GEOMETRIC TOPOLOGY
[19]. Álvaro Martínez-Pérez; José M. Rodríguez. Parabolicity and Cheeger’s constant on graphs. RACSAM, 2024.
[18]. Álvaro Martínez-Pérez; José M. Rodríguez. Parabolicity on graphs. Results in Mathematics, 79 (70), 2024, https://doi.org/10.1007/s00025-023-02095-y.
[17]. Álvaro Martínez-Pérez; Samuel G. Corregidor. Vertex separators, chordality and virtually free groups. Journal of Algebra and its Applications, 2024, https://doi.org/10.1142/S0219498824500294.
[16]. Álvaro Martínez-Pérez; José M. Rodríguez. A note on isoperimetric inequalities of Gromov hyperbolic manifolds and graphs. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), 2021.
[15]. Álvaro Martínez-Pérez; José M. Rodríguez. On p-parabolicity of Riemannian manifolds and graphs. Revista Matemática Complutense, 2021.
[14]. Álvaro Martínez-Pérez; José M. Rodríguez. Isoperimetric inequalities in Riemannian surfaces and graphs. (JGA) Journal of Geometric Analysis 31:3583–3607, 2021.
[13]. Álvaro Martínez-Pérez; José M. Rodríguez. Cheeger Isoperimetric Constant of Gromov hyperbolic manifolds and graphs. Communications in Contemporary Mathematics. 20 – 5, World Scientific, 2018.
[12]. W. Carballosa; A. de la Cruz; Álvaro Martínez Pérez; José Manuel Rodríguez García. Hiperbolicity of Direct Products of Graphs. Symmetry. 10 – 7, pp. 279. MDPI, 2018.
[11]. Álvaro Martínez Pérez. Generalized Chordality, Vertex Separators and Hyperbolicity on Graphs. Symmetry. 9 – 10, pp. 199. MDPI, 2017.
[10]. Álvaro Martínez Pérez. Chordality properties and hyperbolicity on graphs. Electronic Journal of Combinatorics. 23 -3, pp. 3.51. 2016
[9]. Álvaro Martínez Pérez; Manuel Alonso Morón. Semiflows induced by length metrics: On the way to extinction. Topology and its Applications. 206, pp. 58 – 92. Elsevier, 2016.
[8]. Álvaro Martínez Pérez. A metric between quasi-isometric trees. Proceedigns of the American Mathematical Society. 140, pp. 325 – 335. AMS, 2012
[7]. Álvaro Martínez Pérez. Bushy Pseudocharacters and group actions on quasi-trees. Algebraic and Geometric Topology. 12, pp. 1721 – 1739, 2012.
[6]. Álvaro Martínez Pérez. Quasi-isometries between visual hyperbolic spaces. Manuscripta Mathematica. 137, pp. 195 – 213. Springer, 2012.
[5]. Álvaro Martínez Pérez. Real valued functions and metric spaces quasi.-isometric to trees. Annales Academiæ Scientiarum Fennicæ. 37, pp. 525 – 538, 2012.
[4]. Álvaro Martínez-Pérez. Zig-Zag chains and metric equivalences between ultrametric spaces. Topology and its Applications. 158 – 13, pp. 1595 – 1606. Elsevier, 2011.
[3]. Bruce Hughes; Álvaro Martínez Pérez; Manuel Alonso Morón, Bounded distortion homeomorphisms on ultrametric spaces, Annales Academiæ Scientiarum Fennicæ. 35, pp. 473 – 492. Academia Scientiarum Fennica, 2010.
[2]. Álvaro Martínez Pérez; Manuel Alonso Morón. Inverse sequences, rooted trees and their end spaces. Topology and its Applications. 157 – 16, pp. 2480 – 2494. Elsevier, 2010
[1]. Álvaro Martínez Pérez; Manuel Alonso Morón, Uniformly continuous maps between ends of R-trees, Matthematische Zeitschrift. 263 – 3, pp. 583 – 606. Springer, 2009.
CHEMICAL GRAPH THEORY: Topological Indices
[10]. Álvaro Martínez-Pérez; Edil Molina; José M. Rodríguez; José M. Sigarreta. On Sum Lordeg index: theory and applications. Filomat, 2025.
[9]. Álvaro Martínez-Pérez; José M. Rodríguez. Upper and lower bounds for topological indices on unicyclic graphs. Topology and its applications, 339 A 108591 (2023), https://doi.org/10.1016/j.topol.2023.108591
[8]. Álvaro Martínez-Pérez; José M. Rodríguez. Upper and Lower Bounds for Generalized Wiener Indices on unicyclic Graphs. MATCH Communications in Mathematica Chemistry 88 (1) 179-198, 2022.
[7]. Álvaro Martínez-Pérez; José M. Rodríguez. New lower bounds for the first general Zagreb Index. Discrete Applied Mathematics, 2021.
[6]. Álvaro Martínez-Pérez; José M. Rodríguez. New bounds for Topological Indices on trees through generalized methods. Symmetry 12(7), 1097; https://doi.org/10.3390/sym12071097, 2020.
[5]. Álvaro Martínez-Pérez; José M. Rodríguez. A unified approach to bounds for topological indices on trees and applications. MATCH Communications in Mathematica Chemistry 82(3) 679-698, 2019.
[4]. Álvaro Martínez-Pérez; José M. Rodríguez: Some results on lower bounds for topological indices. Journal of Mathematical Chemistry. 57, pp. 1472 – 1495, 2019.
[3]. Álvaro Martínez-Pérez; José M. Rodríguez; José M. Sigarreta. A new approximation to the Geometric-Arithmetic Index. Journal of Mathematical Chemistry. 56 – 7, pp. 1865 – 1883. Springer, 2018.
[2]. Álvaro Martínez-Pérez; José M. Rodríguez. New Lower Bounds for the Geometric-Arithmetic Index. MATCH Communications in Mathematical and in Computer Chemistry. 79 – 2, 451 – 466, 2018.
[1]. Álvaro Martínez-Pérez; José M. Rodríguez. New lower bounds for the second variable Zagreb index: Journal of Combinatorial Optimization. 1/2018, Springer, 2018.
DISCRETE MATHEMATICS
[7]. Cristina Dalfó; Miguel Ángel Fiol; Nacho López; Álvaro Martínez-Pérez. Decompositions of a rectangle into non-congruent rectangles of equal area. Discrete Mathematics, Volume 344, Issue 6, 112389, 2021.
[6]. Álvaro Martínez-Pérez; Samuel G. Corregidor. Finite metric and $k$-metric bases on ultrametric spaces. Proceedings of the AMS, 2021.
[5]. Álvaro Martínez-Pérez; Samuel G. Corregidor. A note on k-metric dimensional Graphs. Discrete Applied Mathematics, 2021.
[4]. Álvaro Martínez Pérez; Déborah Oliveros. Critical graphs with Roman domination number four. AKCE, international journal of graphs and combinatorics, 2020.
[3]. Álvaro Martínez Pérez; Luis Montejano; Deborah Oliveros. A note on extremal results on directed acyclic graphs. Ars Mathematica Comtemporanea. 14 – 2, pp. 445 – 454, 2018.
[2]. Álvaro Martínez Pérez; Luis Montejano; Deborah Oliveros. Extremal results on intersection Graphs of boxes in Rd. Proceedings in Mathematics and Statistics. “Convexity and Combinatorial Geometry”. 148, pp. 137 – 144. Springer, 2016.
[1]. Imre Barany; Ferenc Fodor; Álvaro Martínez Pérez; Luis Montejano; Deborah Oliveros. A fractional Helly theorem for boxes. Computational Geometry: Theory and Applications. 48, pp. 221 – 224. Elsevier, 2015.
DATA ANALYSIS: Clustering methods
[3]. Álvaro Martínez Pérez. A density sensitive hierarchical clustering method. Journal of Classification. 35, pp. 481-510, 2018.
[2]. Álvaro Martínez Pérez. On the properties of α-unchaining single linkage hierarchical clustering. Journal of Classification 33, pp. 118 – 140. Springer, 2016.
[1]. Álvaro Martínez Pérez. Gromov-Hausdorff Stability of Linkage-based hierarchical clustering methods. Advances in Mathematics. 279, pp. 234 – 262. Elsevier, 2015.