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a Institut de Mathématiques - MAB, INRIA Futurs - Bordeaux, Université Bordeaux 1,
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Abstract

In [8] we presented a method to factorize a second order boundary value prob-
lem into a system of uncoupled first order initial value problems, together with a
nonlinear Riccati type equation for functional operators. A weak sense was given to
that system but we did not perform a direct study of those equations. This factor-
ization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to
Neumann (DtN) operator, which satisfiy a Riccati equation. Here we consider the
framework of Hilbert-Schmidt operators, which provides tools for a direct study of
this Riccati type equation. Once we have solved the system of Cauchy problems,
we show that its solution solves the original second order boundary value problem.
Finally, we indicate how this techniques can be used to find suitable transparent
conditions.

keywords: Factorization, boundary value problem, Hilbert-Schmidt operator, Riccati
equation; invariant embedding; Neumann-to-Dirichlet (NtD) operator; Dirichlet-to-Neumann
(DtN) operator, transparent conditions.

1 Introduction

In [1] Angel and Bellman proposed a method based on spatial invariant embedding to
transform a second order elliptic boundary value problem in a rectangle in a system of first
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order decoupled initial value problems which can be solved by a two sweep process. In [8]
Henry and Ramos gave a complete justification for this transform for the Poisson equation
in a n-dimensional cylindrical domain. The invariant embedding was performed using the
coordinate along the axis of the cylinder. The Neumann-to-Dirichlet (NtD) operator on
a section of the cylinder was shown to satisfy a Riccati equation. The relationship of this
method with the similar one to derive the optimal feedback for optimal control problems of
parabolic equations was described. The study of the well-posedness of the Riccati equation
was similar to the one used by Lions [9] and based on a Galerkin method. Furthermore
the relationship between this factorization method and the block LU factorization for a
discretized version of the problem was established.

In this paper we consider a similar problem, allowing for a diffusivity coefficient de-
pending on the coordinate along the axis of the cylinder. Following the paper by Temam
[13] we study directly the Riccati equation, that is without reference to the boundary
value problem (as it was done in [8]), in a Hilbert-Schmidt framework. We cannot apply
the results of [13] as here the operator appearing in the quadratic term is unbounded (the
same difficulty was encountered in [8]). The Hilbert-Schmidt framework appears to be
efficient for the studied problem, using a fixed basis of eigenfunctions of the Laplacian re-
stricted to the section. Although it defines the solution in a weaker sense than the one that
could be hoped, this regularity is easily recovered. The solution of the boundary value
problem is then obtained in factorized form, that is by solving two uncoupled Cauchy
problems. This technique can be used to find suitable transparent boundary condition in
a subdomain.

In section 2 we recall the formal derivation of the factorization. We recall some Hilbert-
Schmidt properties from [13] in section 3. The study of the Riccati equation is done in
section 4. The factorized form of the boundary value problem is obtained in section 5.
The initial definition of P as a NtD operator given in [8] is recovered and its use to build
transparent boundary conditions is presented.

2 The Factorization Method for Boundary Value Prob-

lems

Let Ω be the cylinder Ω =]0, a[×O in IRd, with O a bounded open set in IRd−1 and
Γs = {s} × O. The lateral boundary of the cylinder is denoted by Σ =]0, a[×∂O and a
general point (x1, x2, · · · , xd) ∈ Ω is also denoted by (x, y), where x = x1 and y denotes the

independent variables (x2, ..., xd). We use the Hilbert space H
1/2
00 (O) = [H1

0 (O), L2(O)]1/2

defined in [10]. Let f ∈ L2(Ω), y0 ∈ H
1/2
00 (O), ya ∈ H

1/2
00 (O)′ (respectively ya ∈ H

1/2
00 (O))

and α ∈ L∞(0, a) (the study of the particular case with α ∈ IR constant can be seen in
[4]) with

0 < α = inf
x∈[0,a]

α(x) ≤ α = sup
x∈[0,a]

α(x).

Let us consider the problem
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



−∇ · (α(x)∇u) = f in Ω,
u = 0 on Σ,
u = u0 on Γ0,

α
∂u

∂x
= ua on Γa (respectively u = ua on Γa).

(1)

Let us embed this problem in a family of similar problems defined in sub-cylinders Ωs =

]0, s[×O for 0 < s < a, with the boundary data α
∂u

∂x
= h on Γs. This family depends on

s and h. By linearity, we have the existence of an operator P and a function r satisfying

u|Γs = P (s)h + r(s).

For a solution of (1) this identity is verified for any x:

u(x) = P (x)α(x)
∂u

∂x
(x) + r(x).

From now on we shall consider u as a function of x with values in a function space defined

on O, so we use the notation
d

dx
for the x-derivation. By formal derivation (to be justified

later), we have

du

dx
=

dP

dx
α(x)

du

dx
+ P

d

dx

(
α(x)

du

dx

)
+

dr

dx

=
dP

dx
α(x)

du

dx
− Pα∆yPα

du

dx
− Pα∆yr − Pf +

dr

dx
.

Therefore (
dP

dx
− αP∆yP − α−1I

)
α

du

dx
+

(
dr

dx
− αP∆yr − Pf

)
= 0.

Then, we have





dP

dx
− αP∆yP − α−1I = 0, P (0) = 0,

dr

dx
− αP∆yr = Pf, r(0) = u0,

−Pα
du

dx
+ u = r, u(a) = P (a)ua + r(a) (respectively u(a) = ua).

(2)

We point out that we have factorized the equation appearing in (1) as

(
d

dx
− αP∆y

) (
I − αP

d

dx

)
u = Pf,(3)
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which is equivalent, by using that d
dx

P = dP
dx

+ P d
dx

and the Riccati equation to

(
d

dx
+ P−1α−1

) (
P−1 − α

d

dx

)
u = f,

or, in self-adjoint form,
(

d

dx
α1/2 + P−1α−1/2

) (
α−1/2P−1 − α1/2 d

dx

)
u = f.

Remark that P−1 is not defined at 0.

Remark 1 Operator P is a Neumann to Dirichlet operator (NtD). We could have also
used a Dirichlet to Neumann operator, which gives the system





−dQ

dx
+ α−1Q2 − α∆y = 0, Q(a) = 0,

dw

dx
− α−1Qw = f, w(a) = ua,

α
du

dx
+ Qu = −w, u(0) = u0.

We point out that we have factorized the equation appearing in (1) as

−
(

d

dx
− α−1Q

) (
α

d

dx
+ Q

)
u = f,

or, in self-adjoint form,

−
(

d

dx
− α−1Q

)
α

(
d

dx
+ α−1Q

)
u = f.

In the following sections we carry out a rigorous mathematical study of system (2).
In contrast with other studies of this system (see [8]) this study will be done directly,
without considering the fact that those equations come from a factorization method. We
show existence and uniqueness results for the solution of system (2) and we show that we
recover the solution of problem (1).

3 Hilbert-Schmidt Spaces

3.1 Generalities

In this section we recall the definitions and properties of Hilbert-Schmidt spaces (see [2]
and [5]) following the notation given in [13]. We consider two Hilbert spaces X, Y with
scalar products (·, ·)X , (·, ·)Y and associated norms ‖ · ‖X , ‖ · ‖Y . We suppose that X and
Y are separable and {ϕi}∞i=1 {ψi}∞i=1 are any orthonormal basis of X and Y respectively.
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Definition 2 P ∈ L(X, Y ) (a bounded linear operator from X to Y ) is said to be a
Hilbert-Schimdt operator in case

∞∑

i=1

‖P (ϕi)‖2
Y < ∞.

In this case we denote P ∈ X⊗̂2Y and

‖P‖X⊗̂2Y =

( ∞∑

i=1

‖P (ϕi)‖2
Y

)1/2

is called the Hilbert-Schmidt norm of P .

The proof of the following properties and other results regarding Hilbert-Schmidt
spaces can be seen in [5] and [2].

Lemma 3 The Hilbert-Schmidt norm is independent of the orthonormal basis used in its
definition and

‖P‖X⊗̂2Y =




∞∑

i,j=1

|(Pϕi, ψj)Y |2



1/2

.

Proposition 4 Every Hilbert-Schmidt operator is compact.

Proposition 5 X⊗̂2Y is a Hilbert space with the inner product

[P, Q]X⊗̂2Y =
∞∑

i=1

(Pϕi, Qϕi)Y .

3.2 A special case

Following [10], let us suppose that H, V are two real separable Hilbert spaces such that
V ⊂ H and V is dense in H with continuous injection. Then, we can identify H ′ (topo-
logical dual of H) with H and with a dense subset of V ′. Therefore,

V ⊂ H ⊂ V ′,

with every space being dense in the following one with continuous injections.
Let us suppose that the injection V ⊂ H is compact and let Λ : V → V ′ be the

canonical isomorphism between V and V ′, i.e.

(Λu, v)V ′×V = (u, v)V ∀ u, v ∈ V.

Then, Λ−1 : H → V is a compact self-adjoint linear operator. Therefore (see, for instance,
Theorems VI.8 and VI.11 of [3]), there exists an orthonormal basis {wi}∞i=1 of H, consisting
of eigenvectors of Λ−1 such that

Λwi = λiwi, ∀ i ∈ IN
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with λi > 0 and
lim
i→∞

λi = +∞.

Now,

‖wi‖2
V = (wi, wi)V = (Λwi, wi)V ′×V = (λiwi, wi)H = λi ∀ i = 1, · · ·∞.

Therefore,

u =
∞∑

i=1

uiwi ∈ V ⇔ ‖u‖2
V =

∞∑

i=1

λi|ui|2 < ∞.

Furthermore, if u =
∞∑

i=1

uiwi ∈ V and v =
∞∑

i=1

viwi ∈ V , then

(u, v)V =
∞∑

i=1

λiuivi.

Definition 6 For every r ∈ IR we define the Hilbert space V r in the following way:

u =
∞∑

i=1

uiwi ∈ V r ⇔ ‖u‖2
V r =

∞∑

i=1

λr
i |ui|2 < ∞.

Furthermore, if u =
∞∑

i=1

uiwi ∈ V r and v =
∞∑

i=1

viwi ∈ V r, then

(u, v)V r =
∞∑

i=1

λr
i uivi.

Remark 7 We have that H = V 0, V = V 1 and V ′ = V −1. Furthermore, {λ−r/2
i wi}∞i=1 is

an orthonormal basis of V r, for all r ∈ IR.

Definition 8 Let H = { ∑

finite
µjwj, µj ∈ IR} and < wj >= {µwj, µ ∈ IR} for all j ∈ IN .

Given i, j ∈ IN , we consider the operator wi ⊗ wj : H →< wj > defined by

wi ⊗ wj(ϕ) = (wi, ϕ)Hwj ∀ ϕ ∈ H.

Now, since H is a dense subset of V r, for all r ∈ IR, we can consider the extension
wi ⊗ wj : V r →< wj > defined by

wi ⊗ wj(ϕ) = ϕiwj ∀ ϕ =
∞∑

k=1

ϕkwk ∈ V r.
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Remark 9 From Definition 2 it is easy to see that, for all i, j ∈ IN , we have that

wi ⊗ wj ∈ V r⊗̂2V
s for all r, s ∈ IR. Furthermore, if P =

∞∑

i,j=1

ξijwi ⊗ wj, then

P ∈ V r⊗̂2V
s ⇔ ‖P‖2

V r⊗̂2V s =
∞∑

i=1

‖P (λ
−r/2
i wi)‖2

V s < ∞.

Now,

P (λ
−r/2
i wi) =

∞∑

k,j=1

ξkj(wk, λ
−r/2
i wi)Hwj =

∞∑

j=1

ξijλ
−r/2
i wj.

Therefore

‖P (λ
−r/2
i wi)‖2

V s =
∞∑

j=1

ξ2
ijλ

−r
i λs

j

and we deduce that

P ∈ V r⊗̂2V
s ⇔ ‖P‖2

V r⊗̂2V s =
∞∑

i,j=1

ξ2
ijλ

−r
i λs

j < ∞.

Finally, if Q =
∞∑

i,j=1

ηijwi ⊗ wj ∈ V r⊗̂2V
s, then

[P,Q]V r⊗̂2V s =
∞∑

i=1

(P (λ
−r/2
i wi), Q(λ

−r/2
i wi))V s =

∞∑

i,j=1

ξijηijλ
−r
i λs

j .

Example 10 Let P =
∞∑

i,j=1

ξijwi ⊗ wj and Q =
∞∑

i,j=1

ηijwi ⊗ wj.

1. P ∈ H⊗̂2H ⇔ ‖P‖2
H⊗̂2H

=
∞∑

i,j=1

ξ2
ij < ∞ and [P, Q]H⊗̂2H =

∞∑

i,j=1

ξijηij.

2. P ∈ V ′⊗̂2H ⇔ ‖P‖2
V ′⊗̂2H

=
∞∑

i,j=1

ξ2
ijλi < ∞ and [P,Q]V ′⊗̂2H =

∞∑

i,j=1

ξijηijλi.

3. P ∈ V ⊗̂2H ⇔ ‖P‖2
V ⊗̂2H

=
∞∑

i,j=1

ξ2
ijλ

−1
i < ∞ and [P, Q]V ⊗̂2H =

∞∑

i,j=1

ξijηijλ
−1
i .

4. P ∈ H⊗̂2V ⇔ ‖P‖2
H⊗̂2V

=
∞∑

i,j=1

ξ2
ijλj < ∞ and [P,Q]H⊗̂2V =

∞∑

i,j=1

ξijηijλj.

5. P ∈ H⊗̂2V
′ ⇔ ‖P‖2

H⊗̂2V ′ =
∞∑

i,j=1

ξ2
ijλ

−1
j < ∞ and [P, Q]H⊗̂2V ′ =

∞∑

i,j=1

ξijηijλ
−1
j .
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3.3 Our particular case

In this work we shall consider the spaces V r⊗̂2V
s, r, s ∈ IR, for the particular case of

H = L2(O) and V = H1
0 (O), Λ being now −∆ which is an isomorphism from V to V ′.

Therefore, we consider as orthonormal basis of H the set {w1, ..., wn, ..}
{
−∆ywn = λnwn in O
wn = 0 in ∂O,

with ‖wi‖L2(O) = 1, for all i = 1, 2, · · ·. It has the the following properties:





(a) (wn, wm)L2(O) = δn,m ∀m,n.
(b) (wn, wm)H1

0 (O) =
∫
O∇ywn(y)∇ywm(y)dy = λnδn,m,

(c){ ∑

finite
µjwj, µj ∈ IR} is a dense subset of V.

If we write the sequence {λ1, ..., λn, ..} in a nondecreasing way, it can be proved (see, for
instance, Theorem VI.8 of [3]) that λi ≥ 0, for all i = 1, · · · , +∞ and

lim
i→∞

λi = +∞.

Proposition 11 The identity operator I : H → H can be expressed as

I =
∞∑

i=1

wi ⊗ wi,

with this series converging in L(H, H).

Proof. Let ϕ ∈ H, then

∞∑

i=1

wi ⊗ wi(ϕ) =
∞∑

i=1

(ϕ,wi)Hwi =
∞∑

i=1

ϕiwi = ϕ,

where ϕi, i = 1, · · · ,∞ are the coordinates with respect to the orthonormal basis {wi}∞i=1

in L2(O). 2

Now the following question arises: Is the identity operator in some of the Hilbert-
Schmidt spaces described above (as H⊗̂2H or V ⊗̂2H)?

It is clear that I 6∈ H⊗̂2H, since (see Remark 9)

∞∑

i=1

1 = ∞.

To see if the identity operator I is in some of the other Hilbert-Schmidt spaces we shall
use the following lemma.
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Lemma 12 (Weyl’s Estimate) Given a regular domain Ω ⊂ IRn, the asymptotic be-
havior of the eigenvalues for the Laplace operator with homogeneous Dirichlet boundary
conditions is the following:

λk ∼ 4π

(V ol(Ω))2/n
k2/n.

Proof. See [14]. 2

We point out that wi ∈ V s for all s ∈ IR and i ∈ IN . Further, V 0 = H and V 1 = V .
Depending on the domain dimension, we shall need to work on slightly more regular
spaces than H and V .

Definition 13 Let δ = 0 if dim(O) = 1 and δ > 0 if dim(O) = 2 (dim(O) > 2 is not
of interest in applications). Let us define H̃ = V δ and Ṽ = V 1+δ (if dim(O) = 1, then
H̃ = H and Ṽ = V ). For δ ≥ 0 small enough, we have Ṽ ⊂ V ⊂ H̃ ⊂ H.

Corollary 14 If dim(O) ≤ 2, then I ∈ (Ṽ ⊗̂2H) ∩ (H⊗̂2Ṽ
′).

Proof. We have to prove (see Remark 9) that

∞∑

i=1

1

λ1+δ
i

< +∞,

which is a consequence of Lemma 12. 2

4 A direct Study of the Riccati Initial Value Problem

In [13], the author study a general equation





dP

dx
+ PA + A∗P + Φ(P ) = F,

P (0) = P0,

with A : V → V ′ coercive and F ∈ L2(0, a; H⊗̂2H). Is is showed the existence of a
solution u ∈ C([0, a] : H⊗̂2H). Let us study the Riccati equation





dP

dx
− αP∆yP = α−1I a.e. for x ∈ (0, a),

P (0) = 0.
(4)

In problem (4), we do not have a coercive operator A and we have seen that α−1I 6∈ H⊗̂2H.
We only have α−1I ∈ (Ṽ ⊗̂2H) ∩ (H⊗̂2Ṽ

′) at least if dim(O) ≤ 2. Furthermore −∆y is
unbounded on H, so results of [13] cannot be applied directly. We shall try to get a solution
P ∈ C([0,∞) : V r⊗̂2V

s), for some r, s ∈ IR to be determined, by a semi-discretization
and passing to the limit process.
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4.1 Semi discretization

4.1.1 Formulation of the problem and monotonicity results

We approximate any space V r, with r ∈ IR by Vm = span(w1, · · · , wm) and define the
m-approximate solution of (4) by the finite dimensional operator

Pm(x) =
m∑

i,j=1

ξm
ij (x)wi ⊗ wj ∈ Vm⊗̂2Vm,

where ξm
ij (x) are chosen such that





[
dPm

dx
− αPm∆yP

m − α−1Im, wi ⊗ wj

]

H⊗̂2H

= 0, ∀ i, j ∈ {1, · · ·m}
Pm(0) = 0,

(5)

with Im =
m∑

i=1

wi ⊗ wi. We point out that ξm
ij (x) = (Pm(x)wi, wj)H .

System (5) is a nonlinear system of equations in ξm
ij of the form:





dξm

dx
+ Am(ξm) + bm = 0,

ξm(0) = 0,

where

Am(ξm)ij(x) = −α(x)







m∑

k,l=1

ξm
klwk ⊗ wl


 ∆y




m∑

r,s=1

ξm
rswr ⊗ ws


 , wi ⊗ wj




H⊗̂2H

and

bm
ij (x) =

{
−α−1(x), if i = j,
0, otherwise.

It is easy to verify that

Am(ξm)ij = −α







m∑

k,l=1

ξm
klwk ⊗ wl







m∑

r,s=1

−λsξ
m
rswr ⊗ ws


 , wi ⊗ wj




H⊗̂2H

.

Now, taking into account that

wk ⊗ wl ◦ wr ⊗ ws =

{
wr ⊗ wl, if k = s,
0, otherwise,

we have that

Am(ξm)ij = α




m∑

k,l,r=1

λkξ
m
klξ

m
rkwr ⊗ wl, wi ⊗ wj




H⊗̂2H

= α
m∑

k=1

λkξ
m
ikξm

kj.
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Then, if we write the (i, j)-coordinates in m×m matrix form, we obtain





dξm

dx
+ αξmΛmξm − α−1Im = 0,

ξm(0) = 0,
(6)

where Im represents here the m ×m identity matrix and Λm is a diagonal matrix, with
λi, i = 1, · · ·m, being the elements of the diagonal.

But this derivation is still formal since we have assumed the derivability of Pm. Then,
by the theory of ordinary differential equations (Carathéodory Theorem), we know that
there exists a unique local solution Pm to (5) in [0, δ], with δ small enough, which is
absolutely continuous from [0, δ] to Vm⊗̂2Vm (see, for instance, Theorems 5.1 and 5.3 of
pages 28 and 30 of [7]). If α ∈ C([0, a]) we have Pm ∈ C1([0, δ] : Vm⊗̂2Vm).

The uniqueness of solution is also a consequence of Corollary 2 of page 13 of [12].
To go further, we need estimates on ξm(s) (i.e. on Pm(s)) independent of s, in order

to be able to extend the solution to [0,∞) (see, for instance, Theorem 5.2 of page 29 of
[7]).

Following page 11 of [12], the solution of the above problem can be expressed as

ξm(x) = V (x)U(x)−1,

where Y =

(
U
V

)
satisfies the corresponding linear (Hamiltonian) matrix differential

system 



J Y ′(x) + U(x)Y (x) = 0

Y (0) =

(
Im

0

)
,

(7)

with

J =

(
0 −Im

Im 0

)
, U(x) =

(
α−1(x)Im 0

0 −α(x)Λm

)
.

In order to study the global existence of solution, let us suppose first that α ∈ IR is a
constant. Therefore,

Y (x) = eAx

(
Im

0

)
, ∀ x ∈ [0, +∞),

with

A = −J −1U =

(
0 −Im

Im 0

) (
α−1Im 0

0 −αΛm

)
=

(
0 αΛm

α−1Im 0

)
.

The eigenvalues of A are
√

λi and −√λi, i = 1, · · ·m, and the matrix of eigenvectors is

(
α(Λm)1/2 −α(Λm)1/2

Im Im

)
.

11



Then U and V are given by

U(x) =
1

2

(
e(Λm)1/2x + e−(Λm)1/2x

)
,(8)

V (x) =
(Λm)−1/2

2α

(
e(Λm)1/2x − e−(Λm)1/2x

)
.(9)

Thus, U is non-singular and we can extend the solution of (5) (when α is constant)
from [0, δ] to [0, +∞].

Remark 15 The matrix A has positive and negative eigenvalues. The initial value prob-
lem for the Hamiltonian system (7) is well posed in finite dimension. This would not be
the case for the corresponding infinite dimensional initial value problem because of the
part of system (7) corresponding to positive eigenvalues {√λi}∞i=0 which are going to +∞.
For this part of the system we have a situation similar to a backward heat equation whose
ill-posedness is well-known.

Let us consider

Pm(x) =
m∑

i,j=1

ξm
ij

(x)wi ⊗ wj ∈ Vm⊗̂2Vm

and

P
m

(x) =
m∑

i,j=1

ξ
m

ij (x)wi ⊗ wj ∈ Vm⊗̂2Vm,

the particular cases of α ≡ α and α ≡ α respectively. We have proved above that Pm

and P
m

are defined over [0, +∞].

Proposition 16 For a given m ∈ IN , we have that, for all x ≥ 0,

Pm(x) =
m∑

i=1

ξm
ii

(x)wi ⊗ wi,

P
m

(x) =
m∑

i=1

ξ
m

ii (x)wi ⊗ wi,

and there exists Pm
∞, P

m
∞ ∈ Vm⊗̂2Vm such that, if 0 ≤ t1 ≤ t2, then

0 ≤ Pm(t1) ≤ Pm(t2) ≤ Pm
∞,

0 ≤ P
m

(t1) ≤ P
m

(t2) ≤ P
m
∞,

Proposition 17 For a given m ∈ IN , we can extend the solution Pm of (5) (with α not
necessarily constant) from [0, δ] to [0, a]. Further, for all x ∈ [0, a],

Pm(x) =
m∑

i=1

ξm
ii (x)wi ⊗ wi ∈ W 1,∞(0, δ : Vm⊗̂2Vm),

and for all x ∈ [0, a] we have that 0 ≤ Pm(x) ≤ Pm(x) ≤ P
m

(x).

12



4.1.2 Proof of Propositions 16 and 17

Proof Proposition 16
From (8)-(9) it is easy to see that Pm and P

m
are diagonal and given by

ξm
ii

(x) =
1

α
√

λi

tanh(
√

λix), i = 1, . . . , m

and

ξ
m

ii (x) =
1

α
√

λi

tanh(
√

λix), i = 1, . . . .m.

They can be also computed as the solution of the diagonal systems





dξm
ii

dx
+ αλi(ξ

m
ii

)2 − α−1 = 0,

ξm
ii

(0) = 0,
i = 1, . . . , m,





dξii

dx
+ αλi(ξ

m

ii )
2 − α−1 = 0,

ξ
m

ii (0) = 0,
i = 1, . . . , m.

Now,
dξm

ii

dx
(x) =

α−1

cosh2(
√

λix)
> 0, ∀ x ∈ IR,(10)

dξ
m

ii

dx
(x) =

α−1

cosh2(
√

λix)
> 0, ∀ x ∈ IR,(11)

and we can define

ξm
∞,ii

:= lim
x→∞ ξm

ii
(x) =

1

α
√

λi

, i = 1, . . . ,m

and

ξ
m

∞,ii := lim
x→∞ ξ

m

ii (x) =
1

α
√

λi

, i = 1, . . . , m,

which concludes the proof. 2

Proof of Proposition 17
The unique solution of (5) is the same as the solution of the diagonal system





dξm
ii

dx
+ α(x)λi(ξ

m
ii )2 − α−1(x) = 0,

ξm
ii (0) = 0,

i = 1, . . . ,m.(12)

Further, since

α−1 − αλiξ
2 ≤ α−1(x)− α(x)λiξ

2 ≤ α−1 − αλiξ
2, ∀ ξ ∈ IR,

13



we have that (see, for instance, Theorem 6.1 of page 51 of [7])

ξm
ii

(x) ≤ ξm
ii (x) ≤ ξ

m

ii (x), ∀ x ∈ [0, a],

which concludes the proof by applying, for instance, the continuation Theorem 5.2 of page
29 of [7]. 2

In Figure 1 we show the graphs of ξm
ii (x), ξm

ii
(x) and ξ

m

ii (x) for the case of λi = 1 and
α(x) = 5.5 + 4.5 sin(2πx) (which implies that α = 10 and α = 1).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x
1

Figure 1: Graph of ξm
ii (–), ξm

ii
(- -) and ξ

m

ii (· · ·) for
the case of λi = 1 and α(x) = 5.5 + 4.5 sin(2πx) (which
implies that α = 10 and α = 1).

Remark 18 From (10) and (11) we obtain that

0 ≤ αλi(ξ
m
ii

)2(x) < α−1 and 0 <
dξm

ii

dx
(x) ≤ α−1,(13)

and

0 ≤ αλi(ξ
m

ii )
2(x) < α−1 and 0 <

dξ
m

ii

dx
(x) ≤ α−1,(14)

for all x ∈ IR, i = 1, . . . ,∞. Therefore,

0 ≤ α(x)λi(ξ
m
ii )2(x) < α(x)α−2(15)

and

α−1 − αα−2 = α−1 − αλi(ξ
m

∞,ii)
2 ≤ α−1 − αλi(ξ

m

ii )
2 ≤ dξii

dx
(x) ≤ α−1,(16)

for all x ∈ IR, i = 1, . . . ,∞.
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4.2 Passing to the limit. Existence of solution. Regularity and
Monotonicity Results

Definition 19 An operator T ∈ L(H, H) is said to be positive (T ≥ 0) if (Tv, v)H ≥ 0
for all v ∈ H.

Remark 20 If T ∈ L(H, H) satisfies Tij = (Twi, wj) = 0 if i 6= j, then T is said to be
diagonal and T ≥ 0 if and only if Tii ≥ 0 for all i = 1, 2, · · ·.

We can now define the solution of the Riccati equation (4) in a Hilbert-Schmidt framework.

Theorem 21 Pm and P
m

have a limit P and P respectively in C([0,∞) : H̃⊗̂2H ∩
H⊗̂2H̃

′) ∩ C1([0,∞) : Ṽ ⊗̂2H ∩ H⊗̂2Ṽ
′) as m → ∞. Furthermore P, P ∈ C([0, +∞) :

L(V s, V s+1))∩C1([0, +∞) : L(V s, V s)), for all s ∈ IR and there exist P∞, P∞ ∈ H̃⊗̂2H ∩
H⊗̂2H̃

′ such that, if 0 ≤ t1 ≤ t2, then

0 ≤ P (t1) ≤ P (t2) ≤ P∞

and
0 ≤ P (t1) ≤ P (t2) ≤ P∞.

Proof. Let us do the proof for Pm (the other case is analogous). The proof is based on
the passing to the limit of Pm and of the differential equation satisfied by Pm as m →∞.
Now,

Pm
∞ =

m∑

i=1

1

α
√

λi

wi ⊗ wi.

Therefore, if 0 < m1 ≤ m2, then

0 ≤ Pm1
∞ ≤ Pm2

∞ and (Pm1
∞ )ii = (Pm2

∞ )ii for i = 1, · · ·m1.

Further,

P∞ =
∞∑

i=1

1

α
√

λi

wi ⊗ wi ∈ H̃⊗̂2H ∩H⊗̂2H̃
′,

since

‖P∞‖2
H̃⊗̂2H

= ‖P∞‖2
H⊗̂2H̃′ =

1

α

∞∑

i=1

1

λ1+δ
i

< +∞.

Then, Pm
∞ → P∞ in the topology of H̃⊗̂2H ∩H⊗̂2H̃

′.
Now, since we are dealing with diagonal matrices, it is easy to prove that, if 0 < m1 ≤

m2, then ξm1

ii
(x) = ξm2

ii
(x) for i = 1, · · · ,m1 and 0 ≤ Pm1(x) ≤ Pm2(x) ≤ P∞, which

implies that, if we define ξ
ii

= ξi
ii
, then

Pm m→∞−→ P =
∞∑

i=1

ξ
ii
wi ⊗ wi in C([0,∞) : H̃⊗̂2H ∩H⊗̂2H̃

′),
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since, using (13),

‖Pm − P‖2
C([0,∞):H̃⊗̂2H)

= ‖Pm − P‖2
C([0,∞):H⊗̂2H̃′)

= sup
x∈[0,∞)

∞∑

i=m+1

|ξ
ii
(x)|2
λδ

i

≤ α−2
∞∑

i=m+1

1

λ1+δ
i

m→∞−→ 0.

Now (13) gives the expected regularity on P because

‖P‖2
C([0,∞):L(V s,V s+1)) = sup

x∈[0,∞)
max

i
λi|ξii

(x)|2 ≤ α−2.

Further, if 0 ≤ t1 ≤ t2, then

0 ≤ P (t1) ≤ P (t2) ≤ P∞.

We also claim that

dPm

dx
m→∞−→ dP

dx
in C([0,∞) : Ṽ ⊗̂2H ∩H⊗̂2Ṽ

′),

since, from (13),
∥∥∥∥∥
dPm

dx
− dP

dx

∥∥∥∥∥
2

C([0,∞):Ṽ ⊗̂2H)

=

∥∥∥∥∥
dPm

dx
− dP

dx

∥∥∥∥∥
2

C([0,∞):H⊗̂2Ṽ ′)

= sup
x∈[0,∞)

∞∑

i=m+1

1

λ1+δ
i

∣∣∣∣∣
dξ

ii

dx
(x)

∣∣∣∣∣
2

= sup
x∈[0,∞)

∞∑

i=m+1

|α−1 − αλi(ξii
(x))2|2

λ1+δ
i

≤
∞∑

i=m+1

α−2

λ1+δ
i

m→∞−→ 0.

From (13) again
∥∥∥∥∥
dP

dx

∥∥∥∥∥
2

C([0,+∞):L(V s,V s))

= sup
x∈[0,∞)

max
i
|α−1 − αλi(ξii

(x))2|2 ≤ α−2.

Similarly, it is easy to deduce that

α−1Im m→∞−→ α−1I in C([0,∞) : Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′)

and
α Pm∆yP

m m→∞−→ α P∆yP in C([0,∞) : Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′).

Then P ∈ C([0,∞) : H̃⊗̂2H ∩H⊗̂2H̃
′) ∩ C1([0,∞) : Ṽ ⊗̂2H ∩H⊗̂2Ṽ

′) satisfies

dP

dx
− α P∆yP − α−1I = 0,

where each term is considered as an element of Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′. 2
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Remark 22 There exists a constant C > 0, independent of s, such that

‖P‖C([0,+∞):L(V s,V s+1)) + ‖P‖C1([0,+∞):L(V s,V s)) ≤ C

and
‖P‖C([0,+∞):L(V s,V s+1)) + ‖P‖C1([0,+∞):L(V s,V s)) ≤ C.

Theorem 23 Problem (4) has a solution P limit of Pm in C([0, a] : H̃⊗̂2H ∩H⊗̂2H̃
′) ∩

W 1,∞(0, a : Ṽ ⊗̂2H ∩ H⊗̂2Ṽ
′) as m → ∞. Furthermore P ∈ C([0, a] : L(V s, V s+1)) ∩

W 1,∞(0, a : L(V s, V s)), for all s ∈ IR and

0 ≤ P (x) ≤ P (x) ≤ P (x).

Proof. Since we are dealing with diagonal matrices, it is easy to prove that, if 0 < m1 ≤
m2, then ξm1

ii (x) = ξm2
ii (x) for i = 1, · · · ,m1 and 0 ≤ Pm(x) ≤ P∞, for all m ∈ IN , which

implies that, if we define ξii = ξi
ii, then

Pm m→∞−→ P =
∞∑

i=1

ξiiwi ⊗ wi in C([0, a] : H̃⊗̂2H ∩H⊗̂2H̃
′),

since, using (15),

‖Pm − P‖2
C([0,a]:H̃⊗̂2H)

= ‖Pm − P‖2
C([0,a]:H⊗̂2H̃′)

= sup
x∈[0,a]

∞∑

i=m+1

|ξii(x)|2
λδ

i

≤ α−2
∞∑

i=m+1

1

λ1+δ
i

m→∞−→ 0.

Now (15) gives the expected regularity on P because

‖P‖2
C([0,a]:L(V s,V s+1)) = sup

x∈[0,a]
max

i
λi|ξii(x)|2 ≤ α−2.

Further, if x ∈ [0, a], then

0 ≤ P (x) ≤ P (x) ≤ P (x) ≤ P∞.

We also claim that

dPm

dx
m→∞−→ dP

dx
in L∞(0, a : Ṽ ⊗̂2H ∩H⊗̂2Ṽ

′),

since, from (16),

∥∥∥∥∥
dPm

dx
− dP

dx

∥∥∥∥∥
2

L∞(0,a:Ṽ ⊗̂2H)

=

∥∥∥∥∥
dPm

dx
− dP

dx

∥∥∥∥∥
2

L∞(0,a:H⊗̂2Ṽ ′)

= ess sup
x∈(0,a)

∞∑

i=m+1

1

λ1+δ
i

∣∣∣∣∣
dξii

dx
(x)

∣∣∣∣∣
2
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= ess sup
x∈(0,a)

∞∑

i=m+1

|α(x)−1 − α(x)λi(ξii(x))2|2
λ1+δ

i

≤
∞∑

i=m+1

max
{
α−2,

(
αλiξ

m

ii,∞ − α−1
)2

}
1

λ1+δ
i

≤ max
{
α−2, λ1α

2α−2
} ∞∑

i=m+1

1

λ1+δ
i

m→∞−→ 0.

From (16) again

∥∥∥∥∥
dP

dx

∥∥∥∥∥
2

L∞(0,a:L(V s,V s))

= ess sup
x∈(0,a)

max
i
|α(x)−1 − α(x)λi(ξii(x))2|2

≤ max
{
α−2, λ1α

2α−2
}

.

Similarly, it is easy to deduce that

α−1Im m→∞−→ α−1I in L∞(0, a : Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′)

and
αPm∆yP

m m→∞−→ αP∆yP in L∞(0, a : Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′).

Then P ∈ C([0, a] : H̃⊗̂2H ∩H⊗̂2H̃
′) ∩W 1,∞(0, a : Ṽ ⊗̂2H ∩H⊗̂2Ṽ

′) satisfies

dP

dx
− αP∆yP − α−1I = 0,

where each term is considered as an element of Ṽ ⊗̂2H ∩H⊗̂2Ṽ
′. 2

Remark 24 There exists a constant C > 0, independent of s, such that

‖P‖C([0,a]:L(V s,V s+1)) + ‖P‖W 1,∞(0,a:L(V s,V s)) ≤ C.

Remark 25 If α ∈ C([0, a]) then

Pm m→∞−→ P in C([0, a] : H̃⊗̂2H ∩H⊗̂2H̃
′) ∩ C1([0, a] : Ṽ ⊗̂2H ∩H⊗̂2Ṽ

′)

and P ∈ C([0, a] : L(V s, V s+1)) ∩ C1([0, a] : L(V s, V s)), for all s ∈ IR. Furthermore, there
exists a constant C > 0, independent of s, such that

‖P‖C([0,a]:L(V s,V s+1)) + ‖P‖C1([0,a]:L(V s,V s)) ≤ C.
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4.3 Uniqueness of Solution

Lemma 26 Suppose T is a symmetric operator satisfying T ∈ L(V p, V p+r) for some
r ∈ IR and for all p ≥ k (k ∈ IR) and there exists a constant C > 0 independent of p such
that ‖T‖2

L(V p,V p+r) ≤ C, then T is diagonal, i.e., Ti,j = (Twi, wj)H = 0 if i 6= j.

Proof.

‖T‖2
L(V p,V p+r) ≥ sup

i
‖T wi

‖wi‖V p

‖2
V p+r = sup

i
‖λ−p/2

i Twi‖2
V p+r

= sup
i
‖λ−p/2

i

∞∑

j=1

Ti,jwj‖2
V p+r = sup

i
λ−p

i

∞∑

j=1

λp+r
j |Ti,j|2

Therefore, Ti,j = 0 if i 6= j and ‖T‖2
L(V p,V p+r) ≥ supi λ

r
i |Ti,i|2, because, otherwise, since

λ−p
i λp

j →∞ as p →∞ (if λj > λi),

we would have
‖T‖2

L(V p,V p+r) →∞ as p →∞
in contradiction with the assumptions.

Theorem 27 The solution P of (4) is unique in the set of functions

{P ∈ W 1,∞(0, a; V p⊗̂2V
q) for some p, q ∈ IR :

P ∈ C([0, +∞) : L(V s, V s+1)) for all s ∈ IR,

with ‖P‖2
C([0,+∞):L(V s,V s+1)) uniformly bounded in s}.

Proof. Let P a solution of (4) in the above class of functions. From Theorem 26 P is
diagonal. Let

P (x) =
∞∑

i=1

ξii(x)wi ⊗ wi ∈ W 1,∞(0, a; V p⊗̂2V
q)

be the Fourier expansion of P (x). Then, equation (4) can be written as

∞∑

i=1

(
dξii

dx
(x) + α(x)λiξ

2
ii

)
wi ⊗ wi =

∞∑

i=1

α(x)−1wi ⊗ wi,

with both terms of the above equality in (Ṽ ⊗̂2H) ∩ (H⊗̂2Ṽ
′). Then, by the uniqueness

of the Fourier representation, we have that

dξii

dx
(x) + α(x)λiξ

2
ii = α(x)−1.

Therefore, if ξm is the matrix given by ξm = (ξij)
m
i,j=1, then ξm is the unique solution of (6)

(as we proved in Section 4.1.1), which concludes the proof due to the strong convergence
of ξm to ξ in C([0, a] : H̃⊗̂2H ∩H⊗̂2H̃

′) proved in Theorem 23. 2
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5 Elliptic problems associated to the Riccati Equa-

tion (4)

In this section we show how the Hilbert-Schmidt operator P solution of the Riccati equa-
tion (4) can be used to transform the second order elliptic boundary value problem (1)
into one or two uncoupled first order initial value problems (system (2)).

5.1 Function r

Theorem 28 Let s ∈ IR arbitrary and u0 ∈ V s. Then, there exists a unique solution
r ∈ C([0, a] : V s) ∩ L2(0, a : V s+1/2) ∩H1(0, a : V s−1/2), of the initial value problem





dr

dx
− αP∆yr = 0,

r(0) = u0.

Proof. Let

u0 =
∞∑

i=1

u0iwi

be the Fourier decomposition of u0. Then, the solution of the problem is given by

r(x, y) =
∞∑

i=1

ri(x)wi(y),

where each Fourier coefficient ri(x), i = 1, · · · ,∞, satisfies the differential equation





dri

dx
= −αλiξiiri,

ri(0) = u0i.

Then,

ri(x) = u0ie
−

∫ x

0
λiα(t)ξii(t)dt ∈ C([0, a])

and

|ri(x)| ≤ |u0i|e−αλi

∫ x

0
ξ

ii
(t)dt = |u0i|e

− αλi
α
√

λi

∫ x

0

sinh(
√

λit)

cosh(
√

λit)
dt

=
|u0i|

(cosh
√

λix)αα−1 ≤ |u0i|.

Now, for all x ∈ [0, a], we have that

∞∑

i=1

λs
i |ri(x)|2 ≤

∞∑

i=1

λs
i |u0i|2 < ∞,
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which implies that r(x) ∈ V s. Hence, since ri ∈ C([0, a]), i = 1, · · · ,∞, and thanks to the
uniform convergence of the previous series, we have that r ∈ C([0, a] : V s). To obtain the
L2(0, a : V s+1/2) regularity consider

∫ a

0

∞∑

i=1

λ
s+1/2
i |ri(x)|2dx ≤ 22αα−1

∞∑

i=1

λs
i |u0i|2

∫ a

0

√
λi

e2αα−1
√

λix
dx

=
22αα−1

2αα−1

∞∑

i=1

(1− e−2αα−1
√

λia)λs
i |u0i|2 < ∞.

To obtain the H1(0, a : V s−1/2) regularity consider

∫ a

0

∞∑

i=1

λ
s−1/2
i |dri

dx
(x)|2dx ≤ 22αα−1

α2α−2
∞∑

i=1

λs
i |u0i|2

∫ a

0

√
λi

e2αα−1
√

λix
dx

= 2(2αα−1−1)α3α−3
∞∑

i=1

(1− e−2αα−1
√

λia)λs
i |u0i|2 < ∞. 2

Remark 29 In order to prove that r ∈ C([0, a] : V s) we could have also used the theory
of intermediate spaces (see, for instance, [10]), which gives

L2(0, a : V s+1/2) ∩H1(0, a : V s−1/2) ⊂ C([0, a] : [V s−1/2, V s+1/2]1/2)

and [V s−1/2, V s+1/2]1/2 = V s.

Proposition 30 If α ∈ C([0, a]) then r ∈ C1([0, a] : V s−1)∩C1(]0, a] : V p), for any p ∈ IN .

Proof. Let us prove now that r ∈ C1([0, a] : V s−1). We have

|dri

dx
(x)| ≤ αα−1

√
λi

sinh(
√

λix)

(cosh(
√

λix))1+αα−1 |u0i| ≤ αα−1
√

λi|u0i|

which implies that, for all x ∈ [0, a],

∞∑

i=1

λs−1
i |dri

dx
(x)|2 ≤ α2α−2

∞∑

i=1

λs
i |u0i|2 < ∞.

Thus,
dr

dx
(x, ·) ∈ V s−1, for all x ∈ [0, a], and therefore r ∈ C1([0, a] : V s−1).

To prove the additional regularity we consider

∞∑

i=1

λp
i |ri(x)|2 ≤ 22αα−1

∞∑

i=1

λs
i |u0i|2λp−s

i e−2αα−1
√

λix < ∞

for any x > 0, since for any µ, k > 0

λke−µ
√

λ −→ 0 as λ → +∞.

Similarly, it can be proved that
dr

dx
∈ C(]0, a] : V p). 2
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Theorem 31 Let s ∈ IR arbitrary and f ∈ L2(0, a : V s). Then, there exists a unique
solution r ∈ C([0, a] : V s+3/2) ∩ L2(0, a : V s+2) ∩ H1(0, a : V s+1), of the initial value
problem 




dr

dx
− αP∆yr = Pf,

r(0) = 0.

Proof. Let

f(x, ·) =
∞∑

i=1

fi(x)wi

be the Fourier decomposition of f(x, ·), for all x ∈ [0, a] (respectively, a.e. in (0, a)), with
fi ∈ C([0, a]) (respectively, fi ∈ L2(0, a)). Then, the solution of the problem is given by

r(x, y) =
∞∑

i=1

ri(x)wi(y),

where each Fourier coefficient ri(x), i = 1, · · · ,∞, satisfies the differential equation





dri

dx
= ξii (−αλiri + fi),

ri(0) = 0.
(17)

Then, multiplying in (17) by ri and integrating over (0, x) we obtain

1

2
|ri(x)|2 +

∫ x

0
α(s)λiξii(s)|ri(s)|2ds =

∫ x

0
ξii(s)fi(s)ri(s)ds.

Then
1

2
|ri(x)|2 +

∫ x

0
α(s)λiξii(s)|ri(s)|2ds

≤ 1

2

∫ x

0
αλiξii(s)|ri(s)|2ds +

1

2

∫ x

0

1

αλi

ξii(s)|fi(s)|2ds

and therefore, we obtain

|ri(x)|2 ≤
∫ x

0

1

α2λ
1+1/2
i

|fi(s)|2ds.

Thus,

∞∑

i=1

λ
s+3/2
i |ri(x)|2 ≤ 1

α2

∞∑

i=1

λs
i‖fi‖2

L2(0,a) =
1

α2
‖f‖2

L2(0,a:V s) < ∞,

which implies that r(x) ∈ V s+3/2. Hence, since ri ∈ C([0, a]) (because fi ∈ L1(0, a)),
i = 1, · · · ,∞, and thanks to the uniform convergence of the series we have that r ∈
C([0, a] : V s+3/2).
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To obtain the L2(0, a : V s+2) regularity consider

∫ a

0
|ri(x)|2dx ≤

∫ a

0

∫ x

0

1

αλi

ξii(s)|fi(s)|2dsdx ≤
∫ a

0

1

αλi

ξii(x)‖fi‖2
L2(0,a)dx

= ‖fi‖2
L2(0,a)

1

α2λ2
i

ln(cosh a).

Therefore

‖r‖2
L2(0,a:V s+2) =

∫ a

0

∞∑

i=1

λs+2
i |ri(x)|2dx ≤ ln(cosh a)

α2

∞∑

i=1

λs
i‖fi‖2

L2(0,a)

=
ln(cosh a)

α2
‖f‖2

L2(0,a:V s) < ∞.

Finally, since ξii ∈ L∞(0, a) is uniformly bounded and fi ∈ L2(0, a), from (17) and
Theorem 23 we have that ri ∈ H1(0, a) and we deduce that r ∈ H1(0, a : V s+1). 2

Remark 32 The solution ri of (17) is

ri(x) = e−
∫ x

0
α(t)λiξii(t)dt

∫ x

0
ξii(s)fi(s)e

∫ s

0
α(t)λiξii(t)dtds.(18)

Remark 33 In order to prove that r ∈ C([0, a] : V s+3/2) we could have also used the
theory of intermediate spaces (see, for instance, [10]), which gives

L2(0, a : V s+2) ∩H1(0, a : V s+1) ⊂ C([0, a] : [V s+1, V s+2]1/2)

and [V s+1, V s+2]1/2 = V s+3/2.

Remark 34 If f ∈ L∞(0, a : V s) then r ∈ W 1,∞(0, a : V s+1/2). Furthermore, if α ∈
C([0, a]) and f ∈ C([0, a] : V s) then r ∈ C1([0, a] : V s+1/2).

Corollary 35 Let j, k ∈ IR arbitrary, u0 ∈ V j and f ∈ L2(0, a : V k). Then, if p =
min{j, k + 3/2}, there exists a unique solution r ∈ C([0, a] : V p) ∩ L2(0, a : V p+1/2) ∩
H1(0, a : V p−1/2)), of the initial value problem





dr

dx
− αP∆yr = Pf,

r(0) = u0.
(19)

Furthermore, each Fourier coefficient ri, i = 1, · · · ,∞, is given by

ri(x) = e−
∫ x

0
α(t)λiξii(t)dt

(
u0i +

∫ x

0
ξii(s)fi(s)e

∫ s

0
α(t)λiξii(t)dtds

)
.

Remark 36 With the assumptions of the above Corollary, if α ∈ C([0, a]) and f ∈
C([0, a] : V k), then r ∈ C1([0, a] : V p−1).

23



5.2 Dirichlet Condition on Γa

In the following Lemma 37 and Corollary 38 we give existence and uniqueness results for
the corresponding solution u in a suitable functional space which enables us to prove that
u is solution of a Poisson equation. Therefore we do not try to obtain all and/or the best
regularity results, since they can be obtained later as a result of the well-known regularity
results for the Poisson equation.

Lemma 37 Let j, k ∈ IR arbitrary, u0 ∈ V j and f ∈ L2(0, a : V k). Then, if p =
min{j, k + 3/2}, there exists a unique solution u ∈ C([0, a] : V p) of the initial value
problem 




Pα
du

dx
= u− r,

u(a) = 0,
(20)

where r ∈ C([0, a] : V p) ∩ L2(0, a : V p+1/2) ∩H1(0, a : V p−1/2) is the solution of the initial

value problem (19). Furthermore, u =
∞∑

i=1

uiwi, with ui ∈ C([0, a]),
dui

dx
∈ L∞(0, a) and

α
dui

dx
∈ W 1,∞(0, a), for all i ∈ IN .

Proof. The solution of the problem is given by

u(x, y) =
∞∑

i=1

ui(x)wi(y),

where each Fourier coefficient ui(x), i = 1, · · · ,∞, satisfies the differential equation





ξiiα
dui

dx
= ui − ri,

ui(a) = 0.
(21)

Solving (21) we obtain

ui(x) = e−
∫ a

x
(α(t)ξii(t))

−1dt
∫ a

x
(α(s)ξii(s))

−1ri(s)e
∫ a

s
(α(t)ξii(t))

−1dtds(22)

= e−
∫ a

x
(α(t)ξii(t))

−1dt

(
ri(x)e

∫ a

x
(α(t)ξii(t))

−1dt +
∫ a

x
(
dri

dx
(s)e

∫ a

s
(α(t)ξii(t))

−1dtds

)

= ri(x) + e−
∫ a

x
(α(t)ξii(t))

−1dt
∫ a

x
(
dri

dx
(s)e

∫ a

s
(α(t)ξii(t))

−1dtds.

Now ξii is 0 at x = 0 and we have to check the behaviour of ui near x = 0. Let us see
that ui ∈ C([0, a]), i = 1, · · · ,∞. It is easy to see that

e−
∫ a

x
(α(t)ξii(t))

−1dt ≤
(

sinh (
√

λix)

sinh (
√

λia)

)αα−1

→ 0 as x → 0.
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Now, since ri ∈ C([0, a]), it is easy to prove that, if ri(0) = u0i 6= 0, then

lim
x→0

∣∣∣∣
∫ a

x
(α(s)ξii(s))

−1ri(s)e
∫ a

s
(α(t)ξii(t))

−1dtds

∣∣∣∣ = ∞.(23)

Therefore, if u0i = 0 and (23) does not hold, then (obviously)

lim
x→0

ui(x) = 0.

Otherwise, using L’Hôpital’s rule,

lim
x→0

ui(x) = lim
x→0

∫ a

x
(α(s)ξii(s))

−1ri(s)e
∫ a

s
(α(t)ξii(t))

−1dtds

e
∫ a

x
(α(t)ξii(t))−1dt

= lim
x→0

(α(x)ξii(x))−1ri(x)e
∫ a

x
(α(t)ξii(t))

−1dt

(α(x)ξii(x))−1e
∫ a

x
(α(t)ξii(t))−1dt

= ri(0) = u0i.

This implies that ui ∈ C([0, a]) for all i = 1, · · · ,∞. The results about
dui

dx
and α

dui

dx
are

easily verified.
Let us prove that u ∈ C([0, a] : V p). From (21) we have

∫ a

x
ξii(s)α(s)

(
dui

dx
(s)− dri

dx
(s)

)2

ds

=
1

2

∫ a

x

d

dx
(ui(s)− ri(s))

2 ds−
∫ a

x
ξii(s)α(s)

dri

dx
(s)

(
dui

dx
(s)− dri

dx
(s)

)
ds

= −1

2
(ui(x)− ri(x))2 +

1

2
|r(a)|2 −

∫ a

x
ξii(s)α(s)

dri

dx
(s)

(
dui

dx
(s)− dri

dx
(s)

)
ds.

Therefore,

1

2
(ui(x)− ri(x))2 +

∫ a

x
ξii(s)α(s)

(
dui

dx
(s)− dri

dx
(s)

)2

ds ≤

1

2
|ri(a)|2 +

1

2

∫ a

x
ξii(s)α(s)|dri

dx
(s)|2ds +

1

2

∫ a

x
ξii(s)α(s)

(
dui

dx
(s)− dri

dx
(s)

)2

ds.

Hence,

|ui(x)|2 + |ri(x)|2 +
∫ a

x
ξii(s)α(s)

(
dui

dx
(s)− dri

dx
(s)

)2

ds ≤

|ui(x)|2
2

+ 2|ri(x)|2 + |ri(a)|2 +
α

α

∫ a

0

1√
λi

|dri

dx
(s)|2ds,
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which implies that

∞∑

i=1

λp
i |ui(x)|2 ≤ 2

∞∑

i=1

λp
i

(
|ri(x)|2 + |ri(a)|2

)
+ 2

α

α
‖dr

dx
‖H1(0,a:V p−1/2) < ∞.

Therefore u(x, ·) ∈ V p for all x ∈ [0, a] and thanks to the uniform convergence of the
series we have that u ∈ C([0, a] : V p), since ui ∈ C([0, a]) and

‖u−
m∑

i=1

uiwi‖C([0,a]:V p) = sup
x∈[0,a]

∞∑

i=m+1

λp
i |ui(x)|2

≤ 2
∞∑

i=m+1

λp
i |ri(a)|2 +

α

α

∞∑

i=m+1

λ
p−1/2
i

∫ a

0
|dri

dx
(s)|2ds

m→∞−→ 0. 2

Corollary 38 Let j, k, q ∈ IR arbitrary, u0 ∈ V j, f ∈ L2(0, a : V k) and ua ∈ V q. Then,
if p = min{j, k + 3/2, q}, there exists a unique solution u ∈ C([0, a] : V p) of the initial
value problem 




Pα
du

dx
= u− r,

u(a) = ua,
(24)

where r ∈ C([0, a] : V p)∩L2(0, a : V p+1/2)∩H1(0, a : V p−1/2), is the solution of the initial
value problem (19), with p = min{j, k + 3/2}. Furthermore, each Fourier coefficient ui,

i = 1, · · · ,∞, satisfies ui ∈ C([0, a]),
dui

dx
∈ L∞(0, a), α

dui

dx
∈ W 1,∞(0, a) and

ui(x) = e−
∫ a

x
(α(t)ξii(t))

−1dt

(
uai +

∫ a

x
(α(s)ξii(s))

−1ri(s)e
∫ a

s
(α(t)ξii(t))

−1dtds
)
.

(25)

Theorem 39 Let j, k, q ∈ IR arbitrary, u0 ∈ V j, f ∈ L2(0, a : V k) and ua ∈ V q. Then, if
p = min{j, k + 3/2, q}, the unique solution u ∈ C([0, a] : V p) of the initial value problem
(24) is also the unique solution of the elliptic problem





−∇ · (α(x)∇u) = f in Ω,
u = 0 on Σ,
u = u0 on Γ0,
u = ua on Γa.

(26)

Proof. Derivating (21) with respect to the x variable we get

dui

dx
− dξii

dx
α

dui

dx
− dri

dx
= ξii

d

dx

(
α

dui

dx

)
,

which is an equation with all its terms in L∞(0, a) (see Theorem 23 and regularity results
of Corollary 38). Then, taking into account the Riccati equation satisfied by ξii and the
equation satisfied by ri, we have that

ξii
d

dx

(
α

dui

dx

)
= α2λiξ

2
ii

dui

dx
+ ξii(αλiri − fi).
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Therefore, we have the following equation in L2(0, a):

ξii

[
d

dx

(
α

dui

dx

)]
= ξii [αλiui − fi] .

Hence, since ξii(x) > 0 for all x > 0, we have that

d

dx

(
α

du

dx

)
= −α∆yu− f in L2(0, a : V p−3),

which implies that

−∇ · (α(x)∇u) = − d

dx

(
α

du

dx

)
− α∆yu = f in L2(0, a : V k).

Finally, the boundary conditions are obviously satisfied, which concludes the proof. 2

Example 40 If f ∈ L2(0, a : H−1(O)) and u0, ua ∈ V 1/2 = H
1/2
00 (O), then u ∈ C([0, a] :

H
1/2
00 (Ω)), since H−1(Ω) = V −1 and H

1/2
00 (Ω) = V 1/2.

Remark 41 Once we know that the solution of (24) is the unique solution of (26) we
can improve the regularity results showed in Lemma 37 and Corollary 38. Some of the
regularity results for these kind of problems can be seen, for instance, in [6].

Remark 42 The above explicit formula (25) is not well-suited for computational pur-
poses, since at x = 0 there is a multiplication 0 · ∞. Nevertheless, we can avoid this
problem by developing the right hand term, obtaining the following result

Theorem 43 Each Fourier coefficient ui, i = 1, · · · ,∞, of the solution u of the initial
value problem (24) (or, equivalently, problem (26)), is given by

ui(x) = ri(x)− ri(a)e−
∫ a

x
(α(t)ξii(t))

−1dt

+e−
∫ a

x
(α(t)ξii(t))

−1dt
∫ a

x
e
∫ a

s
λiα(t)ξii(t)dt (−α(s)λiri(s) + fi(s)) ds.

Proof. Let us suppose that ua ≡ 0 (otherwise we just have to add the additional term
given by the last term of the formula (25)). Integrating by parts in (25), for i = 1, · · · ,∞,
we obtain

ui(x) = ri(x)− ri(a)e−
∫ a

x
(α(t)ξii(t))

−1dt

+e−
∫ a

x
(α(t)ξii(t))

−1dt
∫ a

x
e
∫ a

s
(α(t)ξii(t))

−1dt dri

dx
(s)ds

= ri(x)− ri(a)e−
∫ a

x
(α(t)ξii(t))

−1dt

+e−
∫ a

x
(α(t)ξii(t))

−1dt
∫ a

x
e
∫ a

s
λiα(t)ξii(t)dt (−α(s)λiri(s) + fi(s)) ds,
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since
v = ξiie

∫ a

s
(α(t)ξii(t))

−1dt

satisfies
dv

dx
= −vαλiξ

and therefore,

v(x) = e
∫ a

s
λiα(t)ξii(t)dt. 2

Example 44 Let fi(x) ≡ fi, constant in O and α ≡ 1 in (0, a). By Theorem 43 we have
that the solution of problem (24) (or, equivalently, problem (26)) is

ui(x) = fi
sinh (

√
λix)

λi

(
e−

√
λia − e−

√
λia

sinh (
√

λix)

sinh (
√

λia)

+ 2 arctan(e
√

λia)− 2 arctan(e
√

λix)

)

+u0i

(
e−

√
λix − e−

√
λia

sinh (
√

λix)

sinh (
√

λia)

)
+ uai

sinh
√

λix

sinh
√

λia
.

This is, in fact, the solution of



−d2ui

dx
(x) + λiui(x) = fi,

ui(0) = u0i, ui(a) = uai.

Now, let us suppose that Ω = (0, a)× (0, b) (that is, O = (0, b)). Then,




λn = (
nπ

b
)2, n ≥ 1 and n ∈ IN,

wn(x2) =

√
2

b
sin(

nπ

b
x2).

and

u(x, x2) =

√
2

b

∞∑

n=1

un sin(
nπ

b
x2).

which can be approximated by

um(x, x2) =

√
2

b

m∑

n=1

un sin(
nπ

b
x2),

for m large enough.
For instance, if f ≡ 1, u0 ≡ 1 and ua ≡ 1, then

fn = u0n = uan =

{
2
√

2b
nπ

if n is odd,
0 if n is even.

Figure 2 (respectively Figure 3) shows the linear interpolation of u20 (respectively u50),
over a grid of 16 elements for the x-coordinate and 26 elements for the x2-coordinate, when
a = 3 and b = 5.
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Figure 2: Graph of the function
u20 of Example 44.
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Figure 3: Graph of the function
u50 of Example 44.

5.3 Neumann Condition on Γa

We now change the boundary condition on Γa to a Neumann condition. The equation for
P and r are unchanged. Only the initial condition for u on Γa is changed.

Theorem 45 Let j, k, q ∈ IR arbitrary, u0 ∈ V j, f ∈ L2(0, a : V k) and ua ∈ V q. Then,
if p = min{j, k + 3/2, q + 1}, there exists a unique solution u ∈ C([0, a] : V p) of the initial
value problem 




Pα
du

dx
= u− r,

u(a) = P (a)ua + r(a),
(27)

where r ∈ C([0, a] : V p) ∩ L2(0, a : V p+1/2 ∩H1(0, a : V p−1/2) is the solution of the initial
value problem (19) with p = min{j, k + 3/2}. Further, u is also solution of the problem





−∇ · (α(x)∇u) = f in Ω,
u = 0 on Σ,
u = u0 on Γ0

α
∂u

∂x
= ua on Γa

(28)

and each Fourier coefficient ui, i = 1, · · · ,∞, is given by the formula of Theorem 43,
changing ua by P (a)ua + r(a).

5.4 Transparent Boundary Conditions

Now we show that the factorization process (2), (3) can be viewed as a Gaussian elimi-
nation process. Let us consider the subdomain Ω?

t =]t, a[×O. We can eliminate the un-
knowned function u on the complementary subdomain Ωt =]0, t[×O by writing a boundary

29



value problem on Ω?
t with a boundary condition on Γt thanks to the knowledge of P (t)

and r(t). In other words this boundary condition which summarizes the behaviour of u
on Ωt is a transparent boundary condition.

Theorem 46 Let j, k, q ∈ IR arbitrary, u0 ∈ V j, f ∈ L2(0, a : V k) and ua ∈ V q.
Then, if p = min{j, k + 3/2, q}, the unique solution u ∈ C([t, a] : V p) of the initial value
problem (24) (or, equivalently, the restriction of the solution of problem (26) to Ω?

t ), where
r ∈ C([0, a] : V p)∩L2(0, a : V p+1/2)∩H1(0, a : V p−1/2)) is the solution of the initial value
problem (19) with p = min{j, k +3/2}, is also the unique solution of the elliptic boundary
value problem 




−∇ · (α∇u) = f in Ω?
t ,

u = 0 on Σ,

−Pα
∂u

∂x
+ u = r on Γt,

u = ua on Γa.

(29)

Proof. From Corollary (38), the third equation of (29) is satisfied for x ∈ [0, a] and,
therefore, we only need to prove the uniqueness of solution of problem (29). By linearity
we suppose that f, r, ua are equal to zero everywhere and we have to show that the only
solution is u ≡ 0. Now, the variational formulation is

{
Find u ∈ Ut = {ϕ ∈ H1(Ω?

t ) : ϕ|Σ = 0, ϕ|Γa = 0}, such that
a(u, ϕ) = 0 ∀ ϕ ∈ Ut,

where
a(u, ϕ) =

∫

Ω?
t

α∇u∇ϕdxdy +
∫

O
P−1(t)u(t)ϕ(t)dy.

Now, since P (t) is a positive definite operator, it is easy to prove, by means of the Poincaré
inequality, that a(·, ·) is a positive definite bilinear form on Ut. This concludes the proof
by using the Lax-Milgram Theorem (see Section V.3 of [3]). 2

Theorem 47 Let j, k, q ∈ IR arbitrary, u0 ∈ V j, f ∈ L2(0, a : V k) and ua ∈ V q. Then,
if p = min{j, k + 3/2, q + 1}, the unique solution u ∈ C([0, a] : V p) of the initial value
problem (27) (or, equivalently, problem (28)), where r is as in Theorem 46, is also the
unique solution of the elliptic problem





−∇ · (α∇u) = f in Ω?
t ,

u = 0 on Σ,

−Pα
∂u

∂x
+ u = r on Γt,

α
∂u

∂x
= ua on Γa

Proof. The proof is analogous to the proof given in Theorem 46. 2
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Remark 48 We consider now the problem set on the complementary domain Ωt.




−∇ · (α∇u) = f in Ωt,
u = 0 on Σ,
u = u0 on Γ0,

Pα
∂u

∂x
= u− r on Γt.

(30)

Let us show that this problem does not have a unique solution and therefore it is not
well-posed. In fact applying Theorem 45 in Ωt with an arbitrary Neumann data h ∈ V s,

we have that P (t)h = P (t)α
∂u

∂x
= u(t) − r(t), where u ∈ C([0, t] : V s+1) is the unique

solution of 



−∇ · (α(x)∇u) = f in Ωt,
u = 0 on Σ,
u = u0 on Γ0,

α
∂u

∂x
= h on Γt.

(31)

Then for any h, u solution of (31) is solution of (30). By this way we recover the initial
definition given in [11], [8] for operator P and function r, before deducing its associated
equations.
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