1)).
Given an arbitrary target state yT (we can assume, for simplicity, that yT ∈ C0([0, 1])),

the associated approximate controllability problem consists of, given an arbitrary ε > 0,
find u ∈ L2(ω × (0, T )) such that ‖y(T ; u)− yT ‖L2(0,1) ≤ ε, where y(T ; u) denotes the
solution of P (u) at time T.

It is well known (see Fabre-Puel-Zuazua [9] and Dı́az-Ramos [7]) that the answer is
positive if “f is sublinear at infinity” (|f(s)| ≤ M(|s| + 1) for |s| large and for some
M > 0). In the “superlinear at infinity” case

|f(s)| ≥ M(|s|n + 1) for |s| large and for some n > 1 and M > 0, (1)

the answer is negative. This type of negative results can be proved in different ways: via
an energy argument (see, e.g. the case of control on the Neumann boundary condition,
due to A. Bamberger, in Henry [14]) or via some pointwise obstruction phenomenon (see
Dı́az [4] for problem P (u) and Dı́az-Ramos [7] for other problems).

It is also well known that in the sublinear case, the solution to the controllability
problem can be obtained by passing to the limit (as k → ∞) in the penalized optimal
control problem in which the control uk is found as the minimum of the functional

Jk(u) =
1
2
‖u‖2

L2(ω×(0,T )) +
k

2
‖y(T ; u)− yT ‖2

L2(0,1) (2)

(see Lions [16] for the linear case and Fernández-Zuazua [11] for the semilinear case).
For the superlinear case the approximate controllability was obtained in Dı́az [5] under

the assumption

Y−∞(x, T ) ≤ yT (x) ≤ Y∞(x, T ) for a.e. x ∈ (0, 1), (3)

where Y±∞ are the “largest solutions”. In our case, Y±∞ are the solutions of the problem

P (±∞)





yt − yxx + f(y) = 0 in ((0, 1)\ω)× (0, T ),
∂y
∂x(0, t) = ∂y

∂x(1, t) = 0 for t ∈ (0, T ),
y(·, t) = ±∞ on ∂ω × (0, T ),

y(x, 0) = y0(x) in (0, 1)

(the existence of such large solutions requires f to be superlinear, i.e, to satisfy (1)).
Notice that the special case of yT ≡ 0 is included (see, e.g., Fernández-Cara [10], for other
results on null controllability).

More recently, some results on the approximate controllability of the projections on
finite dimensional subspaces were obtained by Khapalov [15] (see also its references) for the
superlinear case (1). Global exact steady-state controllability results have been obtained
in Coron-Trélat [3].

A remarkable fact is that, for the sublinear case, the approximate controllability prop-
erty holds for any open subset ω (as small as we want), but it may fail when the control
domain ω is reduced to a single point (pointwise control). Furthermore, for linear cases it
can be proved (see [12]) that the controllability property in the pointwise control is true
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for what is called strategic control points. When looking for these points one find that,
for instance, for the linear heat equation, the non-rationals numbers are strategic and,
if the problem is symmetric with respect to a rational number, this number is also an
strategic point for that problem. Anyway, it is always possible to consider the associate
optimal control problems similar to that with cost functional (2) and perform a similar
analysis. This analysis has been carried out in [8] for several problems with the control
point x = 1/2 and the suitable symmetries referred above holding (althought for nonlinear
cases it is not guaranteed that this point is strategic).

The main goal of this work is to carry out some numerical experiments on the penalized
optimal control problem for difference target states yT and different nonlinear terms f(y).
We illustrate the fact that, for a fixed k, the ”minimal cost” Jk(u) (and the norm of the
optimal control uk) for a superlinear function f becomes much larger when (3) is not
satisfied (see numerical test # 1, # 2 and # 3 below). We also compare the values of
Jk(u), the norm of the optimal control uk, and ‖y(T ; u)− yT ‖, for a fixed yT , associated to
two different nonlinearities: one sublinear (f(y) = arctg(y)) and the other one superlinear
(f(y) = y3).

2 PROBLEM FORMULATION.

Let us consider a given target function yT ∈ L2(0, 1). We define the control space as
U = L2(ω × (0, T )). The goal is to find a control u ∈ U so that y(T ) is close to yT at a
minimal cost for the control, where y(x, t) is the (unique) solution of P (u)). We recall that
a weak formulation of P (u) is provided by y ∈ L2(0, T ; H1(0, 1))∩H1(0, T ; (H1(0, 1))′) ⊂
C([0, T ] : L2(Ω)) such that





f(y) ∈ L1(0, T ; L1(0, 1)), and ∀ z ∈ L2(0, T ;H1(0, 1)) ∩ L∞(Q)

∫ T

0
< yt, z >(H1)′×H1 dt +

∫ T

0

∫ 1

0
yxzxdxdt +

∫ T

0

∫ 1

0
f(y)zdxdt

=
∫ T

0

∫

ω
uzdxdt,

y(x, 0) = y0(x).

The existence and uniqueness of weak solution becomes standard after the work by Brezis-
Browder [2]. Moreover, we can prove the boundedness of the solution even for unbounded
controls.

Proposition 1 The weak solution y of problem P(u) satisfies y ∈ L∞((0, 1)× (0, T )).

Proof. Due to the monotonicity of function f , it is well-known that

|y(t, x)| ≤ |h(t, x)| for any t ∈ [0, T ] and a.e. x ∈ Ω, (4)

where h is the (unique) solution of the linear equation

(LHE)





ht − hxx = uχω in (0, 1)× (0, T ),
∂h
∂x(0, t) = ∂h

∂x(1, t) = 0 for t ∈ (0, T ),
h(x, 0) = y0(x) in (0, 1),
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But this equation has a unique solution

h ∈ L2(0, T ;H2(0, 1)) ∩H1(0, T ; L2(0, 1)) ⊂ C([0, T ] : H1(0, 1)) ⊂ L∞(Q).

The proof is based on Theorem 1.1 of Chapter 4 and Theorem 3.1 of Chapter 1 of Lions-
Magenes [17]. This proves the result thanks to (4). ¤

For every k ∈ IN , we define the cost function Jk by

Jk(v) =
1
2
‖ v ‖2

U +
k

2
‖ y(T )− yT ‖2

L2(0,1), ∀ v ∈ U .

The control problem is then

(CPk)





find uk ∈ U , such that

Jk(uk) ≤ Jk(v), ∀ v ∈ U .

A common way to solve this problem is to solve the problem

J ′k(u) = 0,

where J ′k denotes the Gateaux differential of Jk.
Now, it is easy to prove (see, e.g., Glowinski-Lions [12] and Ramos-Glowinski-Periaux

[19]) that
J ′k(v) = v + p|ω,

i.e.,

(J ′k(v), w) =
∫ T

0

∫

ω
(v + p)wdxdt, ∀ w ∈ U ,

where p is the solution of the adjoint system




−pt − pxx + f ′(y)p = 0 in Q,

∂p

∂x
(0) =

∂p

∂x
(1) = 0,

p(T ) = k(y(T ; v)− yT ) in (0, 1)

and (·, ·) denotes the scalar product in U defined by (u, v) =
∫ T

0

∫

ω
uvdxdt. Notice that

Proposition 1 guarantees that f ′(y) ∈ L∞((0, 1)× (0, T )).

3 TIME DISCRETIZATION.

We consider the time discretization step ∆t, defined by ∆t = T/N , where N is a positive
integer. Then, if tn = n∆t, we have 0 < t1 < t2 < · · · < tN = T . We approximate then
problem (CP) by the following finite-dimensional minimization problem:

(CPk)∆t





Find u∆t = {un}N
n=1 ∈ U∆t, such that

J∆t
k (u) ≤ J∆t

k (v), ∀ v = {vn}N
n=1 ∈ U∆t,
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with the time discrete control space U∆t = L2(ω)× IRN and

J∆t
k (v) =

∆t

2

N∑

n=1

‖ vn ‖2
L2(ω)

+
k

2

(
(1− θ) ‖ yN−1 − yT ‖2

L2(0,1) +θ ‖ yN − yT ‖2
L2(0,1)

)
,

where θ ∈ (0, 1] and {yn}N
n=1 is defined from the solution of the following second order

accurate time discretization scheme of problem (P (u)):

y0 = y0,



y1 − y0

∆t
− ∂2

∂x2
(
2
3
y1 +

1
3
y0) + f(y1) =

2
3
v1χω in (0, 1),

∂y1

∂x
(0) =

∂y1

∂x
(1) = 0,

and for n ≥ 2,




3
2yn − 2yn−1 + 1

2yn−2

∆t
− ∂2

∂x2
yn + f(yn) = vnχω in (0, 1),

∂yn

∂x
(0) =

∂yn

∂x
(1) = 0.

Remark. We have used an implicit scheme. We could also have used a semi-implicit
scheme, treating implicitly the diffusion term and explicitly the reaction term (as done in
[1], [12] and [19] for the case of the diffusion and advection terms of the Burgers equation),
but this choice may imply the necessity of choosing a very small time step ∆t, in particular
for reaction-dominated problem as the one we are treating.

4 FULL DISCRETIZATION.

We consider the space discretization step h, defined by h = 1/I, where I is a positive
integer. Then, if xi = (i − 1)h, we have 0 = x1 < x2 < · · · < xI < xI+1 = 1. We
approximate H1(0, 1) by

Vh = {z ∈ C0[0, 1] : z|(xi,xi+1) ∈ P1, i = 1, · · · , I},
where P1 is the space of the polynomials of degree least or equal than one and U by
U∆t

h = (Uh)N , where

Uh = {z : z ∈ C0(ω) : z|(xi,xi+1) ∈ P1, ∀ i = 1, · · · , I such that (xi, xi+1) ⊂ ω}.
We define ah by

ah(y, z) =
∫ 1

0
yxzxdx.

We approximate then problem (CPk) by the following finite-dimensional minimization
problem:

(CPk)∆t
h





Find u∆t
h = {un}N

n=1 ∈ U∆t
h , such that

J∆t
k,h(u∆t

h ) ≤ J∆t
k,h(v), ∀ v = {vn}N

n=1 ∈ U∆t
h ;
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with

J∆t
k,h(v) =

∆t

2

N∑

n=1

‖ vn ‖2
L2(ω) +

k

2

(
(1− θ) ‖ yN−1

h − yT ‖2
L2(0,1) +θ ‖ yN

h − yT ‖2
L2(0,1)

)
,

where θ ∈ (0, 1] and {yn
h}N

n=1 is defined from the solution of the following full discretization
of problem (P (u)):





y0
h ∈ Vh,

(y0
h, z) = (y0, z), ∀z ∈ Vh;





y1
h ∈ Vh,

(
y1

h − y0
h

∆t
, z

)
+ ah(

2
3
y1

h +
1
3
y0

h, z) + (f(y1
h), z) =

2
3

∫

ω
v1zdx, ∀z ∈ Vh;

and for n ≥ 2,





yn
h ∈ Vh,

(
3
2yn

h − 2yn−1
h + 1

2yn−2
h

∆t
, z

)
+ ah(yn

h , z) + (f(yn
h), z) =

∫
ω vnzdx, ∀z ∈ Vh.

In the above algorithm (·, ·) denotes the scalar product in L2(0, 1), that is,

(f, g) =
∫ 1

0
f(x)g(x)dx ∀ f, g ∈ L2(0, 1).

As for the continuous case, to solve problem (CP)∆t
h , we look for the solution u∆t

h of

∂J∆t
h

∂v
(u∆t

h ) = 0.

Computing ∂J∆t
h

∂v (v) is more complicated than in the continuous case but, following the
same approach, we can show that

<
∂J∆t

k,h

∂v
(v), w >= ∆t

N∑

n=1

∫

ω
(vn + pn)wndx,

where {pn
h}N+2

n=1 is the solution of




pN+2
h ∈ Vh,

(pN+2
h , z) = −8l(1− θ)

∫ 1

0
(yN−1

h − yT )zdx− 2lθ

∫ 1

0
(yN

h − yT )zdx, ∀z ∈ Vh;





pN+1
h ∈ Vh,

(pN+1
h , z) = −2l(1− θ)

∫ 1

0
(yN−1

h − yT )zdx, ∀z ∈ Vh;
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and for n = N, · · · , 1,





pn
h ∈ Vh,

(
3
2pn

h − 2pn+1
h + 1

2pn+2
h

∆t
, z

)
+ ah(pn

h, z) + (f ′(yn
h)pn

h, z) = 0, ∀z ∈ Vh.

Now, once we know how to compute ∂J∆t
h

∂v (v), we use a quasi-Newton method à la BFGS
(see, e.g., [18] for BFGS algorithms and their implementations) to compute the solution
of the fully discrete control problem (CP)∆t

h .

5 NUMERICAL EXPERIMENTS.

In all the tests considered we have taken ω = (0.4, 0.5), T = 1, I = 100, N = 500, k = 1012

and y0 = 0 (notice that this implies y(x, t; 0) ≡ 0). We use, for our algorithm, θ = 3/2.
Further, if vp (p = 1, 2, · · ·) is the sequence of controls we get from the BFGS algorithm,
we use the following stopping criteria: we stop iterating after step p if either

‖ ∂J∆t
h

∂v
(up) ‖∞≤ 10−5

or
J∆t

h (up−1)− J∆t
h (up)

max{|J∆t
h (up−1)|, |J∆t

h (up)|, 1}
≤ 2 · 10−9.

We have considered three different tests, depending on the target function.

5.1 Test 1: yT ≡ 5.

On Figure 1 (resp., 2) we have shown the super-solution Y∞(T ) (...), the target function
yT (- - -), and the controlled state solution y(T ) (—) corresponding to the nonlinearity
f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have been
represented on Figures 3 and 4.

On Figure 5 (resp., 6) we have shown the graphic of ‖ y(t) − yT ‖L2(0,1), t ∈ [0, 1],
when f(y) = y3 (resp. f(y) = arctg(y)).

On Figure 7 (resp., 8) we have shown a 3D graphic of y(x, t) when t ∈ [0.98, 1] and
f(y) = y3 (resp. when t ∈ [0.95, 1] and f(y) = arctg(y)).

In Table 1 we give some further results about our solutions. The norms considered in
all the tables of the present article refer to the L2−norm of the discrete entries. One of the
entries of the table shows the number of discrete parabolic equations the BFGS algorithm
has needed to solve (a half of this number corresponds to the nonlinear state system and
the other half corresponds to the linear adjoint system). Further, y(v; T ) represents the
solution at time T , associated with the control v (y(0, T ) represents the solution without
control, at time T ).
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Figure 1: The target function (- -), the
large solution (..) and controlled (–) states
at time T , for f(y) = y3.
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Figure 2: The target function (- -) and
the controlled (–) state at time T , for
f(y) = arctg(y).
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Figure 3: ‖u(t)‖, for f(y) = y3.
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Figure 4: ‖u(t)‖, for f(y) = arctg(y).
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Figure 5: ‖ y(t)− yT ‖, for f(y) = y3.
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Figure 6: ‖ y(t) − yT ‖, for f(y) =
arctg(y).
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Figure 7: Graphic of y(x, t) (t ∈ [0.98, 1]),
for f(y) = y3.
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Figure 8: Graphic of y(x, t) (t ∈ [0.95, 1]),
for f(y) = arctg(y).
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f(y) = y3 f(y) = arctg(y)

‖ y(0; T )− yT ‖ (=‖ yT ‖) 5 5
‖ y(u; T )− yT ‖ 0.5613 8.69 · 10−4

‖ u ‖ 4.2476 · 104 19.4185
J(0) 1.25 · 1013 1.25 · 1013

J(u) 1.5933 · 1011 3.7797 · 105

Table 1: Computational results.

5.2 Test 2: yT ≡ 50.

On Figure 9 (resp., 10) we illustrate the super-solution Y∞(T ) (...), the target function
yT (- - -), and the controlled state solution y(T ) (—) corresponding to the nonlinearity
f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have been
represented on Figures 11 and 12.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

x

y(
x)

Figure 9: The target function (- -), the
large solution (..) and controlled (–) states
at time T , for f(y) = y3.
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Figure 10: The target function (- -) and
the controlled (–) state at time T , for
f(y) = arctg(y).

On Figure 13 (resp., 14) we illustrate the graphic of ‖ y(t) − yT ‖L2(0,1), t ∈ [0, 1],
when f(y) = y3 (resp. f(y) = arctg(y)).

On Figure 15 (resp., 16) we have shown a 3D graphic of y(x, t) when t ∈ [0.98, 1] and
f(y) = y3 (resp. when t ∈ [0.95, 1] and f(y) = arctg(y)).

In Table 2 we give some further results about our solutions.
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Figure 11: The computed optimal control
for f(y) = y3.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

t

||u
||

Figure 12: The computed optimal control
for f(y) = arctg(y).
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Figure 13: ‖ y(t)− yT ‖, for f(y) = y3.
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Figure 14: ‖ y(t) − yT ‖, for f(y) =
arctg(y).
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Figure 15: Graphic of y(x, t) (t ∈
[0.98, 1]), for f(y) = y3.
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Figure 16: Graphic of y(x, t) (t ∈
[0.95, 1]), for f(y) = arctg(y).

f(y) = y3 f(y) = arctg(y)

‖ y(0; T )− yT ‖ (=‖ yT ‖) 50 50
‖ y(u; T )− yT ‖ 38.4450 1.615 · 10−3

‖ u ‖ 5.6426 · 104 1.6364 · 102

J(0) 1.25 · 1015 1.25 · 1015

J(u) 7.3901 · 1014 1.3312 · 106

Table 2: Computational results.

5.3 Test 3:

yT (x) =





0 if x ∈ (0, 0.5),
8x− 4 if x ∈ (0.5, 0.75),
−8x + 8 if x ∈ (0.75, 1).

On Figure 17 (resp., 18) we have shown the super-solutions Y∞(T ) (...), the target
function yT (- - -), and the controlled state solution y(T ) (—) corresponding to the
nonlinearity f(y) = y3 (resp. f(y) = arctg(y)). The corresponding control functions have
been represented on Figures 19 and 20.

On Figure 21 (resp., 22) we have shown the graphic of ‖ y(t) − yT ‖L2(0,1), t ∈ [0, 1],
when f(y) = y3 (resp. f(y) = arctg(y)).

On Figure 23 (resp., 24) we have shown a 3D graphic of y(x, t) when t ∈ [0.98, 1] and
f(y) = y3 (resp. when t ∈ [0.99, 1] and f(y) = arctg(y)).

In Table 3 we give some further results about our solutions.
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Figure 17: The target function (- -),
the large solutions (..) and controlled (–)
states at time T , for f(y) = y3.
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Figure 18: The target function (- -) and
the controlled (–) state at time T , for
f(y) = arctg(y).
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Figure 19: The computed optimal control
for f(y) = y3.
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Figure 20: The computed optimal control
for f(y) = arctg(y).
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Figure 21: ‖ y(t)− yT ‖, for f(y) = y3.
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Figure 22: ‖ y(t) − yT ‖, for f(y) =
arctg(y).
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Figure 23: Graphic of y(x, t) (t ∈
[0.95, 1]), for f(y) = y3.
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Figure 24: Graphic of y(x, t) (t ∈
[0.99, 1]), for f(y) = arctg(y).
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f(y) = y3 f(y) = arctg(y)

‖ y(0; T )− yT ‖ (=‖ yT ‖) 16.3299 16.3299
‖ y(u; T )− yT ‖ 12.920120 1.418373

‖ u ‖ 2.9238 · 104 5.1621 · 103

J(0) 1.3333 · 1014 1.3333 · 1014

J(u) 8.3466 · 1013 1.0059 · 1012

Table 3: Computational results.

6 CONCLUSIONS AND CONJECTURES.

Our numerical results give some quantitaive information on a result theoretically showed
in [7]: when we consider a superlinear at infinity nonlinearity (e.g. f(y) = y3) and the
target function yT does not satisfy (3), then the approximate controllability property fails.

We also (numerically) show the obstruction phenomenon does not appear when f is
sublinear at infinity (e.g. f(y) = arctg(y)) and get suitable controls. This is consistent
with the theoretical approximate controllability results obtained in [9] (see also [7]).

For the superlinear case, our experiments confirm that, as theoretically proved in
[5], when the target function satisfies (3), the controllability property holds. The above
mentioned proof in [5] is not constructive and follows a different scheme to the successive
penalized optimal control problems used in this paper.

A remarkable fact is that, in superlinear cases (and occasionally also in sublinear cases),
the solution y oscillates very fast for times t ∈ (T − δ, T ), getting away from the target
state yT and finally approaching yT at time T . This is an unstable phenomenon typical
of optimal control problems of controllability type, in contrast with the non-oscillating
behavior of the solution of stabilization type problems (see, e.g. Glowinski-Ramos [13]).

Finally, we point out that the optimal controls obtained in our experiments follow the
typical pattern of remaining close to zero until the last part of the time interval.

The above numerical experiences lead us to formulate the following conjectures:

A. A theoretical proof of the approximate controllability property for problems with
superlinear at infinity nonlinearities and target states satisfying (3) can be also
obtained in a constructive way, by means of the penalized optimal control problems
(CPk) used in this paper.

B. Fixed a target function yT satisfying (3), the cost (in terms of the norm of the
controls) to approximate this function is, in general, much bigger for superlinear
cases than for sublinear cases. However, this result can be false if yT is small enough.
For instance, when f(y) = |y|p−1y, the cost to approximate yT is much bigger when
p > 1, except for target functions satisfying |yT (x)| ≤ 1. This conjecture is exactly
the opposite of the results obtained in Dı́az-Lions [6] for the case of initial value
control problems with nonlinearities of the type f(y) = −y3.
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[3] J.M. Coron and E. Trélat, “Global steady-state controllability of 1-D semilinear heat
equations”. Preprint, 2003.

[4] J.I. Dı́az, “Mathematical Analysis of some diffusive energy balance models in Clima-
tology”. In Mathematics, Climate and Environment, J.I. Dı́az and J.L. Lions Eds.,
Masson, 28–56 (1993).

[5] J.I. Dı́az, “Controllability and Obstruction for Some Nonlinear Parabolic Problems
in Climatology”. In Modelado de sistemas en Oceanograf́ıa, Climatoloǵıa y Ciencias
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