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Abstract

High Pressure Shift Freezing (HPSF) has been proven more behfefidize crystal size
and shape than traditional (at atmospheric pressure) freézigmodel for growth and coars-
ening of ice crystals inside a frozen food sample (either at atmospherigtomphessure) is
developed and some numerical experiments are given, with which the modsidated by
using experimental data. To the best of our knowledge this is the first raoted for freezing

crystallisation in the context of High Pressure.

1 Motivation for studying growth and coar sening of ice parti-
cles

Recent advances in food preservation are related to develupoh the so-called High Pressure
Shift Freezing (HPSF) method, which allows achieving a \arick and homogeneous decrease
of the tissue temperatufe® Such a shift in temperature quickly brings the water withie tissue
well below its freezing point hence causing homogeneoukeation of large number of very small
ice particles'~ Further growth of these particles decreases the freezimg pbremaining water
by increasing concentration of salts in it and finally stdps ice precipitation. Thus, the HPSF
method allows avoiding formation of relatively large, tissdamaging ice crystflsiuring their
relatively quick growth phase. These bigger crystals aregeed due to much slower process of
ripening when the mass of ice is transferred from smalleiggéy ice particles

The goal of this work is to develop a model to study the growtth @oarsening of ice particles
in a frozen food sample, and hence look at the temporal evalaf HPSF frozen ice crystals.
This idea came from the work published by Fernandez &t athere the authors investigated if
HPSF frozen systems follow the same ice recrystallisatinatics as those conventionally frozen
(at atmospheric conditions). A system which could hold HR®Een samples of suitable size
for microscopic observation without their alteration wasigned® Then using direct microscopic

examination at different temperatures, they could follbevévolution of ice crystals with time and



study the influence of the freezing method and storage teahperon recrystallisation. In Fernan-
dez et al® a 1.86N NaCl solution was used as a food model sample. In thirpee use this model
system to study theoretically and numerically the time @effoh of ice particles. This evolution
involves both growth and ripening processes describedmiitte mean field approximation. The
proposed approach is rather generic and remains valid fotyge of freezing process provided
that the particles have roughly spherical shape and ardyesistributed over the sample volume.
In Section 2 we describe how to calculate the melting tentpezeof salty water and show
some expressions regarding the salt mass concentratidgh@mdlume concentration of dissolved
ice. In Section 3 we present a model that accounts for thethrand ripening of ice crystals in
this system by developing a theory somewhat similar to Ositwipening.”~° Our model predicts
crystal size evolution with time, and also ice crystal simgribution. In Section 4 we describe
the numerical simulations we have performed and in Sectiwg present the particular numerical

experiments and results for salty water and ice-cream. ¢tic8e6 we outline the conclusions.

2 Meéelting temperature of salty water

Consider a system consisting of salty water at an experirnttgeratureleyp (K). If the tem-
perature is low enough (below the melting point) the systes d potential to produce a certain
amount of ice (which depends on the temperatY)reia isothermal crystallisation. Let us as-
sume that at timéy (s) the system has already produced part of this ice, whishphecipitated

in spherical particles of radiR (um). It is also convenient to assume that all the ice which can
potentially precipitate at a given temperature, is inyialissolved in salty water, i.e. we mark
the corresponding fraction of water molecules as beingtlied ice molecules. Such representa-
tion allows introducing an effective excess concentratibwater, which we will use to develop

a theory somewhat similar to Ostwald ripening to accounbfath growth and coarsening of the
pre-existing ice particles.

In the course of ice precipitation the salt concentratimmeases pushing the melting tempera-



ture Tmeir down towardslexp. Once the latter is reached the ice precipitation stops Satinei(t)
remains equal tdexp for anyt > t. Attimest >t some ice particles may still grow due to ripening

process.

Salty water

Ice particles

Figure 1:Salty water system configuraton.

Suppose that at timethe system is composed of salty water and spherical (for |&ityp
precipitated ice particles of rad# (t) as illustrated in Figure 1. The salt mass concentrationén th

system can be expressed as
Vswater+ Vice(t)’

Xs(t) 1)

whereMs (mgQ) is the total salt mass dissolved in water and non-pitatgal dissolved icé/swater
(umq) is the volume occupied by salty water that is not part of tbe-precipitated ice dissolved
in water, andVice(t) (umd) is the volume occupied by the non-precipitated ice dissbin water.
First we illustrate the dependence of the melting tempegatypon the salt concentration.
In thermodynamic equilibrium at melting temperatdigei(Xs) the chemical potentials of #D
molecules in the non-precipitated igg4) and in salty water{swater) are equal.
For chemical potential of water molecules in ice particlesoan neglect entropic contribution

and write

Hice = —&ice (2)



which is constant for the range of temperatures and pressuder consideration, wheege (eV
per molecule) is the cohesive energy gi®imolecules in ice.

For water molecules in salty water the chemical potentipkdes orxs, 11 so we have that

Uswated Xs) = —Ewater— BXs+ KT In (nwater> , (3)

Nmax

where —B (eV um® mg-! per molecule) is the rate of change pfwater With respect toxs,
Ewater IS the cohesive energies of,8 molecules in pure watek is the Boltzmann constant
(k ~ 1.3806488x10%3) K1 = 8.6173324x10%V K1), Nyater = Viyarer (Molecules pemumd)
is the number concentration of;® molecules in water andnax is the maximum number con-
centration of HO molecules in water that would be attained in the hypothétiase of water
molecules occupying only the volume occupied by their atimsnmnay is the inverse of the vol-
ume that is occupied by the atoms of a water moleculen@k = (2Vhyq + voxy)—l, where Vhyg
and Voxy (umq) are the atomic volumes of hydrogen and oxygen, respeglivalypical values

are'? vyarer= 0.02992 x 10° um? and Ypyg+ Voxy = 0.0146 x 10° um3, which gives a ratio

Nwater __ 2Vahyd+Vaoxy ~
Nmax Vwater

0.49, whereas a dense packing of spherical molecules would §ié4.
Thus, a large part of the volume of liquid water is actuallydeaf voids.

Then, using thatlice = Uswaterand Egs. (2) and (3), we obtain that

Lmelt— BXs
)
Nmax
In <nwater>

with Limelt = &ice — Ewater €INg the latent heat of melting (eV per molecule). From dgaation,

KTmeit(Xs) = (4)

we can obtain a more useful expression for the shift of theingepoint:

Tmelt(Xs) _ Lmelt— B Xs 1 BXs 5)
Tmelt(o) I—melt I—melt

This equation illustrates that the highgrthe lowerTheit(Xs). In reality, once crystallisation/melting

starts Xs begins to change. In a crystallisation process it increpasBingTmeli(Xs) down, which



eventually stops crystallisation. It looks like all the @issolved has now precipitated.

It is instructive to defineg as a function of the volume concentration of dissolved ice

Vice

Qice= 57—~ 6
e Vswater+ Vice ©

From here we have that

AiceVswater
Vipp = ——= >0 7
Ice 1_ aice ( )
and then
Ms(1 — aje(t

xo(t) = Mt macel) )1 ayt)), ®)

Vs.water
where we recall th&t(s) is the time when the maximum salt mass concentratioasatl, which

is achieved when all dissolved ice has precipitated. Adogrtb Eg. (5) we have

Tmeit(Xs(t)) 1 Bxs(t)

Tmelt(o) B I—melt .

Then, taking into account thaeit(Xs(f)) = Texp We obtain

I—melt Tex
0= (1 ) ©)

Let us suppose that, at the initial tiriethe salt concentration ig(tg) = Xso and the volume of
water plus dissolved ice W& water+ Vice(to) = Vo. Then, we can find the amount of ice crystallised
at temperaturéeyp. From Eq. (1) we have

Xs0Vo

) B Vielto)

which implies that

Vice(to) = Vo (1 - xts(%> .



Then, from Eq. (6) we deduce that

Vice(to) Xs,0
(tn) = —1_ ) 10
aice( 0) VO Xs(f) ( )
Substituting Eq. (9) into Eq. (10) we obtain
Xs,0 BXs.0 Tmelt(0)
aice(to) = 1— : =1-— . (11)
I-me Tex L T 0 — T
: It (1_ Tmelt(po)) melt (Tmeit(0) — Texp)

We can also find the salt mass concentration at any time, ascéida of the corresponding
volume concentration of dissolved ice, by using the follogvexpression, deduced from Egs. (8)

and (10)

~ Xs0(1—ace(t))

Xs(t) = Xs(t) (1 —aice(t)) = 1= aice(to) (12)

3 Growth and ripening

Here we use the idea about dissolved ice in the water and findtiegs describing growth and
ripening of pre-existing ice particles. For simplicity wesame that all the particles have spherical
shape and retain it during the whole process. In the meartfietdy of ordinary Ostwald ripening
(OR)’?the conservation of fluxes (total incoming and outgoing)demally assumed. If there is
supersaturation of one component (ice) in the other (waterh conservation does not take place
anymore, i.e., the total particles mass increases. Thetieqador particle radiiR (um) in the

Wagner limif® are

drR

o = Vice(lin — lout(R)), (13)

wherevice (um? per molecule) is the molecular volume of aa® molecule in ice andi, and
lout (Molecules peum? and pers) are the densities of incoming and outgoing molecular fluxes

respectively. The latter can be written as

lin=Knmt, lout(R) =K net(R),
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whereny (ice molecules penm?) is the mean field number concentration of dissolvedrigg(R)
is the Gibbs—Thomson number concentration Kr{gim s™1) is the surface reaction rate.

It is convenient to represent the mean field concentratiansasn
Nmf = NOR + Nice, (14)

where the componemior (molecules peumd) accounts for the dissolved ice concentration at
which the total mass of the precipitated ice is conservedingais the excess concentration of the

dissolved ice accounting for the growth of that mass.

3.1 Ripening

The ice concentration componemir can be obtained according to its definition, i.e., from the
balance of all emitted and absorbed molecular fluxes. Thebeuwf ice molecules deposited on
an ice particle of radiuR per unit time is 41R? (1;, — lout(R)). Therefore, taking into account all

particles and assuming that the total number of ice molsdulall particles is conserved, we have

> R? (nor —NeT(R)) =0,

which implies, using mean values, that

(R’ ng1(R))

Nor = T (15)

The Gibbs-Thomson concentration entering Eq. (13) by defincan be determined using the
thermodynamic equilibrium condition between ice partiated salty water. Chemical potential
(e (R)) of water molecule in the ice cluster is

2YVice
R )

Hei(R) = —&ice + (16)



wherey is the cluster surface energy per unit area. The correspgrafiemical potential in salty

water is given by Eq. (3). In equilibriumg = pwater and from Egs. (3), (12) and (16), it follows

that
2YVice ( NGT(t) ) BXs0(1— aice(t))
—&icet+ — - = —Ewatert+ KTexpIn e )
IcCe R(t) water exp max l— aqce(o)
From this we obtain
Lmelt— Bxs,o(l_azge)(t)) 2W
1-ajce ice

R(t)) = — . 17

Using the usual approximatiép
2yVice << KTexpR(1), (18)

EqQ. (17) can be simplified to obtain

Limelt — Bxsf(lfaige(t)) 2y
neT(R(t)) &~ Nmaxexp | — kTe;pace( ) (1+ Vp&ﬂ) : (19)

Substituting Eqg. (19) into Eq. (15) we find

BXs0(1-aice(t))
L t— 1 =7 .
NOR A Nmax EXP { met 1~ ce(0) ] <1+—2W":‘9<R(t >) : (20)

kTexp kTexp < R(t ) >

3.2 Growth

The growth fractiomjce = aicevigg of the mean field given in Eq. (14) can be determined from a

separate equation. Itis clear that

which implies that




Then, using Eq. (13) but accounting only for growth and withiopening (i.e. withlgyt =0 and

nor = 0) we find the following equation fo¥ice(t)

a ViceKNice z AnRY. (21)

Let us now rewrite Eq. (21) in terms afe. From Egs. (7) and (10) we obtain

1-aice

% (aceVo(l — aice(tO))) = ~eokee Y ATIR? = —KaiceZ47TRi2

daice 1 8ice _ Kajce _
— ot (1_ dice - (1_aice)2> N Vo(1 — aice(to)) Iz4nR'z (22)

3.3 Ripening and growth

The full set of equations is then obtained from Egs. (19)) & (22)

dajce(t) Kaice(t)(1— ice(t))?

. 2
dt Vo(l_aizce(tO)) |24HR| &
dR(t) 2yViceKNmax _ Lmet BXs0(1— ajce(t)) (R(t) 1
d Kaice(t) + KTexp & [ KTexp kTexp(l_aice(tO))} (<R(t)2> Rl(t))

Parametenmax can be eliminated from the above equation recalling that Esg (4)),

L
Nmax = Nwater€XP ( KT m:ztc)) > .
me

Thus, the system can be written as

( dayce(t) _ Kajce(t) (1 — aice(t))? .
X Vol awly) 2RO
dRT(’Q = Kayjce(t)+

2YV2 Vel Lo (1 1 Bxso(l—aice(t)) | ((R(t)) 1
KTexp exp{ k (Tmen<0> Texp)+kTexp<1—ace(to))} ((R(t)2> Fﬁ(t))(ég)

10



This system must be completed with initial conditions at igasle timetp (S). The initial ice
volume concentratiogice(to) is calculated using Eq. (11 (0) and the number of indexhave to
be estimated from experiments

BXs,0 Tmeit(0)
Lmelt (Tmelt(0) — Texp)’ (24)

aice(to) =1—

Ri(to) estimated from experiments

Egs. (23) and (24) are solved numerically to obtain timeih of the ice particle radii and

dissolved ice concentration.

4 Numerical smulations

4.1 Estimation of some parametersfor ssimulations

The model described by Egs. (23) and (24) needs the valueeof¢ti—known constants (which
we give in the relevant units for this papdr) 8.617 x 10°° (eV K1), Tmer(0) ~ 27315 (K),
Lmeit = 0.0625 (eV moleculel), y ~ 1.5605 x 10 (eV um=2), Vyater~ 0.02992 x 10° (um?3)
andvice =~ 0.03263 10° (um?3). It also needs the following input parameteTsxp, K, Vo, B, Xs0
andR;(0), for all i.

Now,
2yV2Vwater _ 2-1.5605-10°-0.0326F - 1018

k ~0.0299210-°9.8.617-10°5

I—meItN 0.0625
k ~ 8617-10°5

Lmeit _ 72531
KTmer(0) ~ 27315
1 1

-~ _KeV 1211604967 KeVv?
K 8617105 ° V5

~0.12887um K,

K molecule ! ~ 72531 K molecule ™,

molecule ! ~ 2.6554 molecule?,

and
Tmeit(0) N 27315

~ —~ 43704 K eV ! molecule
Lmelt 0.0625

11



Therefore, Eq. (23) can be approximated for the simulatiyns

daig;a) = Cai'ce(t)
25
R
where
( Kaice(t) (1 — aice(t))? 2
Cy .. () =— AR (t
alce( ) V0<l_aice(t0)> Iz 7TR|( )
Cr (t) = Kayce(t)+
K 72531 BXS,O<1—aice(t))} ((Ra<t>> 1 )
0.12887—— 2.6554— 11604967 — .
\ Top 7 Top Texo(1— aicelto) | \ (R~ R(D
(26)
The initial conditions given in Eq. (24) can be approximabgd
_ 1 BXso
aice(to) =1 43704(27315—Texp>7 27

Ri(to) estimated from experiments

The rest of the input parameters have to be given in the fatigwnits: Tey, (K), K (um s,V

(um?3), B (eV um3 mg~1 per moleculexso (mg um=3) andR; (0) (um), for alli.

4.2 Numerical approximation

The numerical model was implemented in Fortran using adirdér explicit Euler scheme. The

estimation of parameters described in Section 4.1 was uste inumerical algorithm. Time was

discretised from the initial timdp, to final time,t;, using a steptd The numerical scheme was

initiated using Eq. (27) and at a given timef we knowaice(t) andR;(t) we calculate those values

at the following time step as

ice(t +dt) = ajce(t) +dt - Cy (1)
R(t+dt) =R (t)+dt-Cr(t),

12

(28)



with C,.(t) andCg (t) given by Eq. (26).
In analogy with Burlakov and Kantorovick an ice particle with the size below a certain
threshold valueRy, is declared as dissolved with its residual content beingsteared to other

particles in proportion to their surface area. For our satiahs we have considerd,, = 0.01

pum.

5 Simulation results

We set up two different numerical experiments to validate model. For the first one we use
experimental data from Fernandez efalvhere a salty water solution as a food model was used.
Our model is designed specifically for salty water, and wensbelow that the experimental data
fit very well. The second model validation is done using ioeam as a food model and is based
on published work#* Even though ice cream is a much more complex system thanvsailey, we

adjust the model to this case, and we see reasonable agiteemen

5.1 Salty water food model

Fernandez et él.used a 1.86N NaCl solution as a food model. The concentratisrselected such
that at the HPSF recrystallisation temperature (approwdinal9.2C) the frozen fraction was
approximately 51%. Temperature was raised from Q. the target experimental temperature
and kept constant for a period of 3 h to study recrystallisapihenomena. The authors consider
this time period long enough to represent the more intenasebf the recrystallisation process.
These target experimental temperatures were 209f@r comparison of HPSF and APF frozen
samples (which we refer to as HPSF -19.2 and APF -19.2) an@@4-12.£4C, -9.5C (which we
refer to as APF -14.3, APF -12.4 and APF -9.5, respectivasystem temperature dependence
study. The evolution of the ice crystals during this periabviollowed by micrographs that were
automatically taken every 30 minutes. An image analysisasweé was used to detect crystal

boundaries from the micrographs, and from this a diametezdoh crystal was determined.

13



5.1.1 Discrete experimental data

The data we have available are the radii of the crystals &t #aw® step. Figure 2 shows the
maximum and mean radius evolution for each of the experisnéie would like to remark that
the maximum radii data are not very reliable, as they shoeltegate a monotonic increasing
function over time, and as can be seen for some cases it isWithink this is due to the fact
that in the experimental observations a very small sampke avalysed, which meant that on
average there were 150-200 initial crystals, not enoughetanpre accurate results. The mean

radii evolution, however, looks more reliable.

©
o

—+HPSF -19.2
H-e-APF -19.2 R
APF -14.3
—=-APF -12.4
—~-APF -9.5

[
o

]
o

o

N
o

Radius (u m)
(o] (o]
o

0 50 100 150 200 250
Time (min)

Figure 2: Mean (dotted lines) and maximum (solid lines) expental ice particle radius values
for salty water data

For simulating the same experiments with our model we cendite input parameteig,
Ri(to), Texp: K, B andxsp (see Section 4.1). From the experimental data we have taalsiribu-
tion of ice particleRi(tg) (in um) at the temperaturéy,=-19.2°C (253.95 K) where the frozen
fraction of the solution was approximately 51%@he initial volume of the sampley (umq) is
taken for each case according to the following procedureassime that the initial amount of
frozen ice (nucleated) is 16% and that the final amount o&indze is approximately 51% (i.e. for
each experiment there is a total ice fraction of 0.51 andsotlisd ice fraction of 0.35). Then we
choose the total number of particles suitable for simutegtiand choose the total system volume to

fit the ice fraction given. For each experiment the numberasfigles and volumes are different,
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and are pointed out separately in each graph (see Figures 8)aif he initial salt mass concen-
tration, xs o, is calculated according to the fact that we use a 1.86 N NaGtisn. By converting
normality to solute mass concentration in the relevansymie getso = 1.0881 10~ 1% mg um=3.
Finally, K andf are model fitting parameters. For all of the salty water expents we tak& = 1
umstandp =2757-10" eV um* mg-! molecule ™.

Let us see, for the case under study, if inequality Eq. (18&)Jh0Ask ~ 8.617 x 10°° (eV
K1), Texp= 25395 (K), y &~ 1.5605 x 10 (€V um~2) andvice = 0.03263 10° (um3), we have

that for Eq. (18) to hold, necessarily,

2YWVice

ZT7Ce — 46538 x 1074 um, Vi,

R >>
which is true given that all particles in the model have adamadius than the threshold one
(otherwise they disappear) aRg,, = 0.01 um.

As mentioned previously, the experimental data have bemded for 3 h with the data points
taken every 30 minutes. We run simulations for much longees to obtain the long term be-
haviour of the particle size distribution. On a shorter tisoale this behaviour is compared to that
obtained experimentally. According to Fernandez étthle size distribution significantly changes
with storage time for both the HPSF and APF models. As theraxeatal size distributions are
rather sparse, they cannot be properly compared to theaieaubnes. More relevant characteris-
tics to assess the quality of modelling approach are averagenaximum particle sizes.

Figures 3a and 3b show the simulated and experimental tioletexn of average and maxi-
mum particle sizes for HPSF -19.2 and the APF -19.2 processgsectively. For both cases the
simulated average radius matches the experimental aveadges very well, and as can be seen
we let the simulated radius evolve for longer than 3 h. In @&stf the simulated maximum radius
does not show similarly good agreement with experimenti deost likely due to the rather low
number of measured particles. We find that the long term behawf the characteristic radii for

the samples frozen using HPSF and APF are very similar ireaggat with the results reported in

15



90 —
8ok —Average Radius Sim i
—Maximum Radius Sim
* Average Radius Exp
70| o Maximum Radius Exp N
60 B
T
=50 B
(2]
=
S 401 i
@
301 b
20 B
10 B
G L Coi el L Co il L ol L Co el L Con el L Lo
107 10 10° 10" 10° 10° 10°
Time (min)
(@) HPSF -19.2 (Number of particles=800@;= 1.05 x 1¢® um?3)
100 —
90~ |—Average Radius Sim -
—Maximum Radius Sim
80 | * Average Radius Exp -
o Maximum Radius Exp
70 B
E 60 i
2
5 50 b
8
r 40- *
301 b
201 b
10~ B
0 L Lol L Lol L T L Lol L Lol L L
107 10" 10° 10 10° 10° 10

Time (min)

(b) APF -19.2 (Number of particles=500@; = 4.8 x 10/ um?3)
Figure 3: Experimental and simulated average and maximenpacticle radius evolution (in
logarithmic scale) for salty water experiment
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Fernandez et él. Note that the simulated radii evolution curves are not sindae to the rela-
tively low number of particles used in the simulations. Tisisspecially evident as the number of
particles decreases with time due to dissolution of smpHeticles.

Figures 4a to 4c show the simulated and experimental radlugen over time for the APF
-14.3, APF -12.4 and the APF -9.5 processes. Once more tieeragnt between experimental
and simulated average radii is rather good for all the pseE®sThe oscillations observed in the
simulated curves are again due to the low and decreasingerushice particles. As we will see
in Section 5.1.2 such oscillations disappear if the numbb@adicles is high enough making the

initial distribution very smooth.

5.1.2 Continuous experimental data

To test the validity of our model for predicting ice cryst&esdistributions at a given time we
design a new set of data from experiment APF -12.4 describ&ection 5.1.1. A continuous
(large number of particles) initial distribution is gen@using the values of the average patrticle
radius and standard deviation obtained from the discrgterarental size distribution approxi-
mated with the normal distribution. Figure 5 shows the thstions (Figure 5a) and the average
and maximum simulated and experimental radii time evotuieigure 5b). Again the average
radii match very well and the simulated radii curves are nawclmsmoother than in the discrete

case (see Figure 4b), due to the smoothness of the contimitiakdistribution.

5.2 lce-cream food model

Our second numerical experiment uses ice-cream as a fooel n#glpreviously stated, ice-cream
is @ much more complex system than salty water and it is ics#ito try our model with the
ice-cream to see if the experimental results can be fittedadmhowe et al* a methodology to
characterise the ice crystal size distribution was devalamd several ice-cream and ice milk for-
mulations of various composition were analysed to test théhodology. We use the 40% total

solids (TS) ice-cream formulation, as the experimentah @ae available for this particular com-

17
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Figure 4: Experimental and simulated average and maximenpacticle radius evolution (in
logarithmic scale) for salty water experiment
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Figure 5: APF—12.4°C Continuous model (Number of particles=12009:= 2.2 x 16° umq)
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position4 In the experiment the samples were frozen, then drawn frenfréezer and hardened
for 24 h, and finally stored in a storage freezer for severakse The samples were analysed for
crystal size distribution immediately after drawing fronetfreezer (the temperature was set to the
draw temperature;-7.3+ 0.3°C); after hardening (at 14°C) and then after 7 and 14 weeks of
storage (also at-14°C). To set up the numerical experiment within our model thio¥ahg as-
sumptions are made: we consider all time evolution to taliegoat one and the same temperature
Texp = —14°C (259.15 K). All experimental measurements except for the immediately after
drawing from the freezer have been taken at this temperaBgeause of the differences in tem-
perature between the drawing and hardening stages, a sagtifncrease in the ice particle size
was observed? Our model does not account for this temperature differenté btill accounts for
the ice particle growth due to ripening. The initial sizetdimition, R;(to), is obtained using Figure
4 from Donhowe et al* where we extrapolate the published curve and create a hastogvhich
is then used for generation of initial distribution in oumsilations. We take the initial amount of
ice formed after drawing to be approximately 25%, and theah&d ice concentration of the same
amount, giving the total ice fraction of 50%. For obtainimgaoth distributions we consider quite
a large number of particles, 4500, and therefore the systéame is taken as 1.20° um?, to get
the correct ice fractions. In this case we do not have a value  from the experimental data, as
we are no longer working with salty water but with ice-crearstéad, which has many more com-
ponents. The latter means that there are now three fittiranpeters3, xso andK. As the first two
parameters are involved as a product, they can be replad¢bdust one fitting parameter. Thus,
we takeBxso = 0.0024 eV molecule!, which is very close to the value used for the salty water
BXso = 0.003 eV moleculel. ForK we stick to the same value as for the salty water experiments,
e.K=1ums™

Again for this case, inequality Eq. (18) holds. The only paeter that has changed with respect

to the salty water model i&xp which is now 259.15 K, leading to

R >> 4.5604 x 104 um, Vi,
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which is true giverR, = 0.01 um.
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Figure 6: Ice-cream model

Figure 6 shows the simulated (lines) and experimentalglmgh symbols) distributions (Fig-
ure 6a) and the average and maximum simulated and expeahradius evolution over time
(Figure 6b). The model prediction for the size distributagrees well with the experimental data
except for the those taken after 14 weeks when the experaiieatparticles have stopped coarsen-
ing (the 7 weeks and 14 weeks distributions are practichlyseame), whereas the simulated ones
continue to coarsen. We believe that this effect is due tdabethat ice-cream contains fat and
emulsifiers which provide mechanical obstructions to theharge of water molecules between

ice particles* something that our model does not account for.

21



6 Conclusions

We develop a very simple but powerful model that allows satinfy growth and coarsening of
ice crystals. Comparison of modelling results with thosemigtd experimentally is done for two
food model systems: salty water and ice-cream. The modetigrate enough to correctly predict
the time evolution of average ice crystal size for all cagealso predicts rather well the evolu-
tion of crystal size distribution when continuous initi&es distribution is available. The model
allows reasonably accurate estimation of food storage tisimgy certain criteria for acceptable ice
particle size. Further development of the described maaiebe made by considering more com-
plicated multi-component system including componentmgas surfactants, and by allowing the

temperature variation during the system time evolution.

Acknowledgement

This work was carried out thanks to the financial support ef $ipanish “Ministry of Economy
and Competitiveness” under projects MTM2008-04621 and MUMZ222658; the “Fundacion
Caja Madrid”; and the “Comunidad de Madrid” and “European 8bEund” through project
S2009/PPQ-1551. This publication was also based on worosted in part by Award No KUK-
C1-013-04, made by King Abdullah University of Science andhfelogy (KAUST).

References
(1) Fernandez, P. P.; Otero, L.; Guignon, B.; Sanz, FEdod Hydrocolloids 2006, 20, 510-522.
(2) Otero, L.; Sanz, P. Biotechnol. Prog. 2000, 16, 1030-1036.
(3) Otero, L.; Sanz, P. Q. Food Engng 2006, 72, 354—-363.
(4) Sanz, P. D.; Otero, Biotechnol. Prog. 2000, 16, 1037-1043.

(5) Smith, N. A. S.; Peppin, S. S. L.; Ramos, A. Rtoc. Roy. Soc. A 2012, 468, 2744-2766.

22



(6) Fernandez, P. P.; Otero, L.; Martino, M. M.; Molina-GarcA. D.; Sanz, P. DEuropean
Food Research and Technology 2008, 227, 1367-1377.

(7) Lifshitz, I. M.; Slyozov, V. V.Zh. Eksp. Teor. Fiz. 1958, 35, .
(8) Lifshitz, I. M.; Slyozov, V. V.J. Phys. Chem. Solids 1961, 19, .
(9) Wagner, C. ZElectrochem. 1961, 65, .
(10) Becker, B. R.; Fricke, B. Ant. Comm. Heat Mass Transfer 1999, 26, 627—636.
(11) Job, G.; Herrmann, European Journal of Physics 2006, 27, 353-371.
(12) Cabane, B.; Vuilleumier, RC. R. Geoscience 2005, 337, 159-171.
(13) Burlakov, V. M.; Kantorovich, LThe Journal of Chemical Physics 2011, 134, 024521.

(14) Donhowe, D. P.; Hartel, R. W.; R. L. BradleyJJDairy Sci. 1991, 74, 3334-3344.

23



10.

11.

12.

13.

14.

15.

16.

PREPUBLICACIONES DEL DEPARTAMENTO
DE MATEMATICA APLICADA
UNIVERSIDAD COMPLUTENSE DE MADRID

MA-UCM 2012

ON THE CAHN-HILLIARD EQUATION IN H*1(R*N ), J. Cholewa and A. Rodriguez Bernal

GENERALIZED ENTHALPY MODEL OF A HIGH PRESSURE SHIFT FREEZING
PROCESS, N. A. S. Smith, S. S. L. Peppin and A. M. Ramos

2D AND 3D MODELING AND OPTIMIZATION FOR THE DESIGN OF A FAST
HYDRODYNAMIC FOCUSING MICROFLUIDIC MIXER, B. Ivorra, J. L. Redondo, J. G.
Santiago, P.M. Ortigosa and A. M. Ramos

SMOOTHING AND PERTURBATION FOR SOME FOURTH ORDER LINEAR PARABOLIC
EQUATIONS IN R™N, C. Quesada and A. Rodriguez-Bernal

NONLINEAR BALANCE AND ASYMPTOTIC BEHAVIOR OF SUPERCRITICAL
REACTION-DIFFUSION EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS,
A. Rodriguez-Bernal and A. Vidal-Lopez

NAVIGATION IN TIME-EVOLVING ENVIRONMENTS BASED ON COMPACT
INTERNAL REPRESENTATION: EXPERIMENTAL MODEL, J. A. Villacorta-Atienza and
V.A. Makarov

ARBITRAGE CONDITIONS WITH NO SHORT SELLING, G. E. Oleaga

THEORY OF INTERMITTENCY APPLIED TO CLASSICAL PATHOLOGICAL CASES, E.
del Rio, S. Elaskar, and V. A. Makarov

ANALYSIS AND SIMPLIFICATION OF A MATHEMATICAL MODEL FOR HIGH-
PRESSURE FOOD PROCESSES, N. A. S. Smith, S. L. Mitchell and A. M. Ramos

THE INFLUENCE OF SOURCES TERMS ON THE BOUNDARY BEHAVIOR OF THE
LARGE SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS. THE POWER LIKE
CASE, S.Alarcon, G.Diaz and J.M.Rey

SUSTAINED INCREASE OF SPONTANEOUS INPUT AND SPIKE TRANSFER IN THE
CA3-CA1 PATHWAY FOLLOWING LONG TERM POTENTIATION IN VIVO, O. Herreras,
V. Makarov and A. Fernandez--Ruiz

ELLIPTIC EQUATIONS IN WEIGHTED BESOV SPACES ON ASYMPTOTICALLY FLAT
RIEMANNIAN MANIFOLDS, U. Brauer and L. Karp

A NUMERICAL METHOD TO SOLVE A DUOPOLISTIC DIFFERENTIAL GAME IN A
CLOSED-LOOP EQUILIBRIUM, J. H. de la Cruz, B.Ivorra and A. M. Ramos

EVALUATION OF THE RISK OF CLASSICAL SWINE FEVER SPREAD IN BULGARIA BY
USING THE EPIDEMIOLOGICAL MODEL BE-FAST, B. Martinez-Lopez. B.Ivorra, A. M.
Ramos, E. Fernandez, T. Alexandrov and J.M. Sanchez-Vizcaino

WAVE-PROCESSING OF LONG-SCALE INFORMATION IN NEURONAL CHAINS, J. A.
Villacorta-Atienza and V. A. Makarov

A NOTE ON THE EXISTENCE OF GLOBAL SOLUTIONS FOR REACTION-DIFFUSION
EQUATIONS WITH ALMOST-MONOTONIC NONLINEARITIES, A. Rodriguez-Bernal and
A. Vidal-Lopez



PREPUBLICACIONES DEL DEPARTAMENTO
DE MATEMATICA APLICADA
UNIVERSIDAD COMPLUTENSE DE MADRID

MA-UCM 2013

THIN DOMAINS WITH DOUBLY OSCILLATORY BOUNDARY , J.M. Arrieta and M
Villanueva-Pesqueira

ESTIMATES ON THE DISTANCE OF INERTIAL MANIFOLDS, J.M. Arrieta and E.
Santamaria

A PRIORI BOUNDS FOR POSITIVE SOLUTIONS OF SUBCRITICAL ELLIPTIC
EQUATIONS, A. Castro and R. Pardo

EVALUATION OF THE DIFFERENCES OF PROCESS VARIABLES IN VERTICAL AND
HORIZONTAL CONFIGURATIONS OF HIGH PRESSURE THERMAL (HPT)
PROCESSING SYSTEMS THROUGH NUMERICAL MODELLING, N. A. S. Smith, K.
Knoerzer and A. M. Ramos

MATHEMATICAL MODELLING OF THE GROWTH AND COARSENING OF ICE
PARTICLES IN THE CONTEXT OF HIGH PRESSURE SHIFT FREEZING PROCESSES, N.
A. S. Smith, V. M. Burlakov and A. M. Ramos



