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Juan Luis Vázquez
Departamento de Matemáticas
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19th century. Modern times

2 Heat and diffusion
Heat equation

3 Diffusion and the class of Parabolic Equations
Linear Parabolic Equations

4 The heat equation and probability

5 Other equations. Nonlinear, nonlocal, geometric diffusion



Outline

1 Mathematics, Physics and PDEs
La magia de las ecuaciones
18th century. Le siècle des lumières
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Hoy nos ocuparemos de

ut = ∆u

La ecuación del calor y la difusión
que dio lugar a una historia

llena de notables personajes, nuevos conceptos,
grandes teorı́as y soprendentes conexiones,

que siguen expandiéndose 200 años más tarde.
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Hay magia en una ecuación

para quien sabe encontrarla.

♣
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Origins of PDEs
In the 18th century, PDEs appear in the work of Jean Le Rond D’Alembert about string
oscillations, around 1746: A set of particles moves together due to elastic forces, but
every one of the infinitely many solid elements has a different motion. This is Dynamics
of Continuous Media. PDEs are the corresponding mathematical objects. The wave

equation utt = c2uxx is one of the first important instances.

The names of Euler and Lagrange also appear.

Johann and Daniel Bernoulli and then Leonhard Euler lay the foundations of Ideal Fluid
Mechanics (1730 to 1750), in Basel and St. Petersburg. This is PDEs of the highest
caliber: it is a system, called the Euler equations:

∂u
∂t

+ u · ∇u +∇p = 0, ∇ · u = 0.

The system is nonlinear; it does not fit into one of the 3 types that we know today (elliptic,
parabolic, hyperbolic); the main pure-mathematics problem is still unsolved (existence of
classical solutions for good data; uniqueness of energy solutions). See also the sister
system, the Navier Stokes equations, in next slide.
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PDEs in the 19th Century
1800. The new century confronts revolutions in the concept of heat and energy,
electricity and magnetism, and what is space. You may add another revolution,
the real fluids, which is still going on.

All of these fields end up mathematically in PDEs:

(i) heat leads to the heat equation, ut = ∆u, and the merit goes to J. Fourier.

(ii) electricity leads to the Coulomb equation in the Laplace-Poisson form:
−∆V = ρ. This equation also represents gravitation.

(iii) electromagnetic fields are represented by the Maxwell system. The vector
potential satisfies a wave equation, the same as D’Alembert’s, but vector valued
and in several dimensions.

(v) Real fluids are represented by the Navier - Stokes system of equations. Main
mathl, problems still unsolved, see Clay List of Prize Problems, year 2000.
Sound waves follow wave equations, but they can create discontinuous solutions
in the form of shocks (introduced by B. Riemann).
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19th century. Modern times

2 Heat and diffusion
Heat equation

3 Diffusion and the class of Parabolic Equations
Linear Parabolic Equations

4 The heat equation and probability

5 Other equations. Nonlinear, nonlocal, geometric diffusion



9

The heat equation origins
Our topic today centers on the Heat Equation

ut = ∆u

and the analysis proposed by Fourier, 1807, 1822. Early 19th century.
The mathematical models of Heat Propagation and Diffusion have made great
progress both in theory and application.

They have had a strong influence on several areas of Mathematics:
PDEs, Functional Analysis, Probability, and Diff. Geometry. And on / from
Physics. Count also Numerics.

The heat flow analysis is based on two main techniques:
-integral representation (convolution with a Gaussian kernel)
(this directions leads to SEMIGROUPS)

and
- separation into mode and spectral theory
(this development is known as FOURIER ANALYSIS).
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Fourier analysis
When we solve the Heat Equation in a bounded domain we go to mode analysis
(separation of variables) and then to spectral synthesis (Fourier series)
Here is the main formula, one of the most useful formulas of Mathematics:

u(x, t) =

∞∑
i=1

Ti(t)ϕi(x)

where Ti(t) = cie−λit and the ϕi(x) form the spectral sequence

−∆ϕi = λi ϕi, i = 1, 2, ...

This is the famous linear eigenvalue problem for the Laplace operator. We find in the
standard cases 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ..., and λk →∞.

The analysis that follows is the first lesson in Spectral Theory. If Ω is a general domain
this is highly nontrivial and important. Spectral theory has enormous scientific
applications to diffusion, heat propagation and wave propagation as well as Quantum
Mechanics.

Orthogonality of the modes in L2 is a fundamental fact of the theory∫
ϕi(x)ϕj(x) dx = 0 if i 6= j

J L Vazquez Figuras del Calor 10 / 38
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The personalities. Fourier
The originator, Jean-Baptiste Joseph Fourier (Auxerre, 1768- Paris, 1830),

Fourier accompanied Napoleon Bonaparte on his Egyptian expedition in 1798,
In 1801, Napoleon appointed Fourier Prefect of the Department of Isère in
Grenoble.
In 1822 he succeeded J. B. J. Delambre as Permanent Secretary of the French
Academy of Sciences.
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Fourier’s historic book
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Fourier’s Book. II
The reference book Théorie Analytique de la Chaleur, (1822). Firmin Didot,
Paris. Online version, Ed. Gabay 1988, 637 pgs. It is a historic landmark.
Fourier contributed (1) the PDE that describes heat, (2) the analysis of functions
as sums of sines, (3) dimensional analysis.
The idea of FOURIER ANALYSIS was proposed in a memoir in 1807 (while at
Grenoble) and publication was rejected (paper On the Propagation of Heat in
Solid Bodies).
Fourier claimed that every function of a variable, whether continuous or
discontinuous, can be expanded in a series of sines of multiples of the variable.
This was a matter of debate for many years. Early opponents: Lagrange, Laplace
and Poisson. First personality to see the merit: B. Riemann. Early proof that
Fourier was right is due to P. L. Dirichlet, 1828. He introduced the Dirichlet
Kernel.
Debate: Taylor versus Fourier.
In the end, Fourier contributed an analysis method as powerful or more than
Taylor’s. What do you think?
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The personalities. Dirichlet
Johann Peter Gustav Lejeune Dirichlet (1805 - 1859)

Though German (from Rhineland), Dirichlet decided to go to Paris to study in
May 1822.
In 1825 Dirichlet gave a lecture at the Académie which put him in contact with
Fourier and Poisson, who raised his interest in theoretical physics, especially
Fourier’s analytic theory of heat.



The personalities. Dirichlet II

Dirichlet made important contributions to

- number theory (including creating the field of analytic number theory),

- the theory of Fourier series and other topics in mathematical analysis;

- study of the Laplace equation and Dirichlet problem

- Dirichlet is credited with being (one of) the first mathematicians to give the
modern formal definition of a function: “to any x there corresponds a single
finite y”. But often he went back to the old idea that a function is a piecewise
collection of curves.

At that time confusion was feared in a ‘too general’ definition of function due to
the appearance of ‘artificial examples’, but the sums of Fourier Series were a
very innovative force.
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Fourier analysis for discontinuous functions

Approximation of a train of square signals by Fourier series

J L Vazquez Figuras del Calor 16 / 38
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Dirichlet’s principle
Principle of Energy minimization t

E [v(x)] =

∫
Ω

(
1
2
|∇v|2 − vf

)
dx (1)

in a domain Ω of the space for differentiable functions (defined in Ω and the
boundary) with required boundary condition v = g en ∂Ω.

Fantasic fact: An easy calculation shows that the minima u(x) of this
”variational” problem solve precisely the Laplace-Poisson equation,

∆u + f = 0.

A modification allows to solve Minimization Problems for the Eigenfunctions

∆u + λu = 0 ,

using minimization with constraints, called Rayleigh-Ritz method. The
eigenvalues are then Lagrange multipliers.

J L Vazquez Figuras del Calor 17 / 38
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Role and productivity of the heat equation

The Heat Equation has produced a huge number of concepts, techniques and
connections for pure and applied science, for analysts, probabilists,
computational people and geometers, for physicists and engineers, and lately in
finance and the social sciences.
Today educated people talk about the Gaussian function, separation of variables,
Fourier analysis, spectral decomposition, Dirichlet forms, Maximum Principles,
Brownian motion, generation of semigroups, positive operators in Banach
spaces, entropy dissipation, ...
The heat example is generalized into the theory of linear parabolic equations,
which is nowadays a basic topic in any advanced study of PDEs. The next step is
nonlinear parabolic PDEs.
In physics the heat equation appears as a diffusion, in probability diffusion is a
stochastic process, in geometry there is a heat flow on a Riemannian manifold
using the Laplace-Beltrami operator, in functional analysis we find the fractional
heat equations that have a probabilistic meaning as Lévy processes, ...

J L Vazquez Figuras del Calor 18 / 38
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J L Vazquez Figuras del Calor 18 / 38



18

Role and productivity of the heat equation

The Heat Equation has produced a huge number of concepts, techniques and
connections for pure and applied science, for analysts, probabilists,
computational people and geometers, for physicists and engineers, and lately in
finance and the social sciences.
Today educated people talk about the Gaussian function, separation of variables,
Fourier analysis, spectral decomposition, Dirichlet forms, Maximum Principles,
Brownian motion, generation of semigroups, positive operators in Banach
spaces, entropy dissipation, ...
The heat example is generalized into the theory of linear parabolic equations,
which is nowadays a basic topic in any advanced study of PDEs. The next step is
nonlinear parabolic PDEs.
In physics the heat equation appears as a diffusion, in probability diffusion is a
stochastic process, in geometry there is a heat flow on a Riemannian manifold
using the Laplace-Beltrami operator, in functional analysis we find the fractional
heat equations that have a probabilistic meaning as Lévy processes, ...
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The heat equation semigroup and Gauss

We introduce a completely new way of working when heat propagates in free
space: representations and kernels.
The natural problem is the initial value problem

ut = ∆u, u(x, 0) = f (x) (2)

which is solved by convolution with the evolution version of the Gaussian
function

G(x, t) = (4πt)−n/2exp (−|x|2/4t). (3)

Note that G has all nice analytical properties for t > 0, but note that
G(x, 0) = δ(x), a Dirac mass.
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Convolution

The representation formula is a very important object in the History of
Mathematics

u(x, t) =

∫
Rn

u0(y)Gt(x− y) dy

Gt works as a parametrized kernel (Green, Gauss). G is one the most beautiful
and useful objects of Mathematics.

The maps St : u0 7→ u(t) := u0 ∗ G(·, t) form a continuous semigroup of linear
contractions in all Lp spaces 1 ≤ p ≤ ∞.
(This is pure Functional Analysis, 20th century)

The solution of linear equations by means of integral representation with a kernel
is a very general idea of PDEs, functional analysis and applied mathematics.
Kernels are very important but usually they are not explicit. Big problems arise!
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Asymptotic convergence to the Gaussian
The main result on the asymptotic behaviour of general integrable solutions of the heat
equation consists in proving that they look increasingly like the fundamental solution,
Central Limit Theorem. Since this solution goes to zero uniformly with time, the estimate
of the convergence has to take into account that fact and compensate for it. This happens
by considering a renormalized error that divides the standard error in some norm by the
size of the Gaussian solution Gt(x) in the same norm.

Theorem. Let u0 ∈ L1(Rn) and let
∫

u0(x)dx = M be its mass. Then the solution
u(t) = u(·, t) of the HE in the whole space ends up by looking like M times the
fundamental solution Gt(x) in the sense that

lim
t→∞
‖u(t)−MGt‖1 → 0 (4)

and also that
lim

t→∞
tN/2‖u(t)−MGt‖∞ → 0 . (5)

By interpolation we get the convergence result for all Lp norms for all 1 ≤ p ≤ ∞.

lim
t→∞

tN(p−1)/2p‖u(t)−MGt‖Lp(Rn) → 0 . (6)

⇒ For proofs you may see my course notes in arxiv, arXiv:1706.10034v2.
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Heat equation graphs

The comparison of ordered dissipation vs underlying chaos

Left, the evolution to a nice Gaussian

Right, a sample of random walk, origin of brownian motion
a connection that we will see below
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Outline

1 Mathematics, Physics and PDEs
La magia de las ecuaciones
18th century. Le siècle des lumières
19th century. Modern times

2 Heat and diffusion
Heat equation

3 Diffusion and the class of Parabolic Equations
Linear Parabolic Equations

4 The heat equation and probability

5 Other equations. Nonlinear, nonlocal, geometric diffusion



24

Diffusion

After some years of playing with nonlinear elliptic equations, maximum
principles, and compact supports, from 1976 to 1982, I went to the US and
devoted most of my mathematical life to Diffusion. But

• what is diffusion in the real world?

Populations diffuse, substances (like particles in a solvent) diffuse, heat
propagates, electrons and ions diffuse, the momentum of a viscous (Newtonian)
fluid diffuses (linearly), there is diffusion in the markets, ...

• how to explain it with mathematics?

• A main question is: how much of it can be explained with linear models, how
much is essentially nonlinear?

• The stationary states of diffusion belong to an important world, elliptic
equations. Elliptic equations, linear and nonlinear, have many relatives:
diffusion, fluid mechanics, waves of all types, quantum mechanics, ...
The Laplacian ∆ is the King of Differential Operators.
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Linear heat flows

Until well into the 20th century diffusion was almost exclusively heat equation, a
part of the classical theory of PDEs. From 1822 until 1950 the heat equation has
motivated
(i) Fourier analysis decomposition of functions (and set theory),
(ii) development of other linear equations =⇒ Theory of Parabolic Equations

ut =
∑

aij∂i∂ju +
∑

bi∂iu + cu + f

Note: (aij) must be a positive matrix (there must be dissipation in the system).

Main inventions in the Parabolic Theory:
(1) aij, bi, c, f regular⇒Maximum Principles, Schauder estimates, Harnack
inequalities; Cα spaces (Hölder); potential theory; generation of semigroups.

(2) coefficients only continuous or bounded⇒ W2,p estimates,
Calderón-Zygmund theory, weak solutions; Sobolev spaces.
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The random walk and the heat equation I

We take a random walk on a regular 1D mesh of site distance h and we take the time
increments of size τ .
The probabilities of reach site xi and time tj are uj

i. IN numerics take a bound L = Nh and
T = Mτ , and keep L, T fixed
There a recursion law based on conditional probabilities for Markov processes:

uj+1
i =

1
2

uj
i−1 +

1
2

uj
i+1

(equal probability of jumping to nearest neighbour).

The problem can be solved and the uj
i can be calculated step by step in time starting from

an initial probability u0
i , which usually is the Dirac delta.

The calculation looks hopeless for many nodes and time divisions. This is where
differential calculus finds the simple harmony in an apparent chaos.
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Random walk and the heat equation II

The calculation looks hopeless for many nodes and time divisions. Actually, it is very
easy if you take the limits when N,M →∞ so that h, τ → 0

1
τ

(uj+1
i − uj

i) =
h2

2τ
uj

i−1 + uj
i+1 − 2uj

i

h2

Let now h, τ → 0 and we get in the limit the diffusion equation

∂tu = D ∂2
x u

but only if the compatibility condition holds,

∃ lim
h,τ→0

h2

2τ
= D

This is the explanation of Brownian motion and the Comp. Cond. is called Brownian
scaling: ∆x2 ∼ ∆t.
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Heat Equation, Diffusion and Stochastic Processes

At the beginning of the 20th century, a selected group of great mathematicians (Markov,
Bachelier, Einstein, Smoluchowski, Wiener, Levy, Kolmogorov) looked at the limit of the
discrete RW (which is a Discrete Stochastic Process, DSP), and used the existence of the
limit probabilities (i.e., the Gaussian solution of the HE is used as Markov transition
function) to build a Continuous-in time Stochastic Process, the Wiener Process which is
the mathematical realization of the intuitive Brownian motion.

There are enormous technicalities to (rigorously) define the Wiener process on a set of
continuous paths, but this is the core of the courses in SP. It is not true that the typical
Brownian path is NOT Lipschtiz, the optimal regularity is C1/2 a.s.

The next step is to invent the Stochastic Differential Equation (SDE) based on the correct
sense of derivative and integral, which is the Ito calculus. Here is the end equation

dX = bdt + σdW

where bdt is the deterministic drift term, dW is Wiener’s process, and D = 1/2σ2 the
diffusion coefficient.
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The link. Kolmogorov’s Equations
History. In 1931 A. N. Kolmogorov started working with continuous-time Markov
chains. More precisely, he studied the transition probability density

p(x, s; y, t) = P(Xx,s
t ∈ dy)

The same year he introduced TWO very important partial differential equations. These
equations are known under the names the Kolmogorov backward equation and the
Kolmogorov forward equation. Both equations are parabolic differential equations for the
probability density function of some stochastic process of the diffusion form

dXt = bdt + σdW.

The names, forward and backward, come from the fact that the equations are diffusion
equations that has to be solved in a certain direction, forward or backward.

Forward:
∂tp = Lf p, Lf (p) := −∂y(bu) +

1
2
∂2

yy(σ
2p)

Backward:
∂sp + Lbp = 0, Lbp := b∂xu +

1
2
σ2∂2

xxp.

They are dual equations. KFE needs initial conditions, for KBE final conditions.
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31

Kolmogorov I

Kolmogorov is considered the greatest mathematician in the history of Russia and also
one of best mathematicians in the 20th century. He was a man of many interests and with
his creativity and sharp intellect he was able to contribute to many different areas of
mathematics.

In 1922, Kolmogorov gained international recognition for constructing a Fourier series
that diverges almost everywhere. At this time he decided to devote his life to mathematics.

J L Vazquez Figuras del Calor 31 / 38



31

Kolmogorov I

Kolmogorov is considered the greatest mathematician in the history of Russia and also
one of best mathematicians in the 20th century. He was a man of many interests and with
his creativity and sharp intellect he was able to contribute to many different areas of
mathematics.

In 1922, Kolmogorov gained international recognition for constructing a Fourier series
that diverges almost everywhere. At this time he decided to devote his life to mathematics.

J L Vazquez Figuras del Calor 31 / 38



32

Kolmogorov II
He was incredibly brilliant. Here is a written comment on him:
“Most mathematicians prove what they can. Kolmogorov was of those who prove what
they want”.

Probability theory was one of Kolmogorov’s main interests. He put probability theory in
the category of rigorous mathematics. Before Kolmogorov one could doubt the results in
probability the same way one would doubt the correctness of a model. Kolmogorov
changed all of this by building a rigorous foundation for probability theory to stand on.
Not only did he build the foundation he also contributed with advanced results to the field.

The book: Grundbegriffe der Wahrscheinlichkeitsrechnung (in German). Berlin: Julius
Springer, 1933.
Translation: Kolmogorov, Andrey (1956). Foundations of the Theory of Probability (2nd
ed.). New York, Chelsea.

A comment to be precise. Kolmogorov was not the first person to find the Kolmogorov
forward equation. It was first introduced in physics by Adriaan Fokker and Max Planck,
and known as the Fokker-Planck equation, as a way to describe the Brownian motion of
particles.
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Nonlinear Equations
Since 1980 we have been studying nonlinear diffusion equations. Realistic diffusion in
Nature is often very nonlinear. Nonlinear models:

The Porous Medium Equation, ut = ∆(um), m > 1. Simplest nonlinear relative of the
HE. Applications to images to petroleum, plasmas, populations and underground water.
♥ “THE POROUS MEDIUM EQUATION. MATHEMATICAL THEORY”.
Juan Luis Vázquez, Clarendon Press, Oxford Mathematical Monographs,
Year 2007. 648 Pages.

Fast Diffusion Equation, ut = ∆(um), m < 1. Beautiful functional analysis.
♥ “SMOOTHING AND DECAY ESTIMATES FOR NONLINEAR DIFFUSION EQUATIONS:
Equations of Porous Medium Type”, J. L. V.
Oxford Lecture Series in Mathematics and Its Applications, 2006.

Gradient diffusion: the p-Laplacian evolution equation, ut = ∇ · (|∇u|p−2∇u).
Applications to images, materials, and glaciology.

Stefan Problems of phase transitions, Chemotaxis systems (in biology), Thin films (in
material science), ...
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Nature is often very nonlinear. Nonlinear models:

The Porous Medium Equation, ut = ∆(um), m > 1. Simplest nonlinear relative of the
HE. Applications to images to petroleum, plasmas, populations and underground water.
♥ “THE POROUS MEDIUM EQUATION. MATHEMATICAL THEORY”.
Juan Luis Vázquez, Clarendon Press, Oxford Mathematical Monographs,
Year 2007. 648 Pages.

Fast Diffusion Equation, ut = ∆(um), m < 1. Beautiful functional analysis.
♥ “SMOOTHING AND DECAY ESTIMATES FOR NONLINEAR DIFFUSION EQUATIONS:
Equations of Porous Medium Type”, J. L. V.
Oxford Lecture Series in Mathematics and Its Applications, 2006.
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35

Nonlocal and geometric equations

Since 2007: fractional heat equation and fractional porous medium equations, ...

ut + (−∆)su = 0, (−∆)su = c
∫

u(x)− u(y)

|x− y|n+2s dy

Here 0 < s < 1 is the fractional exponent. Related to fractional stochastic processes, ther
now famous Lévy processes.

The method works for equations evolving on manifolds. This is a challenging connection
with differential geometry. Diffusion uses the Laplace-Beltrami operator

ut = LLBu, LLBu =
1√
|g|
∂i

(
gij
√
|g| ∂ju

)
It has been an intense effort. The work related to our research is reported in the survey
paper of a CIME summer course in Italy

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in Mathematics,
2017.
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now famous Lévy processes.

The method works for equations evolving on manifolds. This is a challenging connection
with differential geometry. Diffusion uses the Laplace-Beltrami operator

ut = LLBu, LLBu =
1√
|g|
∂i

(
gij
√
|g| ∂ju

)
It has been an intense effort. The work related to our research is reported in the survey
paper of a CIME summer course in Italy

♥ The mathematical theories of diffusion. Nonlinear and fractional diffusion,
by J. L. Vázquez. CIME Summer Course 2016. Springer Lecture Notes in Mathematics,
2017.

J L Vazquez Figuras del Calor 35 / 38



35

Nonlocal and geometric equations

Since 2007: fractional heat equation and fractional porous medium equations, ...

ut + (−∆)su = 0, (−∆)su = c
∫

u(x)− u(y)

|x− y|n+2s dy

Here 0 < s < 1 is the fractional exponent. Related to fractional stochastic processes, ther
now famous Lévy processes.
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Books as proof of progress

2006 2007 2016
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Final comment

There are many more connections to explore,
more windows to open

Though many important problems
have been solved for the main models,

many important problems are still open.

Buena suerte, amigos!
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Esto es todo por hoy,
solo la punta del iceberg

♠

Gracias por su atención

J L Vazquez Figuras del Calor 38 / 38



38

Esto es todo por hoy,
solo la punta del iceberg

♠

Gracias por su atención

J L Vazquez Figuras del Calor 38 / 38



38

Esto es todo por hoy,
solo la punta del iceberg

♠

Gracias por su atención

J L Vazquez Figuras del Calor 38 / 38



38

Esto es todo por hoy,
solo la punta del iceberg

♠

Gracias por su atención

J L Vazquez Figuras del Calor 38 / 38


	Mathematics, Physics and PDEs
	La magia de las ecuaciones
	18th century. Le siècle des lumières
	19th century. Modern times

	Heat and diffusion 
	Heat equation

	Diffusion and the class of Parabolic Equations
	Linear Parabolic Equations

	The heat equation and probability
	Other equations. Nonlinear, nonlocal, geometric diffusion

