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ABSTRACT

The correlation dimension (CD) is a nonlinear measure of the complexity of invariant sets. First introduced for describing low-dimensional
chaotic attractors, it has been later extended to the analysis of experimental electroencephalographic (EEG), magnetoencephalographic
(MEG), and local field potential (LFP) recordings. However, its direct application to high-dimensional (dozens of signals) and high-definition
(kHz sampling rate) 2HD data revealed a controversy in the results. We show that the need for an exponentially long data sample is the main
difficulty in dealing with 2HD data. Then, we provide a novel method for estimating CD that enables orders of magnitude reduction of the
required sample size. The approach decomposes raw data into statistically independent components and estimates the CD for each of them
separately. In addition, the method allows ongoing insights into the interplay between the complexity of the contributing components, which
can be related to different anatomical pathways and brain regions. The latter opens new approaches to a deeper interpretation of experimental
data. Finally, we illustrate the method with synthetic data and LFPs recorded in the hippocampus of a rat.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168400

Modern EEG, MEG, or local field potential (LFP) recordings
provide high-dimensional and high-definition (2HD) data. Their
nonlinear analysis is an attractive but long-standing challenging
problem. On the one hand, it requires long samples, but on the
other, the data stationarity and availability limit the potential of
modern methods, especially in biology and medicine. Here, we
study the correlation dimension (CD) that captures the intrinsic
complexity of time series and is used, e.g., for describing brain
states or detecting seizures. Yet, there is a controversy in the
results obtained in medical applications. We discuss the possible
reasons for the observed discrepancy and provide a novel method
for estimating CD from 2HD data. The method uses a linear
approach to preprocessing data, recently shown to help deal with
LFPs, and divides the problem into smaller pieces, tractable by the
nonlinear CD analysis. Such an approach enables the reduction of
the required data sample size by orders of magnitude and, hence,
improves the time resolution. It opens new opportunities for a
deeper understanding of information processing in the brain.

I. INTRODUCTION

The correlation dimension (CD) is a nonlinear measure of the
data complexity.1 It is, in particular, helpful in detecting qualitative
changes in the brain dynamics, localizing regions causing abnor-
mal oscillations and even predicting seizures (see, e.g., Refs. 2–4).
Although the CD is routinely used in different applications, the
results are controversial. For example, one can argue that the CD
must decrease during a seizure or preictal period due to excessive
synchronization of brain waves.5 However, opposite results have also
been reported,3,6 which led to the conclusion that the CD measure is
insufficient for clinical application.3,7

The disparity observed in the literature can be ascribed to the
amount of data used to estimate the CD and the data stationarity.
Modern experimental techniques, such as electroencephalographic
(EEG), magnetoencephalographic (MEG), or local field potential
(LFP) recordings, enable massive acquisition of high-dimensional
and high-definition (2HD) data. Although it could be deemed a
panacea, the analysis of 2HD signals is a challenging problem, in
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particular, due to the curse of dimensionality coined by Bellman.8

The increasing data dimension requires an exponential growth of
samples for statistically significant assessment of different measures,
which frequently contradicts the data stationarity and availability,
especially in medicine. Moreover, it challenges numerical methods
and available computational power. Thus, reducing the number of
samples required to reach the statistical significance of the CD is a
critical issue.

The CD describes the complexity of invariant sets and is closely
related to the topological dimension. Loosely speaking, the latter is
the number of independent variables required to define a neighbor-
hood of a point in a set. For instance, any curve has a topological
dimension equal to one, whereas a surface is a two-dimensional
(2D) object. However, sometimes, such a definition can produce
misunderstanding. For example, the topological dimension of a
Koch snowflake is one, but the length of the “curve” between any
two points on it is infinite. In some sense, it is “too big” to be a
one-dimensional object. The box-counting9 and correlation dimen-
sions solve this issue. The fractal dimension of a Koch snowflake
is log(4)/ log(3) ≈ 1.26. The advantage of the CD over the box-
counting method is its relative simplicity of calculations.10,11 More-
over, in contrast to the box-counting, the CD takes into account
not only the geometrical properties of a set but also the frequency
with which a typical trajectory visits different regions of the set (for
details, see, e.g., Ref. 12). This makes it better suited for analysis of
experimental data.

To illustrate the problem of estimating the CD from 2HD data,
we have built semi-synthetic LFPs [Fig. 1(a)] with the known CD of
ν∗ ≈ 3.89 (see below for details). Figure 1(b), blue curve, shows the
CD evaluated by a standard method over data samples of different
sizes (see below for details). The estimation exhibits a strong nega-
tive bias at small sample sizes, e.g., providing ν ≈ 2.08 for a sample
of 103 points, i.e., 46% of the relative error. The CD estimate was
reasonable only for long data sets (above 5 × 105 points). Note that
the LFPs had a relatively low CD in this example, facilitating the cal-
culations. Real 2HD data can have much higher dimensions, making
the CD estimation from raw LFPs even worse.

The difficulties in a reliable estimation of the CD have been
known for a long time, which stimulated a discussion on the suffi-
cient conditions for mapping original data sets to Euclidean spaces
of different dimensions (see, e.g., Ref. 13), and a search for improved
measures (see, e.g., Refs. 11 and 14). However, such measures have
been tested on low-dimensional data (usually chaotic attractors) and
have limited application to EEG, MEG, or LFPs, where the number
of data channels can reach hundreds. In such cases, the phase space
dimension becomes a prohibitive factor for direct calculations.

Nevertheless, the analysis of 2HD data can benefit from sta-
tistical pre-processing, such as independent component analysis of
LFPs, introduced in Refs. 15 and 16. It has been shown to be excep-
tionally useful for identifying neuronal sources and disentanglement
of LFPs (see, for a review, Ref. 17).

Here, we introduce a novel method for estimating the CD from
2HD experimental data and provide its mathematical justification.
The method reduces the data size required to a confident estimate
of the CD by several orders of magnitude. It separates raw record-
ings in independent, relatively low-dimensional invariant sets and
then separately estimates each set’s CD. Finally, as proved below,

FIG. 1. The problem of estimating the correlation dimension from raw LFPs.
(a) An epoch of semi-synthetic LFPs. The raw LFPs (left) are built from the dou-
ble scroll and Lorenz attractors using experimental spatial loadings (right). (b)
The correlation dimension estimated from raw LFPs (blue) and using the pro-
posed approach (red) vs the data sample lengths. The black dashed line marks
the theoretical value.

the CD of the original data is a sum of the obtained CDs. With the
data shown in Fig. 1(a), the method provides an accurate estimate of
the CD (<5% of the relative error) with no more than 3 × 103 sam-
ples [Fig. 1(b), red curve]. Such an improvement can foster CD use
in medical and biological applications.

II. ESTIMATING THE CORRELATION DIMENSION OF
2HD DATA

A. Problem formulation

1. Standard approach

Consider a 2HD signal x(t) ∈ Rn, where t ∈ N is the discrete
time, and n is the number of recording electrodes [e.g., in Fig. 1(a),
n = 16]. In practice, we have access to a data matrix X = (x(t))L

t=1,
where L ≫ 1 is the sample size.

Thus, given a 2HD data matrix X, we want to estimate the cor-
relation dimension νx of the invariant set generating x(t). Note that
although being high-dimensional (n ≫ 1), x(t) consists of measur-
able variables only and, hence, may not provide complete informa-
tion on the latent space generating x(t). Thus, the dimension of the
space embedding x(t) could be much higher than n. As mentioned
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in Sec. I, the standard approach to this problem (see below) leads to
a significant bias [Fig. 1(b)].

2. Linear mixture model

In applications such as MEG, EEG, or LFPs, some spatiotem-
poral sources are mixed in space and time, and such a mixture is
usually linear or can be assumed linear.18,19 For example, in LFP
recordings, sources are the transmembrane currents elicited in spa-
tially ordered neurons upon activating groups of converging axons
(for more details, see the review,20 and references therein). These
currents produce field potentials that linearly mix in the volume
conductor. The resulting field potential ϕ is given by19

∇ · (σ∇ϕ) = −J, (1)

where σ is the electrical conductivity of the brain tissue and J is
the current density. We note that ϕ and J are mesoscopic variables
built by conglomerates of fragments of individual currents in a myr-
iad of neurons. Moreover, each source globally maintains a stable
nonlinear geometry depending on different anatomical and func-
tional factors. Equation (1) establishes a linear mixture of sources,
i.e., if ϕ1,2 are solutions for two sources J1,2, then ϕ1 + ϕ2 is a solu-
tion for J1 + J2. Although the mixture is linear, each source can have
a nonlinear spatial distribution and complex time dynamics.

Thus, we can assume that the signal x(t) is a mixture of m
sources whose temporal evolution is given by s(t) ∈ Rm, such that
m ≤ n. For example, for LFP recordings in the hippocampus, m
is usually between five and seven, depending on the experimental
conditions.15–17 Therefore, we have the data model,

x(t) = Ws(t), (2)

where W = (w1, . . . , wm) ∈ Rn×m is the mixing matrix defined by
the brain area’s anatomy, and the vector wi ∈ Rn (i = 1, 2, . . . , m)
represents the loading (spatial weights) the ith source contributes to
the mixture at each electrode [Fig. 1(a), left, shows two loadings].
We note that in experimental conditions wi ̸= 0 and wi ̸= wj (i ̸= j),
i.e., W is of full rank, rank(W) = m. Moreover, neither W nor s(t) is
known.

Although model (2) is quite general, it enables an efficient
method for estimating the CD, as shown below.

B. Standard approach to CD estimation

Theoretically, the CD of a 2HD recording can be estimated
directly using the embedding approach (see, for details, Refs. 13,
21, and 22), although such an estimation can be significantly biased
[Fig. 1(b)].

The standard approach goes through two steps:

1. Reconstruct the state space from the time series.
2. Estimate the CD of the reconstructed set by the Grass-

berger–Procaccia method.

However, due to a high CD of experimental 2HD data, such an
approach requires an exponentially high amount of data [Fig. 1(b)],
usually unavailable, and besides quickly saturates modern comput-
ers (see, e.g., Ref. 23 for discussion).

1. State space reconstruction

The state space reconstruction is based on the Takens
embedding.22 Using the original time series x(t) ∈ Rn (n ≥ 1) taken
d times with increasing delays, we build a new (n × d)-dimensional
vector,

y(t) =
(

xT(t), xT(t − τ ), . . . , xT(t − (d − 1)τ )
)T ∈ R

nd, (3)

which represents the invariant set in the state space. Given certain
conditions, the reconstructed manifold is, in the sense of diffeo-
morphism, equivalent to the original one. Thus, the reconstruction
preserves the correlation dimension.

The reconstruction (3) depends on two parameters: the embed-
ding delay τ ∈ N and dimension d ∈ N. To choose τ , we use the
auto-mutual information (AMI).24 Assuming x(t) is scalar, the AMI
is

I(x(t), x(t + τ )) =
∑

i,j

pij(τ ) log

(

pij(τ )

pipj

)

, (4)

where pi is the probability that x(t) is in bin i of the histogram con-
structed from x(t), and pij(τ ) is the probability that x(t) is in bin i
and x(t + τ ) is in bin j. The optimal time lag corresponds to the first
minimum of the AMI, where x(t) and x(t + τ ) are the most indepen-
dent possible. For an nD time series, the AMI function (4) and the
optimal delay are evaluated component-wise. Then, the best delay is
set to the average of the individual delays.25

The best minimal dimension d is selected by the false near-
est neighbor (FNN) analysis.26 Let denote ỹ(t; d) as the first near-
est neighbor of y(t; d) for the d-dimensional embedding [Eq. (3)].
Then, the squared Euclidean distance between these points is R2

d(t)
= ∥y(t; d) − ỹ(t; d)∥2

2. We now calculate the same distance but in the
(d + 1)-dimensional embedding R2

d+1(t) and the absolute difference
%R2

d = |R2
d+1(t) − R2

d(t)|. A pair of points is called FNN if it satisfies
either of the following conditions:

%R2
d(t)

R2
d(t)

> R2
tol,

%R2
d(t)

tr(Cx)
> Atol, (5)

where R2
tol and Atol are thresholds (set to R2

tol = 10 and Atol = 2 in
numerics26), and Cx is the covariance matrix of the data. The best
minimal dimension is set to the value when the ratio of FNNs falls
below a threshold.

2. CD estimation

Once the state space has been reconstructed, we apply the
Grassberger–Procaccia method.1 The correlation integral for a com-
pact set X is given by

C(r) =
∫

p(x)p(x′)H(r − ∥x − x′∥) dxdx′, (6)

where H is the Heaviside function and r is the box size. In practice, it
can be estimated from a trajectory (time series) x(t) (t = 1, 2, . . . , L)
asymptotic to X,

C(L, r) =
2

L(L − 1)

∑

1≤t<s≤L

H (r − ∥x(t) − x(s)∥) . (7)

Then, C(r) = limL→∞ C(L, r).
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Assuming that C(r) = φ(r)rν , where φ, in general, is a function
of r that tends to a constant or oscillates around a constant as r → 0
(see Ref. 14 for details), we define the correlation dimension,

ν = lim
r→0

log C(r)

log r
. (8)

In practice, the CD is obtained by fitting a straight line to the
plot of log C(L, r) vs log r. We used this procedure to estimate the
CD of raw LFPs (Fig. 1).

C. Theoretical foundations of the novel method

Now, let us provide a theoretical justification of the novel
method used later for building a numerical algorithm.

1. CD is invariant under linear mapping

Assume that an invariant set X ⊂ Rk is linearly mapped to set
Y ⊂ Rl in a higher dimensional space (l ≥ k),

L : X → Y,

x 0→ y = Mx,
(9)

where M ∈ Rl×k is a full rank matrix. Let νx and νy be the CDs of X

and Y, respectively. Then, we have the following result.
Lemma 1. Under conditions provided by Eq. (9), the cor-

relation dimensions of the set X and its image Y are equal
νy = νx.

Proof. Since M is of full rank, its pseudoinverse is A

= (MTM)
−1

MT, which is also a full rank matrix. Thus, besides y
= Mx mapping linearly points from X to Y, we have the inverse
linear mapping: y 0→ x = Ay. Therefore, the set Y is homeomorphic
to X, and, hence, νx = νy.

Indeed, for a pair of points in Y, we have

∥y − y′∥ = ∥M(x − x′)∥ ≤ ∥M∥∥x − x′∥, (10)

where ∥ · ∥ are standard vector and vector-induced matrix norms.
Extending (10) to the inverse map, we get

1

∥A∥
∥x − x′∥ ≤ ∥y − y′∥ ≤ ∥M∥∥x − x′∥. (11)

The latter inequality in (11) gives rise to

CY(r) =
∫

p(y)p(y′)H(r − ∥y − y′∥) dydy′

≥
∫

p(x)p(x′)H(r − ∥M∥∥x − x′∥) dxdx′

= CX

(

r

∥M∥

)

. (12)

Repeating the same arguments for the first inequality in (11), we get

CX (∥A∥r) ≤ CY(r) ≤ CX

(

r

∥M∥

)

. (13)

Using the CD definition (8), we have

lim
r→0

log CX (∥A∥r)

log r
= lim

r→0

log CX (∥A∥r)

log(∥A∥r)

= lim
r→0

log CX( r
∥M∥ )

log r
∥M∥

= νx.

(14)

Finally, νx ≤ νy ≤ νx, which ends the proof. !

2. CD of Cartesian products

Let X1 ⊂ Rk1 and X2 ⊂ Rk2 be two invariant sets with the cor-
relation dimensions ν1 and ν2, respectively. We now construct their
Cartesian product,

X := X1 × X2. (15)

Then, we have the following result.
Lemma 2. Assume we take points from the Cartesian prod-

uct (15) x = (x1, x2) ∈ X statistically independently, i.e., p(x1, x2)
= p(x1)p(x2). Then, the correlation dimension of the compound set
is ν = ν1 + ν2.

Proof. For convenience, we use maximum norm ∥ · ∥
:= ∥ · ∥∞ in the correlation integral (6). We now note that

H(r − ∥x∥) = H(r − ∥x1∥)H(r − ∥x2∥). (16)

Then, using the statistical independence, we get

CX(r) =
∫

p(x1)p(x
′
1)H(r − ∥x1 − x′

1∥) dx1dx′
1

×
∫

p(x2)p(x
′
2)H(r −∥x2 − x′

2∥) dx2dx′
2 = CX1

(r)CX2
(r).

(17)

Thus, the correlation integral is factorized, and the CDs are
summed. !

Corollary 1. The product set (15) and Lemma 2 can be
extended into general Cartesian products X := X1 × · · · × Xm.
Then, ν =

∑m
i=1 νi.

3. CD of the decomposition into independent
components

Let Si ⊂ Rki (i = 1, . . . , m, ki ∈ N) be compact sets. We now
build a global set X by the linear mapping,

L : S1 × · · · × Sm → X ⊂ R
N,

(s1, . . . , sm) 0→ x = W
(

sT
1 , . . . , sT

m

)T
,

(18)

where W = (w1, . . . , wm) ∈ RN×M is the global mixing matrix com-
posed of matrices for individual components wi ∈ RN×ki such that
M =

∑m
i=1 ki ≤ N and rank(W) = M. Then, we have the following

result.
Theorem 1. Consider model (18). Let νi, i = 1, 2, . . . , m be the

correlation dimensions of the invariant sets {Si}. Given that data are
sampled independently from the sets {Si}, the correlation dimension
of the set X is

νX =
m

∑

i=1

νi. (19)
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Proof. Using Lemma 1, we deduce that the correlation dimen-
sions of the sets X and of the Cartesian product S1 × · · · × Sm are
equal. Then, using Lemma 2, we conclude that the Cartesian product
has the dimension

∑m
i=1 νi. !

D. Efficient algorithm for estimating CD of 2HD data

Let X ∈ Rn×L be an experimental data matrix. Without loss of
generality, we suppose that the recording microelectrode array is
linear. Then, the data model (2) can be written in the form

X = WS, (20)

where W ∈ Rn×m is the matrix of (nonlinear) spatial loadings,
S = (s1, . . . , sm)T ∈ Rm×L is the activation matrix. Then, Theorem 1
says that the correlation dimension of the observable X is the sum of
the correlation dimensions of the components of S.

Thus, to find the correlation dimension, we go through the
following steps:

1. Apply the independent component analysis to X [see Eq. (20)]
and find the mixing matrix W and the matrix of activations S.

2. For each component si of the matrix S reconstruct the invari-
ant set in the phase space by using Taken’s embedding yi(t)
= (si(t), si(t − τ ), . . . , si(t − (d − 1)τ )) ∈ Rd. Find the optimal
time delay τ ∈ N by minimizing the AMI and the embedding
dimension d ∈ N by the FNN method (see Sec. II B 1).

3. Apply the Grassberger–Procaccia algorithm to each recon-
structed invariant set {yi(t)}L

t=1 (i = 1, . . . , m) and estimate the
CD νi(yi) (see Sec. II B 2).

4. Evaluate the correlation dimension of the original 2HD data,

ν(X) =
m

∑

i=1

νi(yi).

In the literature, there are a number of algorithms to perform
ICA (for review, see Ref. 27). At step 1, we use the kernel-density
algorithm28 adapted to LFPs (for more details, see the review29)
and implemented in the ICAofLFPs package running in MATLAB
(available at http://blogs.mat.ucm.es/vmakarov/downloads/).

E. Short-term CD

Experimental data usually have a degree of non-stationarity,
e.g., due to changes in the brain state. The experimentalist may then
want to assess how the CD changes over time.

The standard approach in such cases is to evaluate a measure
over a small enough time interval T and repeat the calculation by
sliding the interval over time. However, there is a trade-off between
better statistics for larger T and better data stationarity for smaller
T. In addition, each measure sets a minimal limit on T. The method
proposed here reduces the requirement on the sample size by orders
of magnitude [Fig. 1(b)], thus significantly improving the time
resolution (i.e., the sensitivity to changes in the CD of LFPs).

Let X = (xij)
n,L
i=1,j=1

be the data matrix. We then define a set of

shorter matrices Xt = (xij)
n,t+T
i=1,j=t

, where T is the length of the sliding

window and t is the “current” time (one can shift it by T/2 for better
centering). Then, the CD is evaluated over all matrices Xt separately,
and we get the time-dependent measure ν(t).

III. NUMERICAL ASSESSMENT OF THE METHOD

We illustrate the method on synthetic LFPs and electrophysio-
logical data.

A. Synthetic and semi-synthetic LFPs

We simulate LFPs by mixing several generators. Each LFP gen-
erator is composed of a time course (activation) and a nonlinear
spatial loading.

1. Time courses

We generate time courses by employing three chaotic attrac-
tors: Lorenz, Double scroll, and Rossler, and also a quasi-periodic
orbit embedded into a 3D space.

The Lorenz dynamical system is given by30

ẋ1 = σ (x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bLx3,

(21)

where we used typical parameter values: σ = 10, r = 28, and
bL = 8/3.

The Rossler dynamical system is given by30

ẋ1 = −x2 − x3,

ẋ2 = x1 + aRx2,

ẋ3 = bR + x3(x1 − c),

(22)

with aR = 0.2, bR = 0.2, and c = 5.7.
The double scroll dynamical system is given by31

ẋ1 = aDS(x2 − φ(x1)),

ẋ2 = x1 − x2 + x3,

ẋ3 = −bDSx2,

(23)

where φ(x) = (1 + m1)x + 1
2
(m0 − m1)(|x + 1| − |x − 1|), with

aDS = 15.6, m0 = −8/7, m1 = −5/7, and bDS = 27.
The quasi-periodic time series is given by

x1(t) = (A + cos(2πωt)) cos(8π t),

x2(t) = (A + cos(2πωt)) sin(8π t),

x3(t) = sin(8π t),

(24)

with ω = 1√
2

and A = 3. It represents a trajectory that densely
covers a torus.

The correlation dimensions for these attractors are νL = 2.044,
νR = 1.877, and νDS = 1.829, which agree with the data provided in
the literature (see, e.g., Ref. 11). The CD of the quasi-periodic time
series is νQP = 2.

Now, let (x(t))L
t=1 ∈ R3×L be a matrix representing an invari-

ant set obtained by numerical integration of one of the systems
(21)–(23) or simulation of (24), with the mean x̄ = 1

L

∑L
t=1 x(t) and

variance σ 2
x = 1

L

∑L
t=1 ∥x(t) − x̄∥2. The generator’s activation s(t)

∈ R and, hence, not all information of the latent variables x(t) ∈ R3

is accessible ”experimentally,” i.e., the original 3D latent space must
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be mapped into 1D observation space. To model such a mapping,
we generate a random vector B ∈ R3 simulating the observation
procedure. Then, the generator’s time course is

s(t) =
BT

σx∥B∥
(x(t) − x̄), t = 1, 2, . . . , L. (25)

Note that we can generate many different copies of B, thus, obtaining
different s(t) for the same dynamical system. This property is used
below to gain statistical measures for different methods.

2. Spatial loadings

Each generator has a specific loading or a vector of spatial
weights w ∈ Rn. In experimental conditions, it is defined by the
anatomy, the electrode characteristics, and its placement in the neu-
ronal tissue. For instance, local generators have strongly nonlinear
w, whereas generators, volume conducted from other brain regions,
have linear spatial weights (for more details, see the review17). Here,
we used two approaches: (1) Loadings obtained experimentally in
the rat hippocampus [as shown in Fig. 1(a), right, for details, see

Ref. 16] and (2) Random loadings taken i.i.d. from the uniform dis-
tribution U[−1, 1]n. For numerics, we used n = 16, i.e., simulating
recordings with 16 electrodes.

3. Simulated LFPs

Finally, we build LFPs using m generators with the correspond-
ing time courses and spatial loadings,

x(t) =
m

∑

i=1

wisi(t). (26)

The CD of, thus, obtained LFPs is equal to the sum of the CDs of the
sources {si}m

i=1 and, hence, to the CDs of the original attractors and
quasi-periodic time series Eqs. (21)–(24).

B. The method at work

First, let us illustrate the proposed method on semi-synthetic
data. We generated 16-channel LFPs consisting of L = 104 samples
[Fig. 2(a)] by using the procedure described in Sec. III A employ-
ing the Lorenz and Double Scrool attractors. Assuming the standard

FIG. 2. Example of the method applied to the semisynthetic LFPs. Step 1: LFPs created from the Lorenz and double scroll attractors (a) are separated into two generators
(G1 and G2) by the independent component analysis (b). Step 2: The phase space is reconstructed for each generator separately (c). The optimal time lags are 20 and 9; the
embedding dimensions are 4 and 3 for G1 and G2, respectively. Step 3: The CD for each invariant set is estimated (d), which provides ν1 = 2.097 and ν2 = 1.784. Step 4:
The final correlation dimension is ν1 + ν2 = 3.881 (e), which is close to the theoretical value of 3.873 (dashed black line). For comparison, the direct evaluation of the CD
from raw LFPs provides (grey bar) νLFP ≈ 3.119.
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sampling frequency of 1 kHz, the data set corresponds to a 10 s
epoch. Then, we estimated the CD by applying the novel method
described in Sec. II D.

1. The independent component analysis (ICAofLFPs package)
revealed the presence of two generators, as expected (G1 and G2

correspond to the Lorenz and Double Scrool attractors, respec-
tively). Their loadings were close to the original loadings of the
Schaffer and LM generators [Fig. 1(a), right]. Figure 2(b) shows
the found generators’ time courses (activations).

2. We use the generators’ activations to reconstruct invariant sets
in the phase spaces of the generators [Fig. 2(c)]. Note that this
and the following steps are done separately for each generator.
For the reconstruction, we defined the optimal time lag by eval-
uating the AMI and the embedding dimension by evaluating
the FNN ratio. The procedure gave τ1 = 20, d1 = 4 for G1 and
τ2 = 9, d2 = 3 for G2. Figure 2(c) (top) shows the reconstructed
invariant sets (a 3D projection for G1).

3. We apply the Grassberger–Procaccia algorithm to estimate the
correlation dimensions for each generator [Fig. 2(d)]. It was
done by estimating the correlation integral C(r) as a function of
the ball size r and fitting a straight line. The line slope provided
the CDs: ν1 = 2.097 and ν2 = 1.784. Note that these values are
close to the CDs of the Lorenz (2.044) and Double Scroll (1.829)
attractors.

4. By adding up the found CDs, we obtained the correlation
dimensions of the original 2HD data set: ν = 3.881 [Fig. 2(e),
the blue-red bar]. This figure agrees with the theoretical value of
3.873.

To compare the method’s performance to the standard
approach (Sec. II B), we applied it to the same 2HD data. The
calculation yielded a CD of 3.119 [Fig. 2(e), the gray bar], signif-
icantly below the theoretical value (>19%). Such a discrepancy is
due to the intrinsic difficulties arising when we deal with data in
high-dimensional spaces.23 On the one hand, the high initial data
dimension (n = 16) increases the optimal lag (τ = 29) and the vari-
ance. In turn, the embedding dimension for reconstructing the state
space goes to 48, significantly increasing the distance between two
samples in the set. On the other hand, the high CD of the data
(ν ≈ 4) induces a fast drop in the number of points within a ball
of radius r, which is necessary to evaluate the correlation integral,
which reduces the calculation precision. Thus, an accurate esti-
mation of the correlation integral requires the number of samples
orders of magnitude higher than with the proposed method.

C. Method performance vs sample size

As mentioned in Sec. I, one of the main objectives is to reduce
the amount of data required to estimate the correlation dimension
accurately. Let us now study this problem.

We repeated the calculations described in Sec. III B for differ-
ent values of the sample size L, spanning the range from 103 to 106

points. We used the Monte Carlo method to estimate the CD’s mean
value and standard deviation.

Figure 1(b) shows the results. We observe that the proposed
method performs well with L ≈ 5 × 103 points, whereas the stan-
dard direct approach to the correlation dimension requires a sample

FIG. 3. Performance of the CD estimation for different complexity of LFPs. An
increase in the number of LFP generators leads to an increase in LFP complexity.
For a single generator (minimal complexity), the direct estimation of the CD from
LFP generators (blue curves) and by the novel method (red curves) gives the same
error in accordance with Lemma 1. Left and right figures correspond to sample
sizes of 103 and 105 points, respectively (i.e., 1 and 100 s LFPs recorded at 1 kHz
sampling rate).

size above 106. Thus, the novel method offers at least a two-order
magnitude gain on LFPs contributed by only two generators, as we
predicted in Sec. III B.

D. Method performance for different data complexity

We now study how the performance of the CD estimation
depends on the number of generators contributing to LFPs, i.e., on
the complexity of LFPs.

We built 16-channel LFPs using the procedure described in
Sec. III A. The maximal sample size was set to L = 103 or 105 points.
In each experiment, the LFPs had random loadings {vi} [Eq. (26)]
and had been contributed by a different number of generators from
one to four. The generators have been selected using all possible
combinations of the Lorenz, Double Scroll, and Rossler attractors
and a quasi-periodic time series. Thus, different LFPs had different
complexities, going from the minimal (contributed by a single gen-
erator) to the maximal (contributed by the four generators). Note
that four generators live in a 12-dimensional space, approaching the
maximum of 16 available channels.

Figure 3 shows the results. The error of estimating the corre-
lation dimension by the direct method increases strongly with the
increased complexity of LFPs, reaching 70% for L = 103 pts and 30%
for L = 105 pts (Fig. 3, blue curves) for four generators, as expected.

The estimation of the CD by the proposed approach was con-
sistently more precise, except for a single generator when the errors
were the same as with the direct method. The latter is expected
and follows from Lemma 1. A higher number of generators slightly
improves the performance for a small sample size (Fig. 3, left, red
curve). However, longer time series invert the tendency (Fig. 3, right,

Chaos 33, 123114 (2023); doi: 10.1063/5.0168400 33, 123114-7

© Author(s) 2023

 16 D
ecem

ber 2023 09:29:08

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 4. The CD analysis of experimental data. (a) A short epoch of raw LFPs recorded by a 32-channel electrode in the rat hippocampus and five generators composing
the LFPs (obtained by ICAofLFPs package): Lacunosum Moleculare (LM), Somatic Dentate Gyrus (SDG), Schaffer and recurrent CA3 (Sch), Lateral Perfornat Path (LPP),
and Medial Perfornat Path (MPP). The black triangle marks the time instant of a tail pinch. (b) Top: Dynamics of the correlation dimension obtained by the method for each
generator (colored curves) and the mean (black curve, see the main text). Bottom: The wavelet spectrum of the time course of the LM generator. It exhibits two theta waves
corresponding to drops of the CD of the LM generator. (c) The covariance matrix of the CD dynamics of the five generators.
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red curve) and facilitate better CD estimation. The former counter-
intuitive behavior is related to treating LFPs using the independent
component analysis.

E. Analysis of experimental LFPs

1. LFP recordings

We recorded LFPs from the rat hippocampus with a 32-channel
linear silicone probe with 100 µm intersite distance (Atlas Neuro-
engineering, Belgium). Adult Wistar rats were anesthetized with
Urethane (1.2 g/kg, i.p.) and placed in a stereotaxic device. The sur-
gical and stereotaxic procedures were described elsewhere.32 The
probes were stereotaxically placed in the CA1 area and Dentate
Gyrus (DG) of the hippocampus (AP: 4.5; L: 2.6; V: 3.5, according
to the atlas33). Signals were amplified and acquired using Multi-
Channel Systems (Germany) at the sampling rate of 10 kHz for 450 s
and then downsampled to 1 kHz for the CD analysis [Fig. 4(a), raw
LFPs]. During the recording, the rat tail was pinched twice [small
triangles in Fig. 4(a) at t = 92 and 242 s]. Such a stimulus elicits a
sensory-driven electrographic state characterized by the appearance
of strong Theta waves (3.5–6 Hz) in the CA1 area and DG of the
hippocampus.34

2. Data analysis

The independent component analysis revealed five LFP gen-
erators [Fig. 4(a), loadings, and time courses], which have been
identified by their biophysical characteristics as Lacunosum Molec-
ulare (LM), Somatic Dentate Gyrus (SDG), Schaffer and recurrent
CA3 (Sch), Lateral Perfornat Path (LPP), and Medial Perfornat
Path (MPP) (for details on the procedure, see Ref. 35). Then, the
correlation dimensions of the generators were evaluated by the pro-
posed method over a sliding time window of 10 s (a sample of
104 points). Such a time interval is a compromise between a good
enough CD estimation of the method [Fig. 1(b)] and a reasonable
time resolution of the measure (see Sec. II E).

Figure 4(b) (top) shows the time evolution of the CD of the
generators and the mean CD (showing the mean instead of the total
CD of LFPs simplifies the data visualization). The total CD of the
LFPs can be obtained by multiplying the mean by five, i.e., by the
number of generators. It oscillates around 17.

The CD of the LM generator is significantly lower than that of
the others, i.e., this generator has low complexity compared to other
generators. Moreover, its CD drops at the tail pinches and slowly
recovers the original value. Such an observation is supported by the
wavelet spectrum [Fig. 4(b), bottom; for details, see Ref. 36] exhibit-
ing pronounces theta waves in these time intervals. We also observe
that the CDs of other generators strongly oscillate during irregu-
lar hippocampal activity (out of theta waves). The total CD of LFPs
also oscillates during irregular activity, staying almost constant in
periods of theta waves.

We note that the decomposition of the total CD into con-
tributing parts not only allows better estimation but also provides
a means for deeper analysis of the information processing. We can
now study, e.g., the relation between the dynamic complexity of
the generators. For example, we evaluated the covariance matrix
for the CD of the generators [Fig. 4(c)]. In particular, there is high

covariance between the Schaffer and Somatic Dentate Gyrus. Thus,
these generators synchronously change the complexity of their oscil-
lations (note that their time courses may not be synchronized).
The LM generator exhibits antiphase complexity and low relation
to the complexity of information received by the hippocampus from
the Entorhinal cortex through the LPP and MPP generators.

IV. CONCLUSIONS

The estimation of the correlation dimension of 2HD data
is a challenging problem. The main issues are the nonstationar-
ity of biological data and their potentially high dimension. The
nonstationarity requires reducing the sample size while high dimen-
sion prescribes its increase. Such a contradiction could explain the
controversy observed in estimating the CD from experimental data.

Here, we have provided a novel method and its mathematical
justification for an accurate estimate of the CD from 2HD experi-
mental data. The method reduces the sample size by several orders
of magnitude without compromising the accuracy of the CD estima-
tion. It is based on decomposing the original time series into inde-
pendent components and then estimating each component’s CD
individually. The CD estimation requires exponentially shorter sam-
ples since individual components have much lower dimensions. We
have illustrated the method’s performance on semi-synthetic data
simulating hippocampal LFPs. The results indeed showed orders
of magnitude improvement in the sample size and a significant
error drop for increasing data complexity compared to the standard
method.

Another advantage of this method is the information provided
on the CDs of individual generators. It enables studying information
processing and how the complexity of different components con-
tributes to the total CD over time, e.g., the origin of abrupt changes
in brain dynamics. In the case of LFPs, the contributing components
can be physiologically identified and related to pathways convey-
ing information to the region of interest. We have exemplified this
approach on LFPs recorded from the rat hippocampus. In particular,
we have shown that during theta waves elicited by a tail pinch, the
information complexity of the Lacunosum–Moleculare generator
drops and then slowly recovers. Other generators exhibit strong CD
oscillations during irregular activity, while the LM generator keeps
constant complexity. These results confirm the significant poten-
tial of the method and support its use together with other linear
measures in data analysis.
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