
DME: A PUBLIC KEY, SIGNATURE AND KEM SYSTEM
BASED ON DOUBLE EXPONENTIATION WITH MATRIX

EXPONENTS

I. LUENGO1

The system presented here for the NIST call is a multivariate public key cryp-
tosystem based on a new construction of the central maps, that allow the polyno-
mials of the public key to be of an arbitrary degree. In order to get a reasonable
size for the public key one has to use a small number of variables and special
non-dense linear maps at both ends of the composition.

We will present the algorithms and construction of the system in general, but
for the implementation we will choose parameters that give polynomials with 6 to
12 variables. We will build the central map using a vectorial exponentiation with
matrix exponents as follows:

Let us take a finite field Fq, q = pe, and a matrix A = (aij) ∈Mn×n(Z) one can
define a kind of exponentiation of vectors by using a monomial map GA associated
to the matrix A as follows:

(1) GA : Fnq → Fnq : GA(x1, . . . , xn) = (xa111 · . . . · xa1nn , . . . , xan1
1 · . . . · xann

n).

The following two facts are easy to verify:

a) If A,B ∈Mn×n(Z) and C = BA, then the composition GC = GB ◦GA.
b) If det(A) = ±1 and the inverse matrix A−1 ∈Mn×n(Z), then GA is invert-

ible on (Fq \ {0})n and the inverse is given by GA−1 .

Note that if the matrix has r entries different from zero in a column k, then the
product of r copies of Fq is mapped to O = (0, . . . , 0) so GA as a map in Fnq is a
univariate polynomial of degree at least qr.

This kind of maps are extensively used in Algebraic Geometry, they produce
birational maps. In Projective Geometry they are also called Cremona transfor-
mations. In [2] these Cremona transformations are used to produce multivariate
public key cryptosystem.

If det(A) 6= ±1, then the monomial map is not birational, in fact one has [5] :

Proposition 1. Let GA : Kn → Kn be a monomial map as (1) and K an alge-
braically closed field of any characteristic then the monomial map GA has geomet-
ric degree d := | det(A)| on (K \ {0})n, that is, for a generic x ∈ (K \ {0})n, the
set G−1A (x) has d preimages.

1

2 I. LUENGO

Now if we take A ∈Mn×n(Zq−1) then:

Theorem 2. Let A ∈ Mn×n(Zq−1) and GA : Fnq → Fnq be the corresponding
monomial map. If gcd(det(A), q− 1) = 1 and b := det(A)−1 ∈ Zq−1, B := bAd(A)

then A−1 = B ∈Mn×n(Zq−1).

This is easy to verify, since b. det(A) = 1 + λ(q − 1) and if In is the identity
matrix, then AB = b. det(A)In mod (q − 1).

We can use this fact to build a multivariate PKC in the standard way by entering
powers of q in the matrix A. If each row has 2 entries qaij , then after composition
with two linear maps at both ends one gets a quadratic public key (see [3]). In
our case we made extensive computer tests arriving to the conclusion that those
systems are not safe against Gröbner basis attack for a reasonable key size, which
is what happens with most multivariate PKC’s.

In order to make an stronger system against algebraic cryptanalysis we will
produce a system with the following design options:

• We allow the entries of the matrix A to be of the form pa instead of qa(q =
pe), this will make the final polynomials with arbitrary degree up to q,
• the determinant d = det(A) has an expansion in base p with many non-zero
digits.

These two conditions make the resulting system safe against Gröbner basis
attacks, but in order to make it safe against structural attacks we propose to use
two exponentials in two different intermediate fields as central maps, Fnq and Fmq
and the resultant public key will be polynomials in n.m variables with degree
up to q in each variable. In the system we implemented we use the parameters
m = 3, n = 2 and the public key F has 6 polynomials with 64 monomials each.

For convenience we denote the coordinates in (Fq)nm as

x = (x11, . . . , x1n, . . . , xn1, . . . , xnm).

We will use a padding h : FNp → Fnmq by adding S ≥ m random elements of
Fp in such a way that the coordinates x1n, x2n, . . . , xnm of h(u) = (x11, . . . , xnm)

are different from zero. The padding can be chosen in several different ways. For
instance, one can add only one bit in each xin and the encryption is deterministic or
one can add random bits to each component xij in order to address the IND-CPA
security.

DME 3

The public key is KP = (h, π0, F), where F : Fnmq → Fnmq is a map obtained as
composition of five maps, F = L3 ◦G2 ◦ L2 ◦G1 ◦ L1, according to the diagram:

Fnmq (Fqn)m (Fqn)m (Fqm)n (Fqm)n Fmnq

F

L1 G1 L2 G2 L3

The maps L1, L2 and L3 are Fq-linear isomorphism and L1 satisfies that for
every x ∈ h(FNp), L1(x) ∈ (Fnq \ {0})m. The map L2 is designed to verify the
condition:

∀y ∈ (Fnq \ {0})m, L2(y) ∈ (Fmq \ {0})n.

The maps G1 and G2 are monomial maps with the invertible determinant and
entries powers of p. With all the above conditions it is clear that F is injec-
tive in H(FNp) and the components of F and F−1 are given by polynomials in
Fq[x1, . . . , xmn]. The maps G1 and G2 are chosen in such a way that the poly-
nomial F have few monomials and the polynomial F−1 has a huge number of
monomials. For instance, for the parameters that we choose for the implemen-
tation, (m = 3, n = 2, s = 2, t = 2), we get that each component of F has 64

monomials and that each component of F−1 has at least 2100 monomials.
Let’s describe the five maps in detail.
The map L1 = π̃1 ◦ L̃1 ◦ l̃ is obtained as composition of three linear Fq-

isomorphism according to the diagram (2).

(2) Fnmq (Fnq)m (Fnq)m (Fqn)m

L1

∼
L̃1 π̃1

∼

The map π̃1 = (π1, . . . , π1) is defined by using an Fq linear isomorphism π1 : Fnq →
Fqn , π1(v1, . . . , vn) = α1v1 + . . . + αnvm, where {α1, . . . , αn} is a fixed Fq basis
of Fqn .

The isomorphism L̃1 = (L11, . . . , L1m) is defined by its components L1i : Fnq →
Fnq given by L1i(xi) = xiA1i, where A1i ∈ GLn(Fq).

The isomorphism l̃ is obtained by grouping the components of x in m vectors
according to its index h(x1, . . . , xnm) = (x1, . . . , xm)), where xi = (xi1, . . . , xin).

The Fq-linear isomorphism L2 = π̃1
−1 ◦M ◦ L̃2 ◦ π̃2 is a composition according

to the diagram (3).

(3) (Fqn)m (Fnq)m (Fmq)n (Fmq)n (Fqm)n

L2

π̃−1
1

∼
M L̃2 π̃2

∼

4 I. LUENGO

The mixing isomorphism M transforms the m vectors of Fnq in n vectors of Fmq in
such a way that the components of x1, . . . , xn are placed in the first n components
of x′1, . . . , x′n and the components of xm−n+1, . . . , xm are placed in the last m− n
components of x′1, . . . , x′n. For instance a way to produce such mixing is the
following composition of maps

x1
...
xn
...
xm


x11 . . . x1n
...
xn1 . . . xnn
...

xm1 . . . xmn


M−→

x′1
...
x′m

x11 . . . x1n xn+1,1 . . . xm,1
...

...
xn1 . . . xnn xn+1,n . . . xmn



That is, if we write the first matrix in two blocks
(
M1

M2

)
, where M1 is given by

the first n rows and M2 is given by the mixing M the last rows the mixing map
send

(
M1

M2

)
to (M1,M

t
2) = (M1,M

′
2) Any bijective map that send the (m− n)× n

entries of M2 in the n × (m − n) entries of M ′
2 will be also valid, but the final

number of monomial depends on the mixing.
For instance taking m = 4 and n = 2 one can have the next two mixing:

(4)

(
x11 x12 x31 x41
x21 x22 x32 x42

)
or

(5)

(
x11 x12 x31 x32
x21 x22 x41 x42

)

It will be explained below how to calculate the monomials of Fi, and will be
noted that (4) produces more mixing and 144 monomials whereas (5) produces
less mixing but 64 monomials in each component.

This construction of the mixing map M guarantees that if x ∈ (Fqn \ {0})m

then x′ ∈ (Fqm \ {0})n but there is no implication in the other direction, that is
x′ ∈ (Fqm \ {0})n does not imply x ∈ (Fqn \ {0})m. This fact means that one
can always encrypt and decrypt a message but there are messages that can not be
signed.

The Fq-linear isomorphism L3 = l−1 ◦ L̃3 ◦ π−12 is defined as

(6) (Fqm)n (Fmq)n (Fmq)n Fmnq
L3

π̃−1
2

∼
L̃3 `−1

∼

DME 5

The morphism L̃3 is defined as L̃3 = (L31, . . . , L3n) where L3j(x
′
j) = x′jA3j, A3j ∈

Mn×n(Fq) and det(A3j) 6= 0.
The main part of the design of the system is given by the two exponential maps

G1 and G2 built with monomial maps as follows:

G1(x1, . . . , xm) = (xa111 · . . . · xa1mm , . . . , xam1
1 · . . . · xamm

m), G1 : (Fqn)m → (Fqn)m

where A1 = (aij) ∈ Mm×m(Zqn−1) such that d′1 = det(A1) is prime with qn − 1

and

G2(x
′
1, . . . , x

′
n) = (x′1

b11 · . . . ·x′n
b1n , . . . , x′1

bn1 · . . . ·x′n
bnn), G1 : (Fqm)n → (Fqm)n

where B2 = (bij) ∈Mn×n(Zqm−1) such that d′2 = det(B2) is prime with qm − 1.
If x = (x11, . . . , xnm) ∈ Fnmq are the initial coordinates, then the composition of

the five maps L1, G1, L2, G2, and G3 allow us to compute the components of F (x)
as polynomials Fi ∈ Fq[x11, . . . , xnm]. In order to keep the number of monomials
small, we choose the matrices A1 and B2 with the following properties:

(1) The entries of A1 and B2 are of the form pa.
(2) For any two integers s and t such that the rows of A1 have at most s

non-zero entries and the rows of B2 have at most t non-zero entries, the
monomials in the Fi can be computed with the algorithm described below,
resulting that the total number of monomials is MON = (b · ns)t, where b
depends on the mixing map M .

(3) The inverse maps G−11 and G−12 can be computed the same way from the
inverse matrix of A1 and B2 respectively and F−1 is also a polynomial.

If the number of monomials in F−1 is not very big, one can get the coefficient
of the polynomial by computing enough number of pairs (x, F (x)). To avoid this
attack we take A1 such that d1 = 1

det(A1)
mod qn − 1 has a expansion in base p

with d1 = [k0, . . . , ke] with at least s1 non-vanishing digits and the same with B2

and d2 = 1
det(B2)

(with at least t1 non-vanishing digits). The details of values of
t1, s1 will be given when discussing the security of the system.

The public key of the system is KP = (h, π0, F) and the private key is given by
h, π0 and the five maps L1, . . . , L3 and their inverses that can be used to encrypt
and decrypt. Given an encrypted message z = F (x) = F (π0(h(x)) = DM(x),
(DM = F ◦ π̃0 ◦ h) one computes x = F−1(z) and discards the random entries
with the use of h.

It is possible to get the monomials of the Fi without computing the composition
of the five maps as follows: we start withm lists that contain the coordinates of the
xi,M11 = [x11, . . . , x1n], . . . ,Mmn = [xm1, . . . , xmn], and we define the operations

6 I. LUENGO

on lists: multiplication and exponentiation. If S = [s1, . . . , sm], T = [t1, . . . , tm]

then S · T = [si · tj] and Sa = [sai].
With these notations, one can see that the exponential G1 produces, on each

component, polynomials whose list of monomials is N0k =Mak1
01 · . . . ·M

akn
0n .

The mixing map M determines that in the list of monomials of each x′k appears
the list N0k, joint with the list N0j of the vectors that are placed at the m−n last
entries of x′k. If bk is the number of vectors adjoined to x′k and by P0k (k = 1, . . . , n)
such a list, then the final list of monomials of each component after G2 to each
monomial x′1

bk1 · . . . · x′n
bkn gives Q0k = P bk1

01 · . . . · P
bkn
0n .

Note that when we apply the final Fq-linear bijection L̃3, each component still
has the same monomial, that means that there are n groups of m polynomials
Fk1, . . . , Fkm such that they have the same monomials, namely the list Q0k.

It is clear that the number of monomials of Q0k is at most ((1+bk)·ns)t. So there
are at most (bmax ·ns)t monomials on each component where bmax = maxk(1+ bk).

Once the list of monomials of the Fi is obtained, one gets the coefficient of each
group of polynomials by evaluating the polynomials Fk1, ...Fkm. The set of pairs
(c, Fki(c)) should be big enough to guarantee that the corresponding linear equa-
tions are independent. That is if Qk = [q1...qd] and Fkj =

∑d
i=1 fjiqi(x) we take

vectors c1, . . . , cR such that the linear equations (on the fij) Fk(ce) =
∑
fjiqi(ce)

are independent and can be solved to get the coefficients of the polynomials
Fk1, . . . , Fkm. This algorithm is implemented in the system to get the public key
from the private key.

It is also possible to use this algorithm to get a fast evaluation of the Fij(c)
to encrypt a message. If one starts with the list of the coordinates of c instead
of the list of variables in the algorithm one finally obtains a list of the evaluated
monomials [qj(c)]. In order to evaluate the polynomials Fkj(c) =

∑d
i=1 fjiqi(c) one

only needs to write their coefficients fij in a matrix MFk = (fji) and compute a
matrix multiplication bi(x) ·MFk.

Summary of the DME system

Fix parameters (m,n, s, t, N, S), a field Fq with q = pe and an Fq-isomorphism
π0 : Fep → Fpe . The public key is KP = (h, π0, F) or KP = (h, π0, F, A1, B2) if we
allow to use the fast evaluation algorithm. The private key is given by the maps
L1, G1, L2, G2, L3 defined by the matrices A1i, A2j, A3j, the exponent matrices A1

and B2 and the mixing map M . The Fq-linear isomorphisms π1 : Fnq → Fqn and
π2 : Fmq → Fqm are not needed for encryption and can be chosen once for all users
of the system or individually for each user and form part of the private key.

DME 7

The exponent matrices A1 and B2 can be deduced from the exponents of the
monomials in Fi so there is no need to hide them and can be made public in order
to use them for the fast method to evaluate the polynomials of the public key.

Digital signature and KEM with the system

The system can be used to sign a message in (Fmq \ {0})n by computing F−1(z).
Since F is not surjective onto (Fmq \{0})n there are messages that can not be signed.
One needs to add some randomness to the message. Given z ∈ (Fmq \ {0})n there
exists x ∈ F−1(z) if (L3 ◦ F ◦ L2)

−1(z) ∈ (Fnq \ {0})m, so the probability for
z /∈ Im(F) is of order 1

qn
.

One can sign a message v in (Fp)
N1 , N1 < enm, by padding it in a similar way

that we do to encrypt a message. We need to choose a map h1 : {1, . . . , N1} →
{1, . . . , e · n ·m} and fill the entries not in Im(h1). There is a difference with the
encryption which is the fact that N1 need not be fixed a priori. The signature of
a message z0 ∈ (Fp)N1 is sig(z0) = (x, z0, h1) such that there exists x = F−1(z). If
it does not exist we padd again z0 to get a different z. For the verification of the
signature one computes F (x) = z and throws away the random digits to get z0.

Given two parties A and B, say A wants to send an encrypted message x to B, A
encrypts x with the public key of B obtaining z ∈ (Fq)nm that can not be padded
because N1 = e · n ·m. If it is not possible to get the signature y = (FA)

−1(z) one
can encrypt x again (because the system is not deterministic) up until one gets a
message that can be signed.

The system can be used for KEM in a standard way but for KEM there is
no need to use the padding. If two parties want to share a key for a symmetric
system like AES they pick up a hash function and one of them A chooses a random
x ∈ (Fq)nm with xi 6= 0 and sends z = FB(x) to B who decrypts z and both parties
compute the common hash.

The setting of the system DME that is implemented in the
proposal

We take m = 3, n = 2, s = t = 2 and q = 2e. The number of monomials
of each component is (2 · ns)t = 64. The polynomial map of the public key is
F = (F1, . . . , F6) : (F2e)

6 → (F2e)
6 where F1, F2, F3 shares 64 monomials and

F4, F5, F6 shares another 64 monomials. For 128 bit security we propose q = 224

that is the message space is (F2)
144. We will justify this choice when we discuss

the security in the corresponding paragraph. For the padding we can add from 3
to 16 bits. For instance if we add only 3 bits, one ′1′ in each coordinate x12, x22

8 I. LUENGO

and x32; one gets a deterministic public key system. We choose to add 12 random
bits, 4 bits in each coordinate, so the encryption maps are DM : (F2)

132 → (F2)
144

F132
2 F6

224 F6
224

h F

for 128 bit.
For 256 bit security we propose q = 248, that is, the message space is (F2)

288

with 24 random bits, that is, the encryption map is DM : (F2)
264 → (F2)

288.

F264
2 F6

248 F6
248

h F

The two implementations we present correspond to DME-(3, 2, 48) (288 bits)
and DME-(3, 2, 48). They are optimized for any processor and we do not include
the padding map, since it is not an essential part of the system from the point of
view of the cost and speed of the system. The especifications of the implemetations
are explained in the readme of the DME-(3, 2, 48) so this can be considered as the
reference implementation.

The different sizes of DME-(3, 2, 48) system are: Public key 2304 bytes. Secret
key 288 bytes. Plain text an encrypted message size 36 bytes (288 bits). If ones
use the padding it is necessary to substract between 3 and 32 bits to the plain
text size.

The different sizes of DME-(3, 2, 24) system are: Public key 1152 bytes. Secret
key 144 bytes. Plain text and encrypted message size 18 bytes (144 bits). If one
use the padding it is necessary to substract between 3 and 16 bits to the plain
text size.

The timing for this implementation can be read at the end of the file kat.txt
created after the compilation. For that give the average of the timings for 1000
tests. We include a file in the documentation with the timings for an Intel i7.

The API consists of the follwing four functions (see api.h):
int dme_skey_to_pkey(char *pkey, const char *skey);
int dme_encrypt(char *ct, const char *pt, const char *pkey);
int dme_decrypt(char *pt, const char *ct, const char *skey);
int dme_encrypt_with_skey(char *ct, const char *pt, const char *skey);
skey_to_pkey This function computes the public key from the secret key that
consists of a list of the coefficients of the matrix that define the three linear iso-
morphisms. They are randomly choosen and the program check if the determinat
are non zero.
encrypt_with_skey The function encrypt_with_skey(ct, pt, skey) does

the same as encrypt, but using a secret key skey instead of a public key pkey, that
is the maps L1, G1, L2, G2, and L3. It is used to generate enough pairs (x, F (x))

to compute the coefficient of the monomials of F and also for testing purposes.

DME 9

Security of proposed setting

We will discuss here the security of DME-(3, 2, 48) that produces a 288 bits
message. We claim that it reaches the level 5 of security and that it is as difficult
to break as AES-256 by classical attacks. The same arguments apply to DME-
(3, 2, 24) (128 bits) or DME-(3, 2, 36) (192 bits). We have estimated the security
against Gröbner basis attackd and the other standard attacks against multivariate
systems and some standard structural attacks. Since the resulting polynomials are
very structured it is reasonable to imagine that there are other structural attacks,
but we were unable to study this question due to the lack of time. In fact the
system DME is very recent, it was finished in November, 2017 and needs further
studies, but since the NIST rules do not allow to send proposals after the deadline,
we will pursue the study of structural attacks along with the rest of the PQCrypto
community.

Algebraic attacks. We have made many computer experiments using MAGMA
and its implementation of the Faugere algorithm F4 with the public key polyno-
mials DME-(3, 2, e) for 2 < e < 9. Our estimations are partial because F4 can
find the Gröbner only until e = 5 (30 bits). For e = 6 or higher F4 can not find
the Gröbner basis because it exhausts the available RAM memory (512GB). Our
conclusions are:

• The highest degree of the steps in the algorithm is at least q. If one
computes the number of operations for the Gröbner Basis algorithm at
this degree it is much bigger than q6, but of course the system it is not
generic.
• The number of monomials involved in the computations is at least q4. One
can also estimate the size of the matrix involved in the algorithm. Also
note that given the matrix of exponents, the number of solutions of the
system over the algebraic closure of Fq can be made at least q3 and this
affects the size of the intermediate computations.
• It is safe to estimate that the number of binary operations in the Gröbner
basis algorithm for DME-(3, 2, 2e) is at least 26e.

One can fix r of the variables and solve the system for the remaining 6 − r

variables, but the bound on the number of operations is basically the same. Let
us assume that q = 248, if we fix 5 variables we get 6 polynomials in one variable
with degree that we may assume is at least 224. We can use the Euclid’s algorithm
but since we have to try 248·5 = 2240 times, it is clear that the number of binary

10 I. LUENGO

operations at least 2256. For r = 4, 3, 2, 1 one has to solve 248r systems in r variables
and the estimates are similar as above.

Another possible attack is to represent the map F as a polynomial P in one
variable over Fq6 . As F sends the coordinate 2-planes to 0 the degree of P is at
least q2 and it will cost more than q6 bit operations to get P.

Another standard attack is to represent F as a polynomial Q map over F2. Each
of the monomials of F involves 4 variables with exponents 2a. The polynomials in
Q will have degree up to 4. The total number of monomials of degree up to 4 in
288 variables is of the order of 228. There are no sharp estimates of the Gröbner
basis complexity for quartic polynomials, this has to be closely investigated but
I believe that the hypothesis that the complexity of solving the resulting system
of 288 equations is at least 2256 is realistic. In fact this attack and the next one
are the main reason to take two exponentiations. Let us remark that there is a
straightforward modification of the parameter choice that makes the system more
secure to this attack. If we allow two of the rows of the matrix A1 to have 3

non-zero entries, then the total number of final monomials is 144 with 6 variables
each.

As we have mentioned earlier the inverse of F is also polynomial but if we take
the matrices A1 and B2 such that the inverse of their determinants has a big
binary weight, then the number of the monomials of F−1 will be exponentially
high. For instance for q = 248 we may assume that the inverse of the det(B2)

mod (q3−1) has at least binary weight 40. By applying the algorithm to compute
the monomials to the list of 64 = 26 monomials, we get a list of (26)40. As the total
number of monomials on 6 variables of degree at most q is around q6 many of the
monomials of the list will be equal, but we can assume that for a generic matrix
the total number will be more than 240. After that we have to apply GA1 and we
can estimate that the final list will have at least 2100. This is one of the strongest
properties of the system that produce invertible maps with 64 monomials but the
inverse can have more than 2100.

Probably the most serious attack to this kind of system is a structural attack.
For instance we can set the entries of the matrices of L1, L2, L3 as variables and
compute the coefficients of the monomials. If we want to solve the resulting
equations we will get 6 · 64 equations in 48 variables of degree up to q. This seems
a hopeless task but as the resulting coefficients are very structured, may be there
is some feasible attack.

DME 11

Advantages and disadvantage of the DME system. The main disadvantage
of the system is that is very new, probably secure against standard attacks, but
its resistance against possible new attacks is unclear.

Advantages.

• The parameters are very easy to adapt with modest decrease of the per-
formance of the system. For instance we can increase e, let say q = 260 or
to take m = 4, 5, 6 or increase the number of non-zero entries in A1.
• The system is mathematically very simple. Only a precise number of multi-
plication and exponentiation are used. For this reason it is easy to protect
the system against timing side channel attacks.
• The system can encrypt and decrypt without failures.
• Digital signatures can fail. The probability of failure is 1/q2, but this can
be fixed with a small padding.
• KEM is straightforward and do not need padding.
• Encryption and signature verification can be sped up using a logarithm
table, if e is not too big, that makes storage and looking at the table
impractical. This property can be very useful for servers that have to
verify thousands of signatures per second.

References

[1] Jintai Ding, Dieter Schmidt, Solving degree and degree of regularity for polynomial systems
over finite fields, Number theory and cryptography, pp. 34-49, Lecture Notes in Comput.
Sci., 8260, Springer, Heidelberg, 2013.

[2] Ding, C. Wolf, B. Yangl-Invertible Cycles for Multivariate Quadratic (MQ) Public Key
Cryptography

[3] I. Luengo, DME a public key, signature and KEM system based on double exponentiation
with matrix exponents, preprint 2017.

[4] J.C. Faugère, A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosys-
tems Using Groebner Bases. CRYPTO 2003, LNCS vol. 2729, pp. 44-60. Springer, 2003.

[5] Tadao Oda,Convex Bodies and Algebraic Geometry Ergebnisse der Mathematik 3. Springer
1988

ICMAT and Departament of Algebra, Geometry and Topology, Complutense
University of Madrid, Plaza de las Ciencias s/n, Ciudad Universitaria, 28040
Madrid, SPAIN

E-mail address: iluengo@ucm.es

	Summary of the DME system
	Digital signature and KEM with the system
	The setting of the system DME that is implemented in the proposal
	Security of proposed setting
	Algebraic attacks
	Advantages and disadvantage of the DME system.

	References

