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1 Introduction

In [1] Angel and Bellman proposed a method based on invariant embedding to
transform a second order elliptic boundary value problem in a rectangle in a
system of first order decoupled initial value problems which can be solved by a
two sweep process (see also [2]). This formulation was derived only formally with
the use of the Neumann-to-Dirichlet (NtD) map. Here we study this method
for a model problem : the Poisson equation. In Section 2 we present the formal
derivation of the factorization, extending previous results to an n-dimensional
cylindrical domain with axis parallel to the x1 coordinate, for various boundary
conditions, using also the Dirichlet-to-Neumann (DtN) map. The first objective
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of the paper, carried out in Section 3, is to give a functional space framework
and a mathematical justification of the derivation of the factorization. Secondly,
in Section 4 we show the relation of the use of invariant embedding for this
problem and for optimal control problems associated to evolution equations. In
particular we show the relation between the time dependent Riccati equation
providing the feedback law of such optimal control problems (see e.g. [9, 5])
and the x1 Riccati equation satisfied by the NtD or DtN maps in our case. We
also show, in Section 5, that this factorization can be viewed as the extension to
the infinite dimensional problem of the well known block Gauss LU factorization
of the matrix of the discretized problem. Section 6 gives some clues about the
interest of such a factorization for the study of elliptic boundary value problems,
presenting some situations where one can take advantage from the factorized form
of the problem. It is believed that the method of factorization of boundary value
problems is more general and can be applied to more complex situation than
the Poisson equation in a cylindrical domain. We found this case convenient to
present the method and give full mathematical justifications. Other results can
be found in [15]. In [7], the authors use these techniques (in a formal way) to solve
an optimal control problem associated to an elliptic equation and get the optimal
control in an explicit way. In [6] the method is applied to the factorization of the
linear elasticity system. Furthermore, similar techniques have been used recently
in acoustics in order to compute generalized impedance in waveguides (see [13],
[12]). Specific numerical schemes are developped from this approach ([11]).

2 Elliptic problem in a cylindrical domain.

We consider the Poisson equation in a cylindrical domain along the x1-coordinate.
This coordinate plays the role of time for a parabolic equation. We shall make a
strong analogy with the uncoupling of the optimality conditions associated to an
optimal control problem of such systems.

2.1 Statement of the problem and formal resolution

Let O be a smooth bounded open set in IRn−1, Ω be the cylinder Ω =]0, a[×O
in IRn, Γ0 = {0} × O, Γa = {a} × O and f ∈ L2(Ω). The lateral boundary of
the cylinder is denoted by Σ = ∂O×]0, a[. The regularity of the data y0 and y1

is defined below. Let us denote Δ =
∑n

i=1
∂2

∂x2
i

= ∂2

∂x2
1

+ Δz, where z denotes the

independent variables x2, ..., xn. We consider the problem

(P0)

⎧⎨⎩ −Δy = f in Ω,

y|Σ = 0, − ∂y

∂x1

|Γ0 = y0, y|Γa = y1.

We recall the Sobolev space H
1/2
00 (O) defined in Theorem 11.7, p. 72 of [10]
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as the 1/2 interpolate between H1
0 (O) and L2(O). In problem (P0) we take

y0 ∈ H
1/2
00 (O)′ (dual space of H

1/2
00 (O)) and y1 ∈ H

1/2
00 (O).

Using the technique of invariant embedding introduced by R. Bellman (see [4]),
we embed problem (P0) in a family of similar problems (Ps,h) defined on Ωs =
]0, s[×O for s ∈]0, a] (see Fig. 1).

x�

O

� s a

�

Figure 1: Domain of the problem.

For each problem we impose the Dirichlet boundary condition y|Γs = h, where
Γs = {s} × O.

(Ps,h)

⎧⎨⎩ −Δy = f in Ωs,

y|Σ = 0, − ∂y

∂x1

|Γ0 = y0, y|Γs = h.

Clearly (P0) is exactly (Ps,h) for s = a, h = y1.

For s ∈]0, a] we define Ys = {v ∈ H1(Ωs) : ∂2v
∂x2

1
∈ L2(0, s; H−1(O)) and v|Σ = 0}.

We then apply a method quite similar to the one used by Lions ([9]) for deriving
the optimal feedback for an optimal control problem of a parabolic equation.

Definition 2.1 For every s ∈]0, a] we define the DtN map Q(s) by Q(s)h =
∂γ
∂x1

|Γs, where h ∈ H
1/2
00 (O) and γ ∈ Ys is the solution of⎧⎨⎩ −Δγ = 0 in Ωs,

γ|Σ = 0,
∂γ

∂x1

|Γ0 = 0, γ|Γs = h.

We set Q(0)h = 0 and we also define w(s) = ∂β
∂x1

|Γs, where β ∈ Ys is the solution
of ⎧⎨⎩ −Δβ = f in Ωs,

β|Σ = 0, − ∂β

∂x1

|Γ0 = y0, β|Γs = 0.

and we set w(0) = −y0.
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For every s ∈ [0, a], Q(s) : H
1/2
00 (O) → H

1/2
00 (O)′ is a linear operator and w(s) ∈

H
1/2
00 (O)′ because of the well-posedness of the problem in γ and of properties of

trace application which will be proved in section 3. By linearity of (Ps,h) we have
∂y
∂x1

|Γs = Q(s)h + w(s).
Furthermore, the solution y of (P0) restricted to ]0, s[ satisfies (Ps,y|Γs

) for
s ∈]0, a[ so that

∂y

∂x1

(x1, z) = (Q(x1)y|Γx1
)(z) + (w(x1))(z). (1)

Then, by formally taking the derivative with respect to x1 of this formula, we
obtain

∂2y

∂x2
1

= −Δzy − f =
dQ

dx1

y + Q
∂y

∂x1

+
∂w

∂x1

.

Therefore substituting ∂y
∂x1

from equation (1)

0 =

(
dQ

dx1

+ Q2 + Δz

)
y +

∂w

∂x1

+ Qw + f,

and then, since y is arbitrary, we obtain the decoupled system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dQ

dx1

+ Q2 + Δz = 0, Q(0) = 0,

dw

dx1

+ Qw = −f, w(0) = −y0,

− dy

dx1

+ Qy = −w, y(a) = y1.

(2)

Let us stress that Q is an operator on functions in z depending on x1 which
satisfies a Riccati equation. The system (2) is decoupled because one can integrate
the first two equations in x1 from 0 to a giving Q and w, then y is obtained by
the integration backwards of the third equation. Formally, we have factorized

−Δy = f as −
(

d
dx1

+ Q
) (

d
dx1

− Q
)

y = f . Since Q is self adjoint (as it will be

shown further), it is clear that the two factors are adjoint of each other. Also, as
−Q is coercive, the equations for w and y are of parabolic type.

2.2 An equivalent formulation.

The solution y can also be obtained by invariant embedding in the complementary
domain Ω̃s =]s, a[×O .

For s ∈]0, a[ we define Ỹs = {v ∈ H1(Ω̃s) : ∂2v
∂x2

1
∈ L2(s, a; H−1(O)) and v|Γa

=

v|Σ = 0}.

(P̃s,h)

⎧⎨⎩ −Δy = f in Ω̃s,

y|Σ = 0,
∂y

∂x1

|Γs = h, y|Γa = y1.
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In a similar way we define the NtD map P (s) with respect to Ω̃s for every s ∈ [0, a[

and h ∈ H
1/2
00 (O)′: we decompose y into its linear part in h, γ, and its part

independent of h, β We have P (s)h = γ|Γs , r(s) = β|Γs and y(s) = P (s)h + r(s).

We set P (a) = 0 and r(a) = y1. For every s ∈ [0, a], P (s) : H
1/2
00 (O)′ → H

1/2
00 (O)

is a continuous linear operator and r(s) ∈ H
1/2
00 (O). Further, the solution y of

(P0) is given by

y(x1, z) = (P (x1)
∂y

∂x1

|Γx1
)(z) + (r(x1))(z). (3)

Formal calculation. By using (P0), (3) and formal derivation we obtain

∂y

∂x1

=

(
dP

dx1

− PΔzP

)
∂y

∂x1

+
∂r

∂x1

− PΔzr − Pf. (4)

Therefore, since y is arbitrary, we “deduce” the following uncoupled system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP

dx1

− PΔzP − I = 0, P (a) = 0,

dr

dx1

− PΔzr = Pf, r(a) = y1,

−P
dy

dx1

+ y = r, y(0) = −P (0)y0 + r(0).

(5)

Formally, we have factorized −Δy = f as
(

d
dx1

− PΔz

)(
I − P d

dx1

)
y = Pf.

As in the previous section, one can check that the factors are adjoint of each
other using the Riccati equation.

Remark 2.2 The link between these factorizations and Control Theory will be
shown further. Then the relation between systems (2) and (5) is exactly the same
as between the control and filtering problems respectively.

3 A Justification for the factorization

In this section we give a precise derivation of the decoupled system (5) of the
problem (P0).

Definition 3.1 We define X, X0 and Y by

X = L2(0, a; H1
0 (O)) ∩ H1(0, a; L2(O))

X0 = X ∩ {ϕ ∈ X : ϕ|Γa = 0}
Y = {y ∈ X : ∂2y

∂x2
1
∈ L2(0, a; H−1(O))}

We need the following trace theorem.
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Proposition 3.2 If y ∈ Y it holds that

(y|Γs ,
∂y

∂x1

|Γs) ∈ C([0, a]; H
1/2
00 (O) × H

1/2
00 (O)′),

and the trace mapping y → (y|Γs ,
∂y
∂x1

|Γs) is continuous from Y onto

H
1/2
00 (O) × H

1/2
00 (O)′.

Proof. It is a direct application of theorem 3.1, p. 23 of [10], having into account

that H
1/2
00 (O)′ is the 1/2 interpolate between L2(O) and H−1(O) (see theorem

12.4, p. 81 of [10]). �

By making a translation on y and the corresponding one on f we can discard
the inhomogeneous Dirichlet boundary condition. From now on we assume y1 = 0.
The variational formulation for y is∫

Ω

∇y∇ϕdx1dz =

∫
Ω

fϕ dx1dz+ < y0, ϕ|Γ0 >
H

1/2
00 (O)′×H

1/2
00 (O)

,

∀ϕ ∈ X0.
(6)

3.1 Properties of P .

The following proposition collects some basic properties of operator P .

Proposition 3.3 The linear operator −P (s) : H
1/2
00 (O)′ → H

1/2
00 (O) is continu-

ous, self-adjoint, positive for every s ∈ [0, a] and coercive for every s ∈ [0, a[.

Proof. We already noticed that P (s) is continuous as the composition of contin-

uous operators: h → γ → γ|Γs . Let h, h ∈ H
1/2
00 (O)′ and γ, γ the corresponding

solutions in Ω̃s, then we get∫
Ω̃s

∇γ∇γ dx1dz = − < h, P (s)h >
H

1/2
00 (O)′×H

1/2
00 (O)

,

which gives the self-adjointness and positivity properties for h = h. Then, by
Poincaré inequality and Proposition 3.2,

− < h, P (s)h >
H

1/2
00 (O)′×H

1/2
00 (O)

≥ c ‖ h ‖2

H
1/2
00 (O)′

,

which proves the coercivity. �

3.2 Semi discretization.

At this stage, operator P and function r are clearly defined but the equations they
satisfy have been derived only formally. We will justify these equations using the
Galerkin method. Let {w1, ..., wn, ..} be a Hilbert basis of H1

0 (O) of eigenfunctions
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of the Dirichlet problem −Δzwn = λnwn for z ∈ O with the boundary conditions
wn|∂O = 0. It has the following properties:⎧⎪⎪⎨⎪⎪⎩

(a) (wn, wm)L2(O) = δn,m ∀m,n.
(b) (wn, wm)H1

0 (O) =
∫
O ∇zwn(z)∇zwm(z)dz = λnδn,m,

(c){
∑

finite

μjwj, μj ∈ IR} is a dense subset of H1
0 (O).

(7)

We define V m = span{w1, ..., wm}, and Xm
0 = {ϕ ∈ H1(0, a; V m) : ϕ|Γa = 0}.

We equip Xm
0 with the norm

‖ ϕ ‖2
m=

∫ a

0

m∑
i=1

(
λiϕ

2
i (x1) +

∣∣∣∣dϕ(x1)

dx1

∣∣∣∣2
)

dx1, (ϕ(x1, z) =
m∑

i=1

ϕi(x1)wi(z)).

Proposition 3.4 Xm
0 ⊂ C([0, a]; V m) is a continuous injection and⋃

m∈IN

{ϕ ∈ H1(0, a; V m) : ϕ|Γa
= 0}

is a dense set of X0 (and so of L2(Ω)).

We define the approximation ym of y by the solution of∫
Ω

(∇ym∇ϕ − fϕ) dx1dz =< y0, ϕ|Γ0 >
H

1/2 ′
00 ×H

1/2
00

∀ ϕ ∈ Xm
0 . (8)

Now it can be shown that the coordinates c(x1) = {ci(x1)}m
i=1 of ym(x1) satisfy

the uncoupled system of two-point boundary value problems⎧⎪⎨⎪⎩
−d2ci

dx2
1

(x1) + λici(x1) =

∫
O

f(x1)widz x1 ∈]0, a[, i = 1, ..,m

− dci

dx1

(0) =< y0, wi >
H

1/2
00 (O)′×H

1/2
00 (O)

, ci(a) = 0.
(9)

Then, we have that c ∈ (H2(0, a))m ⊂ (C1(0, a))m and

∂ym

∂x1

(x1, z) =
m∑

i=1

dci

dx1

(x1)wi(z) ∈ Xm
0 . (10)

As in Section 2.2 we embed the problem in a family depending on s and h. For
every s ∈ [0, a[ and for every h ∈ V m we consider the semi discrete approximation

of (P̃s,h) defined on Ω̃s with boundary data dym

dx1
(s) = h ∈ V m. Let us define

Xm
s,0 = {ϕ ∈ H1(s, a; V m) : ϕ|Γa = 0} and we denote βm, γm ∈ Xm

s,0 the part
of ym independent of h and depending linearly on h respectively, and fm =∑m

i=1(f, wi)wi. They satisfy∫ a

s

∫
O
∇βm∇ϕdx1dz =

∫ a

s

∫
O

fmϕdx1dz ∀ ϕ ∈ Xm
s,0, (11)∫ a

s

∫
O
∇γm∇ϕdx1dz = − < h,ϕ(s) >

H
1/2 ′
00 ×H

1/2
00

∀ ϕ ∈ Xm
s,0. (12)
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Then we define the finite dimensional operator Pm(s) by: γm(s) = Pm(s)h and
we fix Pm(a) = 0. Also we define rm(s) = βm(s) and rm(a) = 0. Then

Pm(s) ∈ L(V m, V m) and rm(s) ∈ V m.

Operator Pm(s) has the same properties as P (s) given by Proposition 3.3. Now
if we take h = dym

dx1
(s), the solution of (8), being unique, satisfies for any s = x1 ∈

[0, a]

ym(x1) = Pm(x1)
dym

dx1

(x1) + rm(x1). (13)

Let us assume that Pm(x1) and rm(x1) are derivable. Then, taking the derivative
of (13) and the inner product with wj in L2(O), which we denote (., .), gives(

dym

dx1

, wj

)
=

(
dPm

dx1

dym

dx1

, wj

)
+

(
Pm d2ym

dx2
1

, wj

)
+

(
drm

dx1

, wj

)
. (14)

The second term of the right-hand side can be evaluated using (7) and (9)(
d2ym

dx2
1

, Pmwj

)
=

(
m∑

i=1

([λici − (F,wi)]wi), P
mwj

)
= (ym.∗, Pmwj)H1

0 (O) − (fm, Pmwj),

and using (13)(
Pm d2ym

dx2
1

, wj

)
= −

(
PmΔzP

m dym

dx1

+ PmΔzr
m + Pmfm, wj

)
,

which we substitute in (14). By a controllability argument it can easily be shown
that when g spans V m, dym

dx1
(x1) also spans V m. Now we have derived the Riccati

equation for Pm and the equation for rm⎧⎨⎩
dPm

dx1

(x1) − Pm(x1)ΔzP
m(x1) − I = 0,

Pm(a) = 0,
(15)

⎧⎨⎩
drm

dx1

(x1) − Pm(x1)Δzr
m(x1) − Pm(x1)f

m = 0,

rm(a) = 0.
(16)

But this derivation is still formal since we have assumed the derivability of Pm and
rm. Then, by the theory of ordinary differential equations, we know that there
exists a local solution Pm to (15) in [a− δ, a], with δ small enough. Further, Pm

is C1 from [a, a−δ] with values in L(V m). From here we deduce (see, for instance,
Theorem 2 of [8]), for the case of general functions f , that rm is solution of (16)
in [a − δ, a] and that rm ∈ H1(a − δ, a; V m). Furthermore, for these solutions
and s ∈ [a − δ, a] (13) is satisfied. To go further, we need estimates on Pm(s)
independent of s.
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Proposition 3.5 The operator Pm is bounded uniformly in m, in
L∞(0, a;L(H

1/2
00 (O)′, H1/2

00 (O))), in L∞(0, a;L(H
1/2
00 (O), H1

0 (O) ∩ H3/2(O))) and

in L∞(0, a;L(L2(O), H1
0 (O)). Furthermore rm is uniformly bounded in L∞(0, a; H

1/2
00 (O)).

Proof. Let ϕ(z) =
∑m

i=1 ϕiwi(z) ∈ V m. We define on V m the following norms

‖ ϕ ‖2
m,−1/2=

∑m
i=1

1√
λi

ϕ2
i , ‖ ϕ ‖2

m,1/2=
∑m

i=1

√
λiϕ

2
i ,

‖ ϕ ‖2
m,1=

∑m
i=1 λiϕ

2
i , ‖ ϕ ‖2

m,3/2=
∑m

i=1 λ
3/2
i ϕ2

i ,

which are equivalent to the norms of H
1/2
00 (O)′, H

1/2
00 (O), H1

0 (O) and H1
0 (O) ∩

H3/2(O) respectively (see [10]), uniformly in m. Using at the same time the
classical proof of trace theorems and of Poincaré inequality we first show that

‖ γm|Γs ‖2
m,1/2≤ 2

∥∥∥∥∂γm

∂x1

∥∥∥∥
L2(Ω̃s)

‖∇zγ
m‖L2(Ω̃s)

. (17)

This is done by considering system (9) on x1 ∈ [s, a] with f = 0 and y0 = h. We
have

|ci(s)|2 = −
∫ a

s

dc2
i (x1)

dx1

dx1

≤ 2

(∫ a

s

|ci(x1)|2dx1

)1/2
(∫ a

s

∣∣∣∣dci(x1)

dx1

∣∣∣∣2 dx1

)1/2

.

Multiplying by
√

λi√
λi|ci(s)|2 ≤ 2

(∫ a

s

λi|ci(x1)|2dx1

)1/2
(∫ a

s

∣∣∣∣dci(x1)

dx1

∣∣∣∣2 dx1

)1/2

,

then summing in i and applying Cauchy-Schwarz inequality gives (17). The usual
estimate yields from (12)∫

Ω̃s

(∣∣∣∣∂γm

∂x1

∣∣∣∣2 + |∇zγ
m|2

)
dx1dz = − < h, γm|Γs >

H
1/2 ′
00 ×H

1/2
00

. (18)

Hence with (17), ‖ γm|Γs ‖m,1/2≤ C ‖ h ‖m,−1/2, which proves the first inequality.

Multiplying by λ
3/2
i instead of

√
λi yields

‖ γm|Γs ‖2
m,3/2≤ 2

(∫ a

s

∥∥∥∥∂γm

∂x1

∥∥∥∥2

m,1

dx1

)1/2 (∫ a

s

‖ ∇zγ
m ‖2

m,1 dx1

)1/2

,

instead of (17). Now considering system (9), multiplying each equation by λici,
summing in i and integrating in x1, then integrating by parts yields∫ a

s

∥∥∥∥∂γm

∂x1

∥∥∥∥2

m,1

dx1 +

∫ a

s

‖ ∇zγ
m ‖2

m,1 dx1 = −
m∑

i=1

λihici(s)

≤ ‖ h ‖m,1/2‖ γm|Γs ‖m,3/2,

9



hence ‖ γm|Γs ‖m,3/2≤ C ‖ h ‖m,1/2. The result in H1
0 (O) is obtained by interpo-

lation. The proof for rm is similar using estimates on βm. �

Then, by Proposition 3.5, we deduce that Pm is a global solution to (15) and
C1 from [0, a] → L(V m, V m). Therefore, applying again Theorem 2 of [8], we
deduce that rm is a global solution to (16) and rm ∈ H1(0, a; V m).

3.3 Passing to the limit

We now study the convergence of ym as m goes to infinity.

Theorem 3.6 Let h ∈ V m0 for a fixed m0. As m → ∞ we have ym → y in
X0, and ym(x1) → y(x1) in H

1/2
00 (O) ∀x1 ∈ [0, a], where ym, y are respectively the

solutions of (8),(6) for g = h.

Proof. From (8) we get∫ a

0

∫
O
|∇ym|2dx1dz ≤‖ F ‖L2(Ω)‖ ym ‖L2(Ω) + ‖ h ‖

H
1/2
00 (O)

‖ ym ‖X0 .

Therefore ym is bounded in X0, and by compactness one can extract a subsequence
such that ym → z in X0 weak, and ym(x1) → z(x1) in H

1/2
00 (O) weak. Using (6)

it is easy to show that z = y. To prove the strong convergence we compute∫ a

0

∫
O
|∇(ym − y)|2dx1dz =

= −
∫ a

0

∫
O
∇y∇(ym − y)dx1dz −

∫ a

0

∫
O
∇y∇ymdx1dz +

+

∫ a

0

∫
O

fymdx1dz+ < h, ym|Γ0 >
H

1/2
00 (O)′×H

1/2
00 (O)

→ −
∫ a

0

∫
O
(|∇y|2 + fy)dx1dz+ < h, y|Γ0 >

H
1/2 ′
00 ×H

1/2
00

= 0.

�

Corollary 3.7 As m → ∞ we have rm(s) → r(s) in H
1/2
00 (O) ∀s ∈]0, a[, and

for all h ∈ V m0 for a fixed m0, Pm(s)h → P (s)h strongly in H
1/2
00 (O) and weakly

in H1
0 (O) ∩ H3/2(O) for all s ∈]0, a[.

Proof. Applying Theorem 3.6 for all s ∈]0, a[ gives Pm(s)h + rm(s) → P (s)h +

r(s) in H
1/2
00 (O) strong. Taking h = 0 gives the result for r, and then for P (s)h

in H
1/2
00 (O). Now by Proposition 3.5 Pm(s)h is bounded in H1

0 (O)∩H3/2(O) and
by compactness we can extract a subsequence converging weakly. By density it
is easy to prove that the limit is P (s)h. �

We can now pass to the limit in (15).
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Theorem 3.8 Operator P satisfies the Riccati equation in the following sense:
for every h, h ∈ L2(O),

d

dx1

(P (x1)h, h) + (∇zP (x1)h,∇zP (x1)h) = (h, h) in D′(]0, a[) (19)

with the initial condition P (a) = 0.
Furthermore P ∈ L∞(0, a;L(L2(O), H1

0 (O))) and is weakly continuous in x1, that
is (P (x1)h, h) is continuous on [0, a] ∀ h, h ∈ L2(O).

Proof. Let h, h ∈ V m0 . From (15) we have(
dPm

dx1

(x1)h, h

)
+ (∇zP

m(x1)h,∇zP
m(x1)h) = (h, h),

and Pm(0) = 0. Let ϕ ∈ C1([0, a]) such that ϕ(a) = 0. We get

−
∫ a

0

(Pm(x1)h, h)ϕ(x1)
′dx1

+

∫ a

0

(∇zP
m(x1)h,∇zP

m(x1)h)ϕ(x1)dx1 =

∫ a

0

(h, h)ϕ(x1)dx1.
(20)

The integrand of the first term converges to (P (x1)h, h)ϕ(x1)
′ by Corollary 3.7,

and is bounded by Proposition 3.5. Similarly we have the convergence of the inte-
grand of the second term because, for example, ∇zP

m(x1)h converges in H
1/2
00 (O)′

strong and ∇zP
m(x1)h in H

1/2
00 (O) weak. It is also bounded by Proposition 3.5.

Then by Lebesgue’s theorem, we can pass to the limit in (20). For ϕ ∈ D(]0, a[) it
yields (19) for h, h in V m0 . The result for h, h in L2(O) is obtained by density as
m0 → ∞. Then from (19), d

dx1
(P (x1)h, h) belongs to L∞(0, a) and so (P (x1)h, h)

is continuous in x1, and for ϕ ∈ C1([0, a]) we can integrate (20) by part to recover
the initial condition P (0) = 0. �

We now turn to the convergence of rm.

Theorem 3.9 Function r belongs to L∞(0, a; H
1/2
00 (O)) and satisfies the following

equation

<
dr

dx1

(x1), h >
H

1/2 ′
00 ×H

1/2
00

+ < ∇zr(x1),∇zP (x1)h >
H

1/2 ′
00 ×H

1/2
00

= (F, P (x1)h) ∀h ∈ H
1/2
00 (O),

(21)

in D′(]0, a[), with initial condition r(a) = 0.

Proof. For h ∈ V m0 , we have from (16)

(
drm

dx1

(x1), h) + (∇zr
m(x1),∇zP

m(x1)h) = (F, Pm(x1)h),

11



with rm(a) = 0. Let ϕ ∈ C1([0, a]) such that ϕ(a) = 0. We get

−
∫ a

0

(rm(x1), h)ϕ(x1)
′dx1 +

∫ a

0

(∇zr
m(x1),∇zP

m(x1)h)ϕ(x1) dx1

=

∫ a

0

(F, Pm(x1)h)ϕ(x1) dx1.

¿From Corollary 3.7, we have the convergence as in the proof of Theorem 3.8. Let
us check the second term: ∇zP

m(x1)h converges in H
1/2
00 (O) weak, and ∇zr

m(x1)

in H
1/2
00 (O)′ strong. It yields (21) for h ∈ V m0 and ϕ ∈ D(]0, a[). By density, it is

true for h ∈ H
1/2
00 (O), as for the second term r belonging to H

1/2
00 (O), h must also

be in that space to guarantee the continuity of the bilinear form. Now from (21)
dr
dx1

(x1) belongs to L2(0, a; H
1/2
00 (O)′), and so we can recover the initial condition

r(a) = 0. �

Then y is solution of equation (3), with dy
dx1

belonging to C(0, a; H
1/2
00 (O)′) and

y to C([0, a]; H
1/2
00 (O)).

Remark 3.10 It is possible to prove that the solution P of (19) is unique among
the class satisfying Proposition 3.3. For that purpose one can show that from any
solution of (19) one can construct r and y solution of (21) and (3) respectively,
and y satisfies also (6) and is unique. The proof needs results on well posedness
of (21) and (3) and will be presented elsewhere.

4 Optimal control problem associated to the

boundary value problem.

In this section we show the relation with Riccati equations appearing in optimal
control theory (see for instance [9]). In fact we show that problem (P0) can
be formulated as an optimal control problem. We use the operator Q and the
function w defined in Section 2.1, with y0 = 0 (for the sake of simplicity). Let
us consider the control space U = L2(Ω). For every v ∈ U the state y(v) ∈
H1(0, a; L2(O)) is solution of⎧⎨⎩

∂y

∂x1

= v in Ω,

y(a) = y1.
(22)

We also denote Uad = {v ∈ U : y(v) ∈ Xy1} the space of admissible controls,
where

Xy1 = {h ∈ L2(0, a; H1
0 (O)) ∩ H1(0, a; L2(O)) : h(a) = y1}.

The desired state yd is given almost everywhere in x1 by the solution of the family
of (n-1) dimensional problems{ −Δzyd(x1) = f(x1) in O

yd|∂O = 0.
(23)
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Then yd belongs to L2(0, a; H1
0 (O)). Now we look for u ∈ Uad such that J(u) =

infv∈Uad
J(v), where, for every v ∈ Uad,

J(v) =

∫ a

0

‖∇zy(v) −∇zyd‖2
L2(O) dx1 +

∫ a

0

∫
O

v2dx1dz. (24)

At this point we have the problem that Uad is not a closed subset of L2(Ω) and
therefore we cannot use directly the classic techniques (see, for instance, [9])
in order to solve this problem. Nevertheless, since Uad = { ∂h

∂x1
: h ∈ Xy1},

J(u) = infv∈Uad
J(v) = infh∈Xy1

J(h) = J(y), where ∂y
∂x1

= u and

J(h) =

∫ a

0

‖∇zh −∇zyd‖2
L2(O) dx1 +

∫ a

0

∫
O

∣∣∣∣ ∂h

∂x1

∣∣∣∣2 dx1dz. (25)

Now, Xy1 is a closed convex set in the Hilbert space L2(0, a; H1
0 (O))∩H1(0, a; L2(O))

and J(h)1/2 is a norm of that space. Then (see Theorem 1.3 of chapter I of [9])
there exists a unique y ∈ Xy1 satisfying J(y) = infh∈Xy1

J(h), which is uniquely
determined by

J
′
(y)(h) = 0 ∀ h ∈ X0. (26)

Let us show that y is solution of (P0). Developping (25), one gets

J(y) =

∫
Ω

|∇y|2 dx − 2

∫
Ω

∇zy∇zyd dx +

∫
Ω

|∇zyd|2 dx.

But from (23), yd satisfies almost everywhere in x1∫
O
∇zyd(x1)∇zy(x1) dz =

∫
O

f(x1)y(x1) dz,

Then

J(y) =

∫
Ω

|∇y|2 dx − 2

∫
Ω

fydx +

∫
Ω

|∇zyd|2 dx.

Now it is clear that J(y) is the energy functional associated to (P0) up to a
constant term. We introduce the adjoint state p by⎧⎨⎩

∂p

∂x1

= −Δzy − f in Ω,

p(0) = 0.

Then, since −Δzy − f ∈ L2(0, a; H−1(O)), we know (see Theorem 1.2 of chapter
III of [9]) that p ∈ H1(0, a; H−1(O)). Furthermore, since y ∈ Y , we also deduce
that ∂p

∂x1
∈ H−1(0, a; L2(O)) and therefore, p ∈ L2(Ω). Now for every h ∈ X0, we

know that∫ a

0

< −Δzy − f, h >H−1(O)×H1
0 (O) dx1 =

∫ a

0

<
∂p

∂x1

, h >H−1(O)×H1
0 (O) dx1

= −
∫ a

0

∫
O

p
∂h

∂x1

dx1dz.
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Therefore, from optimality condition (26) we deduce that∫ a

0

<−Δzy − f, h >H−1(O)×H1
0 (O) dx1 +

∫ a

0

∫
O

∂y

∂x1

∂h

∂x1

dx1dz =∫ a

0

∫
O
(−p +

∂y

∂x1

) u dx1dz = 0, ∀ u ∈ Uad. (27)

Then we have obtained the optimality system⎧⎪⎨⎪⎩
− ∂y

∂x1

= −p, y(a) = y1,

∂p

∂x1

= −Δzy − f, p(0) = 0,

which has the same associated Riccati equation (see Section 4 of chapter III of
[9]) that the system of equations for Q and w of Section 2.1.

5 Factorization of the discretized problem.

In this section we consider a finite difference discretization of problem (P0).
For the sake of simplicity, we present only the 2D case, i.e. Ω is the rectan-
gle ]0, a[×]0, b[, but the same method could be applied in higher dimension. We
show that the factorization method, suitably applied to the resulting linear sys-
tem, leads to a discretized version of system (2). Furthermore this factorization
turns out to be the Gauss LU block factorization of the block tridiagonal matrix
representing the discretized Laplace operator on the rectangle. This allows to
interpret the factorizations (2) or (5) as infinite dimensional versions of the block
Gauss factorization.

5.1 Finite difference discretization of problem (P0).

We consider f , y0 and y1 regular enough in order to obtain a solution y ∈ C3(Ω)
and convergence of the discretization towards the result. Given an integer N > 0
we consider the following lattice, taking the same step h = a/(N − 1

2
) for both

coordinates and assuming that ph = b{
ai,j = ((−1/2 + i)h, jh) for i ∈ {0, ..., N} and j ∈ {0, ..., p},
a1/2,j = (0, jh) for j ∈ {0, ..., p}.

We compute an approximation yi,j of y(ai,j) by the usual five points scheme

1

h2
(4yi,j − yi−1,j − yi+1,j − yi,j−1 − yi,j+1) = f(ai,j) = fi,j.

Let yh, fh ∈ IR(N−1)(p−1) be the vector of the unknowns yi,j, and of the right hand
side fi,j respectively, when numbering for increasing j first. Let yi, f i ∈ IR(p−1)
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be the components of yh and fh respectively, corresponding to the nodes ai,j for
j ∈ {1, . . . , p − 1}. Let ∇2

h,2 be the finite difference approximation to the second
order derivative operator with respect to x2 with Dirichlet boundary conditions.
Then, taking into account the boundary conditions at i = 1/2 and i = N , if we
put B1 = I − h2∇2

h,2 and Bi = 2I − h2∇2
h,2 for i = 2, ..., N − 1, we can define Ah

and Fh by

Ah =
1

h2

⎛⎜⎜⎜⎜⎜⎝
B1 −I
−I B2 −I 0

. . . . . . . . .

0 −I BN−2 −I
−I BN−1

⎞⎟⎟⎟⎟⎟⎠ ∈ M(N−1)(p−1)×(N−1)(p−1),

Fh =

⎛⎜⎜⎜⎝
F1

F2
...

FN−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f 1 +

y0(a1/2)

h

f 2

...

fN−1 + y1(aN )
h2

⎞⎟⎟⎟⎠ ∈ IR(N−1)(p−1),

then yh satisfies the finite difference discretization (Ph) of problem (P0)

(Ph) Ahyh = Fh.

Here we have stressed the block tridiagonal structure of Ah.

5.2 The factorization method applied to (Ph).

We define

ξi−1/2 =
yi − yi−1

h
∈ IRp−1 ∀ i = 2, ..., N,

and ξ1/2 = −y0(a1/2). In a way similar to that followed in Section 2.1, for every
i0 ∈ {2, ..., N} we define the problem (P i0

h,gh
) on the domain 1 ≤ i ≤ i0 with the

Dirichlet data gh ∈ IRp−1 on i = i0 by

(P i0
h,gh

) A
(i0)
h y

(i0)
h (gh) = F

(i0)
h (gh),

where A
(i0)
h ∈ M(i0−1)(p−1)×(i0−1)(p−1) is the principal submatrix extracted from

Ah and F
(i0)
h (gh) is defined by

F
(i0)
h (gh) =

⎛⎜⎜⎜⎝
f 1 +

y0(a1/2)

h

f 2

...
f i0−1 + gh

h2

⎞⎟⎟⎟⎠ ∈ IR(i0−1)(p−1).
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Then we can decompose y
(i0)
h (gh) = γ(i0)(gh) + β(i0) into its part linear in gh and

independent of gh respectively. We define the operator Qi0 ∈ L(IRp−1, IRp−1) by

Qi0gh =
γi0 − γi0−1

h
=

gh − γi0−1(gh)

h
∀gh ∈ IRp−1, (28)

where γi is the (i)-component of the vector γ(i0)(gh), and the vector wi0−1/2 ∈
IRp−1 is defined by wi0−1/2 = −βi0−1

h
. Then taking gh = yi one has a discrete

counter part to (1)

ξi−1/2 = Qiy
i + wi−1/2 ∀i ∈ {2, ..., N}. (29)

Now, since yh is solution of (Ph), using (29), we have that

−∇2
h,2y

i − f i =
yi−1 − 2yi + yi+1

h2

= Qi+1
(yi+1 − yi)

h
+

(Qi+1 − Qi)

h
yi+

+
(wi+1/2 − wi−1/2)

h
.

(30)

Further, from (29), we obtain

(I − hQi+1)(y
i+1 − yi) = hQi+1y

i + hwi+1/2.

Now, for every i ∈ {2, ..., N}, it is very easy to check that det(I − hQi) �= 0 and
therefore the matrix (I − hQi)

−1 is defined. Thus,

−∇2
h,2y

i − f i = Qi+1(I − hQi+1)
−1(Qi+1y

i + wi+1/2)

+
(Qi+1 − Qi)

h
yi +

(wi+1/2 − wi−1/2)
h

,
(31)

for i ∈ {2, ..., N − 1} with yi “arbitrary”. Then, extending formula (29) by
Q1 = 0, w1/2 = −y0(a1/2) at i = 1 we obtain from the independent terms that for
i ∈ {1, ..., N − 1}{

wi+1/2 − wi−1/2

h
= −Qi+1(I − hQi+1)

−1wi+1/2 − f i,

w1/2 = −y0(a1/2),
(32)

which can be rewritten as wi−1/2 − Liw
i+1/2 = hf i, for every i ∈ {1, ..., N − 1},

if we put Li = I + hQi+1(I − hQi+1)
−1 = (I − hQi+1)

−1. Further, from the
terms depending on yi in (31) we obtain the discrete Riccati equation for i ∈
{1, ..., N − 1} {

−Qi+1 − Qi

h
= Qi+1(I − hQi+1)

−1Qi+1 + ∇2
h,2,

Q1 = 0.
(33)
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Now, equation (29) is equivalent to{
yi+1 − yi

h
= Qi+1y

i+1 + wi+1/2 ∀i ∈ {1, ..., N − 1},
yN = y1(aN),

(34)

which can be rewritten as −yi + Ui+1y
i+1 = hwi+1/2 for every i ∈ {1, ..., N − 1},

if we set Ui = I − hQi = L−1
i−1 for every i ∈ {2, ..., N}. Then, if we write these

equations of yh and w in matrix form we obtain

1

h

⎛⎜⎜⎜⎝
L1

−I L2 0

0
. . . . . .

−I LN−1

⎞⎟⎟⎟⎠ 1

h

⎛⎜⎜⎜⎝
I −U2

. . . . . .

I −UN−1

0 I

⎞⎟⎟⎟⎠ yh = Fh. (35)

In the linear system of equation (35) the first matrix is block lower triangular
and the second one is block upper triangular with diagonal unity so it is the
well known LU block factorization of the block tridiagonal matrix Ah, due to the
uniqueness of this factorization. One can check this fact directly by expanding
the product and using the Riccati equation (33). Reciprocally, if one considers
the block LU factorization (35) of Ah the upper blocks Ui can be interpreted as
I − hQi where Qi is the discrete DtN operator defined by (28).

Remark 5.1 The equation for Qi looks like a discretization of the first equation
of system (2) up to the modification O(h) due to the term (I − hQi+1)

−1. Such
terms are classical for discrete time Riccati equations (see for example [3]). Us-
ing different definitions for the operator Qi (for example downstream or centered
finite difference), leads to other factorizations of Ah (the block LU factoriaztion
with blocks I in the diagonal of the lower triangular part or the block Cholesky
factorization respectively).

6 Some advantages of the factorized form

As shown in section 3 the factorized form (2) (or (5)) is equivalent to the original
form of problem (P0). In this section we present some situations where the
factorization gives some advantages.

¿From section 5 the factorization can be viewed as a continuous counterpart to
the Gauss block factorization of the discrete problem, it inherits the well known
properties of the Gauss method : the boundary value problem (P0) is transformed
in uncoupled first order initial value problems for functions and operators. Fur-
thermore if (P0) has to be solved for various data fi, y0,i, y1,i for i = 1, . . . , K, the
Riccati equation for Q in (2) (or for P in (5)) has to be solved only once. The
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corresponding solutions yi to (P0) are then given by the uncoupled system⎧⎪⎨⎪⎩
dwi

dx1

+ Qwi = −fi, wi(0) = −y0,i,

− dyi

dx1

+ Qyi = −wi, yi(a) = y1,i.
(36)

If only the Dirichlet data y1 is changed, it is sufficient to compute the solution of
the equation for yi accordingly. In particular this is interesting when one wants
to solve a control problem whose state satisfies a problem of the type (P0) by
a minimization algorithm. In [7], for such a problem, it was shown how the
factorization of the state equation and of the optimality system can be done at
the same time.

Another interest of the method is that it allows to exhibit the Riccati equation
satisfied by the DtN operator Q in (2) (or NtD P in (5)). These operators
are of great interest when the boundary interaction is the main concern. For
example [14] introduce the Steklov-Poincaré operator S to study the domain
decomposition method. Given the value of y on an internal boundary, it provides
the sum of normal derivatives of the solutions in the adjacent subdomains. It can
be easily expressed on Γs as

Ssy = Q(s)y − P−1(s)y,

and the Steklov-Poincaré equation for the matching of Ωs and Ω̃s becomes

(P (s)Q(s) − I)y = −P (s)w(s) − r(s).

This equation is the basis of several domain decomposition methods presented
in [14]. Its data can be obtained from (2) and (5), which also allows an easy
transformation of this equation if one wants to move the internal boundary Γs.

The operators P and Q can also be used to compute transparent boundary
conditions in subdomains. For example consider the problem (P0) which has to

be solved many times for various f differing only in Ω̃s. Then it is sufficient to
solve the following problem in Ω̃s:⎧⎪⎪⎨⎪⎪⎩

−Δy = f in Ω̃s,
y|Σ = 0,

− ∂y

∂x1

|Γs = −Q(s)y|Γs − w(s), y|Γa = y1.

for the various f , where Q and w have been computed once from 0 to s by (2).
This problem with a new non-local condition on Γs can be shown to be well posed
and its solution is the restriction of the solution of (P0) to Ω̃s. In the same way
Q∞ = limx1→∞ Q(x1) can be used to define transparent condition on semi-infinite
cylinders.
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¿From the numerical methods viewpoint, new methods can be derived from
a direct discretization of the factorized forms (2) or (5). For example classical
methods for stepsize adaption of ordinary differential equations applied to these
forms will lead to automatic gridsize adaption in the x1 direction within the
integration process.
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[6] J. Henry, On the Factorization of the Elasticity System by Dynamic Pro-
gramming, in: Optimal Control and Partial Differential Equations, IOS
Press, 2001, pp. 346–352.

[7] J. Henry, J.P. Yvon, On the use of space invariant embedding to solve optimal
control problems for second order elliptic equations, in: System modelling
and Optimization, Chapman and Hall eds., 1996, pp. 195–202.

[8] T. Kato, Quasi-linear equations of evolution, with applications to partial
differential equations, in: A. Dold, B. Eckmann (Eds.), Spectral theory and
Differential Equations, Springer-Verlag, Lecture Notes 448, 1975, pp. 25–70.

[9] J.L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations aux
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