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In this paper, using data provided by an empirical study of students in a high school science course, we discuss
key variables in the interaction between System 1 (S1) (intuitive and unconscious processes) and System 2
(S2) (analytical and conscious processes) in mathematical reasoning. These variables are: beliefs about oneself
and about mathematics; cognitive reflection understood as a self-regulatory skill; working memory; and the
evaluation of the deductive and probabilistic reasoning of students. The results confirm the interaction between
these variables and their predictive power on performance in mathematics. The study also adds novel consider-
ations related to the function and interaction of cognitive andmetacognitive components involved inmathemat-
ical performance.
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1. Introduction

In the past decades, several scholars in Mathematical Studies (De
Corte, 2004; Schoenfeld, 1992, 2005) have shown that mathematical
competence depends on factors such as: (1) mathematical knowledge,
(2) heuristic methods, (3) meta-knowledge, (4) self-regulatory skills,
(5) positive beliefs about oneself in relation to mathematical learning
and problem solving, and (6) beliefs aboutmathematics andmathemat-
ical learning.

These authors point out that much of the complexity involved in
learning and teachingmathematics is due to the necessary interconnec-
tions the studentmustmake between their knowledge and pre-existing
skills and attitudes. In this article wewill focus on some of themore rel-
evant factors, such as those related tometacognitive self-regulation and
control, as well as student beliefs about mathematics and its learning as
predictors of mathematical achievement. Metacognitive refers to
knowledge regarding the cognitive process itself, as well as the active
monitoring and consequent regulation and orchestration of the deci-
sions and processes involved in problem solving. Schoenfeld (1987) de-
scribed it as follows:

1. Your knowledge about your own thought processes, the description
of your own thinking.
e Madrid, Facultad de Ciencias

ez-Chacón).

ghts reserved.
2. Self-awareness or self-regulation. How well do you keep track of
what you're doing when (for example) you're solving problems,
and howwell (if at all) do you use the input from such observations
to guide your problem solving actions?

3. Beliefs and intuitions.What ideas aboutmathematics do you bring to
your work in mathematics, and how does that shape the way you do
mathematics? (p. 190).

This definition illustrates the relevance beliefs and intuition can
have. What somebody believes about this discipline determines the
way s/he selects a particular direction or method to solving a problem.
We agree with Schoenfeld (1985) who perceives mathematical beliefs
as “the set of understandings aboutmathematics that establish the psy-
chological context withinwhich individuals domathematics andwithin
which work resources, heuristics and control strategies”.

This approach to metacognition adds to its new contents of high
functionality, as has been shown in previous studies. The results of our
own previous work on these variables make it clear that the scores of
subjects in cognitive reflection (i.e., a metacognitive measure) as well
as the scores regarding subjects' beliefs about mathematics, and their
beliefs regarding their own selves, all correlated positively and signifi-
cantly with mathematical achievement. It was also found that working
memory and reasoning, alongwithmathematical beliefs,were variables
involved in this performance (Gómez-Chacón, García-Madruga, Vila,
Elosúa, & Rodríguez, in press).

Another reason to consider these variables is the distinction be-
tween two types of cognitive processes in reasoning and judgement:
those that run quickly and without conscious deliberation, and the

http://dx.doi.org/10.1016/j.lindif.2013.10.001
mailto:igomezchacon@mat.ucm.es
http://dx.doi.org/10.1016/j.lindif.2013.10.001
http://www.sciencedirect.com/science/journal/10416080


68 I.M.ª Gómez-Chacón et al. / Learning and Individual Differences 29 (2014) 67–73
slower andmore reflective kind. A good part of research inmathematics
education has been aimed (explicitly or implicitly) at the relationship
between these modes of intuitive and analytical thinking (e.g.,
Fischbein, 1987; Stavy & Tirosh, 2000). Various studies have explained
the conceptual errors in mathematics as consisting of a gap between
student intuition and the requirements of the formal system of mathe-
matics. Additionally, the distinction betweenmodes of intuitive and an-
alytical thinking has been comprehensively treated in the theory of dual
processes in cognitive psychology (e.g., Evans, 2007; Evans & Over,
1996; García-Madruga, Gutiérrez, Carriedo, Vila, & Luzón, 2007). Au-
thors such as Stanovich and West (2000) refer to these dual processes
as “System 1” and “System 2” respectively.

System 1 has been characterized as unconscious, associative, fast,
and not linked to individual resources of working memory and fluid
intelligence. This system, which humans share to a large extent with
other animals, allows individuals to quickly access answers that are
often valid, but also lead them to commit mistakes. System 2 is
considered conscious, slow, controlled and linked to the individual
resources of working memory and fluid intelligence. The perfor-
mance of System 2 involves the overriding of System 1 and depends
on intellectual capability, as well as the disposition andmental styles
of individuals.

The role of this dual process theory of reasoning applied to mathe-
matics education is remarkable, and this is a growing field of study
(see e.g. Inglis, Mejia-Ramos, & Simpson, 2007; Vamvakoussia, Van
Doorenb, & Verschaffel, 2012). There are several themes that have
been productive: a) comparative studies with different groups (mathe-
maticians, the general population, college students) used to analyse the
influence the so-called belief bias has on responses in conditional infer-
ence tasks; b) studies on mathematical processes— such as demonstra-
tion — that attempt to identify different types of informal arguments,
and the possible differences between expert and novice; and c) studies
establishing the intuitive nature of fallacious reasoning in the domain of
rational numbers, as well as problems of proportion and persistence in
adulthood.

In this paper, we seek to deepen our knowledge about the relation-
ship these belief systems might have when applied to mathematics ed-
ucation, a topic scarcely addressed in the study of dual process theories
of reasoning. We would like to identify and understand the positive as
well as the negative influences of beliefs that can serve to foster as
well as present barriers during cognitive reflection (a metacognitive
measure) and reasoning.

The proposal of Evans, like that of Stanovich and West, provides a
convergent line of research worth exploring. Evans (see Evans, 2009)
proposes a thirdmetacognitive system, System3, responsible for the ac-
tivation of working memory, as well as resolving possible conflicts oc-
curring between Systems 1 and 2. Similarly, Stanovich and West
(2000); (e.g., Stanovich et al., 2011) propose a tripartite structure. In ad-
dition to System 1 and System 2, the so-called reflexivemind exists, and
this is responsible for the overall control of the individual's behaviour
depending on one's general purpose and goals.

In this article we reflect on a few key variables in the interaction
between System 1 (S1) and System 2 (S2) dual processes in mathe-
matics: 1) at the metacognitive level, beliefs provide immediate psy-
chological context and directly affect the performance of subjects
in mathematical tasks; 2) cognitive reflection is a measure of
metacognitive executive control (regulation) that the subject ap-
plies to the resolution of tasks and allows for the inhibition of S1 au-
tomatic responses; 3) at the cognitive level, working memory is a
fundamental cognitive structure that makes reference to processing
and information storage limitations while performing cognitive
tasks; and, finally, 3) at the performance level, reasoning abilities
are made up of three basic components: deductive inferences (prop-
ositional and syllogistic), meta-deductive knowledge, and probabi-
listic reasoning. Likewise, mathematical achievement scores are at
this performance level. Before describing the study and presenting
the results, we will review a few theoretical considerations from a
historical point of view underlying the variables used in the study.
2. Theoretical aspects

2.1. Belief systems regarding mathematics and learning

Many recent studies have been completed on the essential role of
beliefs in learning and teaching mathematics (e.g., Leder, Pehkonen, &
Törner, 2002; Maass & Schloeglmann, 2009; Roesken & Casper, 2011).
As a unifying framework for the study of belief systems, we refer to
the proposal of Op't Eynde, De Corte, and Verschaffel (2002). This pro-
posal allows for a better understanding of the interactions between dif-
ferent types of beliefs, such as reflected in the Mathematics-Related
Beliefs Questionnaire (MRBQ) of Op'Eyde and De Corte (2003). These
authors refer to the following building blocks for the analysis of the na-
ture and structure of belief systems: the social context, the self, and the
object. In previous studies (Gómez-Chacón, Op't Eynde, & De Corte,
2006a, 2006b), we found the need to operationalize the MRBQ
questionnaire for the Spanish population. Also, in another project,
researchers who designed the CreeMat questionnaire used in the cur-
rent study also sought to understand the relationship between working
memory, reading comprehension, cognitive thinking, deductive reason-
ing and mathematical belief systems (Gómez-Chacón, García-Madruga,
Rodríguez, Vila, & Elosúa, 2011).

Our previous work has led to prioritizing four dimensions in the de-
velopment of our questionnaire of beliefs: 1) student beliefs about
mathematics (MathBe), 2) beliefs about learning and solving math
problems (ProsolvBe), 3) student beliefs about themselves (beliefs
about the meaning of personal competence in mathematics, that is,
the confidence and perception of a student's own ability) (ConfBe),
and 4) an affective and behavioural dimension regarding a student's
engagement in individual mathematical learning (EngBehav). The first
three have been discussed in the studies mentioned above, while the
fourth dimension does not appear to be integrated in questionnaires
such as the MRBQ. In relation to this latter dimension, we would like
to point out that we have considered two aspects of engagement in
mathematical learning: affective and behavioural engagement. In this
sense, experts such as Fredricks, Blumenfeld, and Paris (2004) provide
a more comprehensive understanding regarding engagement at school.
In our own context regarding learning the discipline ofmathematics, we
refer only to the school's engagement in the cognitive domain of math-
ematics. It is within this area that we decided to examine how students
feel about the discipline itself (i.e., the affective dimension of commit-
ment) and how they behavewhen learning the subject (i.e., the engage-
ment expressed in their conduct).
2.2. Cognitive reflection

The proper resolution of arithmetic problems often requires a deep
understanding of the problem. The cognitive reflection test (CRT) used
in this study is adapted from the evidence presented by Frederick
(2005) which, in addition to the three problems used in the initial
test, also includes two additional issues proposed and used by the au-
thor. The test attempts to evaluate the depth of reasoning of a partici-
pant through a simple mathematical reasoning task, similar to the
following (problem 1):

A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How
much does the ball cost? ___ cents.

Faced with this kind of mathematical problem, subjects tend to give
an impulsive response that comes readily tomind: “10 cents”. However,
this answer is wrong, as a little reflectionwill make clear: the difference
between $1.00 and 10 cents is 90 cents and not $1.00, as the problem
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states. The correct answer “5 cents” now comes readily to mind and,
therefore, requires that individuals act in a reflective way.

The problems of Frederick (2005) provide a simple measure of a
very important metacognitive skill: cognitive reflection in problem
solving. For this reason, the test measures the ability of individuals to
control their behaviour in a thoughtful way and the ability to inhibit
the first answer that comes “to mind.” The author investigates the rela-
tionship of CRT to various aspects of decision-making, and emphasizes
that people with lower cognitive skills of reflection tends to make a
wrong first choice, the “intuitive” one.

To explain the actions of individuals in the cognitive reflection
test, Frederick (2005) applies the dual process theory of reasoning
and decision-making. According to the dual process hypothesis,
spontaneous responses produced by System 1 are fast and involve
a superficial understanding of the problem. Conversely, the correct
answers produced by System 2 involve cognitive and motivational
effort as well as concentration, and for this reason they require
more time to solve.

The present work focuses on the study of this metacognitive dimen-
sion called cognitive reflection. It takes not only the aspects of readiness,
motivation and affective engagement in individual mathematical learn-
ing into account, but also an individual's belief system. In the field of
mathematics, decisions are affected by the beliefs, goals and an
individual's prior knowledge (Schoenfeld, 2005). That is, an individual's
ideas about mathematics shape the way he or she does mathematics.
2.3. Reasoning is limited by working memory capacity

The study of deductive reasoning, as related to mathematics and
education in general, has revealed that in addition to building the
necessary processes and conscious manipulation of semantic repre-
sentations, reasoning is often affected by other unconscious process-
es that lead to certain errors. Thus, some have argued that reasoning
operates by way of differing dual processes (Evans, 2007), each
described somewhat differently by various authors: semantic/
surface (García-Madruga, 1983), analytical/heuristic (Evans, 1984a,
1984b), and explicit/tacit (Evans & Over, 1996). In this way, the de-
ductive capabilities of individuals would be based on the develop-
ment of semantic processes, explicit and analytical, just as the
increased ability to inhibit responses would be based on surface, or
heuristic and tacit processes.

Aswe have been arguing, the theoretical idea underlying the current
work is that a student's working memory capacity, as well as their be-
liefs andmetacognitive skills, may restrict or foster their reasoning abil-
ity. This also implies, in turn, that these variableswill necessarily affect a
student's learning processes in school, in particular in mathematics
tasks (Schlöglmann, 2007). According to Johnson-Laird'sMentalModels
Theory (MMT) (Johnson-Laird & Byrne, 1991), workingmemory plays a
key role in explaining reasoning and its development. Researchers in
the current study propose that the key to explaining reasoning lies not
so much on working memory storage, be it verbal or visual, but rather
on WM's executive processes (García-Madruga et al., 2007; García-
Madruga, Gutiérrez, Carriedo, Luzón, & Vila, 2005). Solving deductive
reasoning problems not only requires a capacity to store information.
It makes special use of efficient cognitive resources in a series of tasks
that require the control and regulation of the problem-solving process.
Thus, deductive tasks require attentional focus for an in-depth under-
standing of the statements in the premises, the activation of knowledge
and representations in long-termmemory, and a shift of attention from
the task of comprehension to the task of integrating the meanings of
various premises in search of an appropriate solution. In other words,
it requires the execution of the principal functions of the central execu-
tive. Furthermore, as highlighted by dual process theories, individuals
must also be able to, whenever necessary, inhibit the automatic re-
sponses inherent to System 1.
3. The current study

This paper examines students' beliefs about mathematics, their cog-
nitive reflection skills, their working memory capacity, and their rea-
soning abilities, as well as the relationships these variables have with
mathematical achievement. Reasoning and mathematical achievement
are typical cognitive tasks in which Systems 1 and 2 are directly in-
volved. As diverse authors have claimed (Evans, 2009; Thompson,
2010), the metacognitive processes are in charge of the activation of
workingmemory, aswell as the resolution of possible conflicts between
the outputs of Systems 1 and 2. In the same vein, Stanovich, West, and
Toplak (2011, pp. 374–376) maintain that in order to override System
1, System 2 must be able to perform two related abilities: to interrupt
System 1 functioning and inhibit their response tendencies, and to pro-
vide alternative responses by means of hypothetical analytical reason-
ing and cognitive simulation. Overriding System 1, however, requires
executive control, something that cannot be directly carried out by Sys-
tem 2. It requires a metacognitive or reflective kind of processing that
allows an individual to control how his or her general dispositions, be-
liefs and aims influence his or her behaviour. Fig. 1 represents the pro-
posed relationships between the variables examined in this work, in
particular the relationships between the metacognitive variables
(beliefs and cognitive reflection)with basic cognitive capacity (working
memory) and the two performance variables of reasoning and mathe-
matical achievement. This study does not examine the various other
contextual and academic influences involved in mathematical achieve-
ment, such as learning and teaching methods and practices, and aca-
demic motivation.

The following hypotheses guided the work: 1) there will be positive
correlations between positive beliefs about mathematics and learning
and cognitive reflection; 2) those participants with more positive be-
liefs, better cognitive reflection abilities or wider working memory
span, are those who will perform better in reasoning; and 3) all these
variables: beliefs, cognitive reflection, working memory, and reasoning,
will be positively related to academic achievement in mathematics.

3.1. Method

3.1.1. Participants
Our research is primarily correlational and our sample was com-

posed of 56 high school science students (mean age = 16.58,
SD = 0.64). All participants had received their academic qualifications
and performed every one of the tests. We measured mathematical
achievement by the mathematics scores each student earned (1 to 10)
at the end of the course, when the data was collected. The students
have four evaluations per year and a final evaluation at the end of the
course. In these assessments, students were evaluated on their under-
standing and their problem solving ability with regard to the various
kinds of content. The conceptual categories that make up secondary
school mathematics standards are the following: Number and Algebra,
Geometry, Analysis, Statistics and Probability.

3.1.2. Description of the testing instruments used

3.1.2.1. The beliefs questionnaire (CreeMat). The beliefs questionnaire
(CreeMat) is a Likert-like scale on which 1 represents “completely dis-
agree” and 5 “completely agree.” The purpose of this test is to evaluate
the systems of beliefs about mathematics in high school students.

The questionnaire is composed of 13 items (Table 1) and covers 4
subscales or dimensions: affective and behavioural engagement in
mathematical learning (EngBehav: items 1, 2 and 3); confidence and
beliefs regarding one's personal competence in mathematics (ConfBe:
items 4, 6, 8 and 12); mathematical beliefs (MathBe: items 5, 9 and
13); and beliefs about mathematical problem solving (ProsolBe: items
7, 10 and 11) (See Table 1). The Cronbach α value for the test is 0.645.
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Fig. 1. Theoretical model that contains all essential variables and their mutual relationships.
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3.1.2.2. Cognitive reflection test. We used an adapted version of
Frederick's (2005) cognitive reflection test with 5 items. The task is pre-
sented as a “paper and pencil” test consisting of 5 arithmetic problems,
such as the problem described in Section 2.2.

Each problem has three possible answers: the correct one, a superfi-
cial alternative (which is incorrect), and the response “impossible to de-
termine”. The test is evaluated by scoring one point for the correct
response and a zero for the two incorrect response alternatives. In this
way, we obtain the scores for each type of response. It is worth noting
that, contrary to that doneby Frederick in his test, and in order to reduce
the test's difficulty, we have chosen to make our version a multiple-
choice evaluation task instead of a generation task.

3.1.2.3. Test of working memory. The Semantic AnaphoraWorkingMem-
ory Test (Carriedo, Elosúa, & García-Madruga, 2011) was used in the
current study. In it, a participant must read a sentence aloud that has a
pronominal anaphora. For example, “Eladio really encouraged her to in-
terpret such a demanding role”. Then, we present twowords, for exam-
ple, “career” and “actress”, and the subject has to choose the correct
Table 1
Descriptive data of the items in the CreeMat questionnaire.

Items Mean SD

Item 1: I work hard in mathematics 3.13 1.16
Item 2: If I make mistakes, I work until I correct them 3.61 1.28
Item 3: I like to invent new problems 1.70 1.01
Item 4: I learn mathematics quickly 3.30 0.87
Item 5: Mathematics allows us to better understand the world we live in 3.41 0.95
Item 6: When I am asked to solve math problems, I get nervous 3.32 1.24
Item 7: When I cannot solve a math problem quickly, I keep on trying 3.77 1.08
Item 8: I feel confident when I study or work on mathematics 3.14 0.96
Item 9: Anybody can learn mathematics 4.18 1.05
Item 10: I prefer challenging tasks in order to learn new things 3.68 0.90
Item 11: Mathematics classes should not place much importance on
problem solving

3.52 1.04

Item 12: I feel happy when I solve math problems 3.93 0.99
Item13:Mathematics is about concepts and procedures thatwe have to
memorize

3.21 1.14

Mean 3.37 0,46
Total 43.75 6.09
answer between the two and remember the word selected to resolve
the anaphora. The anaphora problems were really easy and the difficul-
ty of each problem was similar, (97% of correct responses; Elosúa,
Carriedo, & García-Madruga, 2009). The task consisted of 42 anaphora
problems that shifted through three series of different levels of 2, 3, 4
and 5 problems each. Participants have to solve anaphora and at the
end of each series to remember the 2, 3, 4 or 5 word-solution of each
group of anaphora.

The task endswhen theparticipant fails at least 2 of the 3 series com-
prising the same level. For a series to be deemed successful, the partici-
pant must remember all the words in the series, even if repeated in a
different order. A series is deemed incorrect if a word is omitted from
the series or is replaced by another one. Only the correct series were
scored. For the score, 1 point is awarded to the word recalled in the
same order and 0.5 points to the word remembered in a different
order. The approximate duration of the task is 20 min.

3.1.2.4. The deductive and probabilistic reasoning questionnaire. The pur-
pose of this test is to obtain a measure of competence in reasoning (de-
ductive and probabilistic) of subjects. The reasoning task is important
not only to measure one of the most relevant higher-level cognitive
skills, but also to serve as a good predictor of cognitive development,
learning and academic performance. Specifically, this reasoning test
consists of understanding and solving various problems by selecting
some of the alternatives posed to solve three kinds of problems: deduc-
tive inference problems (propositional and syllogistic), meta-deductive
knowledge problems, and probabilistic reasoning problems (García-
Madruga et al., 2009). The test of deductive inferences includes three
types of deductive problems: four propositional inferences, two condi-
tionals (denial of antecedent: DA; and modus tollens: MT) and two in-
clusive disjunctions (affirmative and negative); and three syllogistic
problems of varying difficulty: easy (onemodel), difficult (twomodels)
and very difficult (three models). The meta-deductive part of the rea-
soning task consists of three truth table problems, which involve a con-
sistent interpretation of the three true models of the conditional (p q,
not-p not-q, not-p q); and three necessity-possibility problems requir-
ing a correct interpretation of syllogistic premises. The probabilistic rea-
soning part seeks to evaluate a few relevant aspects of this kind of



Table 3
Percentage of correct answers and standard deviations on the diverse reasoning problems.

Type of inference Mean SD

Propositional reasoning Conditional Deny antecedent
Modus tollens

27 45
70 .46

Disjunctive Positive
Negative

64 .48
80 .40

“Consistency” 96 .19
89 .31
23 .43

Syllogistic reasoning Syllogisms AI1-I
IA-No conclusion
EA-O

70 46
48 .50
9 .29

“Necessity/possibility” 89 .31
84 .37
66 .48

Probabilistic reasoning Variability of small samples 29 .46
Gambler's fallacy 66 .48
Distinguish between P(A/B) and
P(B/A)

68 .47

Overall reasoning 65.48 11.74
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reasoning: 1) the variability of small samples, 2) the actual frequency of
an event and the gambler's fallacy, and 3) the distinction between direct
probability P(A/B) and its inverse P(B/A).

3.2. Results

Below are the results structured according to the specified variables
and their interactions.

3.2.1. Belief systems about mathematics and learning (CreeMat)
The data show that the group tested has low individual affective and

behavioural commitment to learning in mathematics (mean 2.80).
However, the group does illustrate an acceptable perspective regarding
their beliefs about mathematics and mathematical problem solving
(mean 3.6) and beliefs about the meaning of personal competence in
mathematics. That is, the confidence and perception of a student's
own ability (mean 3.4). We note the apparent discrepancy in their an-
swers when asked about their beliefs about themselves. This indicates
that the trend is to memorize mathematical concepts and procedures,
even though their responses are often influenced by social desirability,
which makes them respond more in terms of problem solving.

3.2.2. Cognitive reflection
The results achieved on the cognitive reflection test (RC) can be seen

in Table 2. The data are presented in percentages. You can also view the
mean percentage of the difficulty level participants estimated having
with each problem. In this test, the total percentage of correct answers
was slightly higher than the total percentage of superficial answers.
There were also a significant percentage of answers with “no conclu-
sion”, although the variability between different items in this type of re-
sponse was high. Participants underestimated the difficulty of the
problems: the total percentage estimate of correct answers was 69%,
well above the total percentage of correct answers (42%). The correla-
tion between the difficulty estimate and the percentage of superficial
responses was 0.14 (p = .15). Overall, the performance of participants
was relatively high compared with the results Frederick (2005) report-
ed with college students. That is, our students gave more correct, less
superficial answers. We believe that amending the version of the test,
making it a multiple-choice recognition task rather than a recall task,
may explain these results.

3.2.3. Reasoning
The results of the study illustrate that high school science students

have difficulties in conditional inferences and categorical syllogisms.
Table 3 shows the percentage of correct responses for each item and
the type of reasoning and inference.

More detailed analysis of various aspects of deductive reasoning
show that inclusive disjunctions and especially conditionals, continue
to challenge students. For example, only 27% of participants chose the
correct conclusion (no conclusion) in denying the antecedent inference.
Also, difficulties were confirmed in conditional inferences in its truth
table interpretation: only 23% of participants felt that the model “not-
p q” is true. Moreover, the correlation of correct responses on both
Table 2
Response rates for the cognitive reflection test, and the difficulty estimation for each of the
five problems (correlations between superficial responses and estimation of difficulty
appear in parentheses, ⁎ pb .05).

Item Correct
responses

Superficial
responses

Other incorrect
responses

Difficulty
estimation

1 36 61 3 88 (.12)
2 57 43 0 72 (.33*)
3 21 25 54 53 (.13)
4 50 36 14 65 (.28*)
5 45 23 32 65 (.08)
Mean 42 38 21 69 (.14)
items was high and significant (r = .53, p b .01). As we can see, most
high school freshmen continue making a bi-conditional interpretation,
andmerely a quarter of the participants reach fully conditional interpre-
tations and inferences. As shown in Table 3, the resolution of the three
categorical syllogisms confirms the predictions regarding difficulty:
more than half of the students made mistakes on the difficult syllo-
gisms. In addition, the results show that teens have difficulty with the
concept of possibility in relation to necessity and impossibility.

With respect to probabilistic reasoning, this group of students has
difficulty when considering the variability of small samples (29%). 66%
of the students are able to distinguish the “gambler's fallacy” (the fact
of expecting the actual frequency of an event to manifest itself in very
few trials is a common mistake). 68% of the students distinguish be-
tween P (A/B) and P (B/A).

3.2.4. Interrelationships between variables
In order to evaluate the interactions between belief systems, cogni-

tive reflection working memory, reasoning, and mathematical achieve-
ment—we performed a correlation analysis. In addition, we conducted
twomultiple linear regression analyses, one to assess the predictive be-
liefs, cognitive reflection and working memory span on reasoning, and
another one to assess the predictive ability of all these variables on
mathematical achievement.

We describe these interrelationships in response to the hypotheses.
There is a significant positive correlation between beliefs and cognitive
reflection, confirming our first hypothesis (Table 4).

Relative to our second hypothesis, the data shows a pattern of posi-
tive and mostly significant correlations between the variables: beliefs,
cognitive reflection, working memory and reasoning (Table 4).
Table 4
Correlations betweenbelief Systems, cognitive reflection,workingmemory, reasoning and
achievement in mathematics.

1 2 3 4 5

1. Beliefs 1 .341⁎⁎ .284⁎ .338⁎⁎ .471⁎⁎

2. Cognitive reflection 1 .173# .515⁎⁎ .246⁎

3. Working memory 1 .446⁎⁎ .164
4. Overall reasoning 1 .323⁎⁎

5. Math achievement 1

One tailed.
⁎⁎ p b .01.
⁎ p b .05.
# p b .10.
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However, we expected tofind a clearer relationship between tests of
cognitive reflection and working memory: this correlation is the only
one that is positive, even if marginally significant. A multiple linear re-
gression analysis was used to test the predictive capacity of the
variables. Beliefs (total), cognitive reflection and working memory
explain 37% of the variance: F(3,52) = 11.73 p b .0001 of overall rea-
soning. The significant variables were cognitive reflection (B = 3.17,
Beta = .42, p b .001) and working memory (B = .17, Beta = .35,
p b .003). As we can see, results confirm on the whole our second
hypothesis.

Lastly, Table 4 also shows evidence of positive correlations between
beliefs, cognitive reflection, working memory and reasoning, with
mathematic achievement. Working memory is again the only variable
whose correlation is not significant. Themultiple linear regression anal-
ysis used to test the predictive capacity of all variables onmathematical
achievement explains 20% of the variance: F(4,51) = 4.32 p b .004, the
significant variable being beliefs (B = .186, Beta = .412, p b .003). The
results also confirm our third hypothesis.

4. Discussion and conclusion

The results of this studywere derived from the incorporation of a set
of new variables for predicting performance in mathematics, and an
analysis of the interaction of S1 and S2 in the context of mathematical
reasoning and achievement. Regarding these relationships between
the metacognitive variables (beliefs and cognitive reflection) with
working memory (basic cognitive capacity) and the two performance
variables of reasoning and mathematical achievement, this study con-
firmed that belief systems and cognitive reflection may explain some
of the relationships between the two systems and the gap between
the intuitive and analytical system (Stanovich et al., 2011). In particular,
this study confirms the trend noted in previous research regarding the
relationship between the beliefs of individuals about the relevance of
solving problems, and the confidence they have in their own personal
competence. In addition, it provides two novel findings, one regarding
the positive interaction of cognitive reflectionwith respect to reasoning,
and another one relative to the relationship between belief systems and
working memory.

We found that the belief systems of students correlate withworking
memory. Likewise, we found a more positive trend between tests of
cognitive reflection and working memory than in our previous study
(Gómez-Chacón et al., in press). These interrelations may provide a
key interpretation of the possible conflicts between System 1 and Sys-
tem 2 outputs, as well as a better understanding of metacognitive pro-
cesses. Student errors may be caused by misconceptions or they may
also be due to what are known as “slips”, which are linked to the con-
cept of working memory. In the context of working memory, these
open representations are in direct relationship with the central execu-
tive, and involve the planning and execution of a cognitive process. In
addition, working memory correlated significantly with reasoning,
something we already mentioned and emphasised from mental model
theory (García-Madruga et al., 2007). We can conclude that subjects
with appropriate beliefs, high cognitive reflection, and high working
memory show better reasoning and academic achievement in mathe-
matics.We think that these results contribute to a better understanding
of the important role that metacognitive processes have in mathemati-
cal reasoning (Evans, 2009; Santamaría, Tse, Moreno-Ríos, & García-
Madruga, 2013; Schoenfeld, 2005; Thompson, 2010).

The data confirm the difficulties students have with deductive and
probabilistic reasoning problems. They highlight the existence of vari-
ous sources of error, both in terms of the complexity of the inferences
as well as with respect to the influence of previous ideas and beliefs.
As noted in the introduction, these results allow us to state that, in addi-
tion to processes of construction and the conscious manipulation of se-
mantic representations, other unconscious processes often affect
reasoning and lead to certain errors.
It should be noted that the dual-process framework offers more
methodological tools than we have taken advantage of in this kind of
study (Gillard, Van Dooren, Schaeken, & Verschaffel, 2009a). However,
we highlight some limitations of this study both in terms of its concep-
tualization and in terms of certain methodological aspects that might
lead to new perspectives for future study. In this study we have limited
ourselves to the exploration ofmetacognitive ability byway of cognitive
reflection and the influence of beliefs. It would be interesting to extend,
on amicro andmacro scale, how decision-making affects the resolution
of tasks and how it depends on the knowledge, goals, beliefs and impli-
cations of the self (Gómez-Chacón, 2000, 2008; Malara & Zan, 2000;
Schoenfeld, 2005). We think that individual beliefs, as part of the
metacognitive system, serve to model one's goals in interaction with
the context. Another way to extend this work is to use other methodo-
logical tools in order to deepen the assessment of an individual's con-
scious experience of the kinds of conflicts involved in solving
mathematical reasoning problems. Qualitative data based on protocols
of timed sequences of thinking aloud might be useful to establish the
more precise nature of certain heuristics (Babai, Brecher, Stavy, &
Tirosh, 2006; Gillard, Van Dooren, Schaeken, & Verschaffel, 2009b).
Likewise, methodologies coming from neuroscientific research could
be valuable. For instance, it might be useful in cases of unconscious con-
flict detection (De Neys, Moyens, & Vansteenwegen, 2010). This meth-
odology focuses on the autonomic nervous system modulation during
biased reasoning and can provide new evidence about the possibility
and kind of reasoning conflicts that come from the intuitive beliefs.
The resulting conflict should elicit autonomic arousal, which should be
reflected in an increased skin conductance response (SCR) in the face
of the conflict. In such a case, it may be possible to establish a link be-
tween autonomic modulation and conflict detection that comes from
beliefs and the lack of cognitive reflection. These results might help to
provide more solid conceptual ground for the idea of dual processes in
mathematics performance.

Finally, we would like to stress the educational significance of this
study. Considering the perspective of dual processes in mathematical
reasoning, we believe that our approach has direct application to
schooling, given that a teacher directs attention towards two basic edu-
cational objectives: firstly, the promotion of in-depth understanding of
mathematical concepts, and secondly, the inhibition of superficial pro-
cesses and strategies that otherwise lead to error.
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