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A B S T R A C T

Quantum computers have the potential to solve difficult mathematical problems efficiently, therefore meaning
an important threat to Public-Key Cryptography (PKC) if large-scale quantum computers are ever built. The
goal of Post-Quantum Cryptography (PQC) is to develop cryptosystems that are secure against both classical and
quantum computers. DME is a new proposal of quantum-resistant PKC algorithm that was presented for NIST PQC
Standardization competition in order to set the next-generation of cryptography standards. DME is a multivariate
public key, signature and Key Encapsulation Mechanism (KEM) system based on a new construction of the
central maps, that allows the polynomials of the public key to be of an arbitrary degree. In this paper, a high-
throughput pipelined architecture of DME is presented and hardware implementations over Xilinx FPGAs have
been performed. Experimental results show that the architecture here presented exhibits the lowest execution
time and highest throughput when it is compared with other PQC multivariate implementations given in the
literature.

1. Introduction

The rapid development of quantum computing constitutes a signifi-
cant threat to modern Public-Key Cryptography (PKC). The use of Shor’s
algorithm [1] with potential powerful quantum computers could eas-
ily break the two most widely used public key cryptosystems, namely,
RSA and Elliptic Curve Cryptography (ECC), based on integer factor-
ization and discrete logarithm problems. For this reason, Post-Quantum
Cryptography (PQC) [2] based on alternative mathematical features has
become a fundamental research topic due to its resistance against quan-
tum computers. The National Institute of Standards and Technology
(NIST) has even opened a call for proposals of quantum-resistant PKC
algorithms in order to standardize one or more PQC algorithms. Cryp-
tographic systems that appear to be extremely difficult to break with
large quantum computers are hash-based cryptography [3], lattice-based
cryptography [4], code-based cryptography [5], and multivariate-quadratic
cryptography [6]. Furthermore, efficient hardware implementations are
required for these alternative quantum-resistant cryptosystems [7–9].

Multivariate Public-Key Cryptosystems (MPKCs) are cryptosystems
for which the public key is a set of polynomials P(X) = (p1,… , pm) in
variables X = (x1,… , xn) where all the variables and coefficients are
in a finite field. Their security relies on the difficulty of the prob-
lem of solving a set of multivariable quadratic polynomial equations
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over GF(q), which is in general NP-hard. Different schemes of MPKCs
have been proposed in the literature [10–12]. TTS (Tame Transfor-
mation Signature) schemes, such as amended TTS (amTTS) [13] and
enhanced TTS (enTTS) [14] were based on the Tame Transformation
Method (TTM) [15]. The Oil-Vinegar family of MPKCs consists of three
families, named balanced Oil-Vinegar, unbalanced Oil-Vinegar (UOV)
and Rainbow [16], that is a multilayer construction using UOV at each
layer. Rainbow has great potential in terms of its efficiency and appli-
cations in ubiquitous computing [16]. Furthermore, Rainbow is a can-
didate for the NIST PQC Standardization Process that has moved on to
the second round of the competition.

DME [17] is a new multivariate proposal of quantum-resistant pub-
lic key, signature and Key Encapsulation Mechanism (KEM) system
based on a double exponentiation with matrix exponents that was pre-
sented for NIST PQC Standardization competition. This new PKC system
uses a new construction of the central maps, that allow the polynomials
of the public key to be of an arbitrary degree. In order to get a rea-
sonable size for the public key, a small number of variables and special
non-dense linear maps must be used at both ends of the composition.
DME-(m, n, e), with parameters m, n and e, is very new and it has not
yet been completely studied. Although DME-(3,2,48) presented to NIST
could not move on to the second round due to security issues, it is
believed that a different selection of parameters such as (4,2,48) can
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make it secure against standard attacks. Several candidates presented
to NIST PQC competition were based on previous versions of the same
algorithms, so the study of DME would be very important for the pos-
sibility to present it to future competitions. Furthermore, DME is better
than other PQC candidates in aspects such as the encrypted message
size, exhibiting the lowest size of encrypted text for the same security
level. For these reasons, DME and its hardware implementations have
important research values. In this paper, a high-throughput pipelined
architecture for DME-(3,2,48), the reference implementation presented
for the NIST PQC competition, is proposed. An important characteris-
tic is that this architecture is valid for any selection of DME param-
eters. Hardware implementations of DME-(3,2,48) over Xilinx FPGA
have been performed. Experimental results show that the architecture
here presented exhibits the lowest execution time and highest through-
put when it is compared with similar PQC implementations given in the
literature. This high performance makes the study and implementation
of DME of great interest.

The paper is organized as follows. Section 2 provides the basis of the
new DME cryptosystem. Section 3 gives the parameters used for DME-
(3,2,48), the reference implementation presented for the NIST PQC pro-
posal. The new pipelined architecture for DME is presented in Section
4. FPGA implementations and experimental results are given in Section
5, where performance comparison with other PQC multivariate imple-
mentations are also given. Finally, conclusions are described in Section
6.

2. DME cryptosystem

Let 𝔽q = GF(q) be a finite field with q = 2e elements and let n,m,
with 2 ≤ n < m, be fixed integers. DME cryptosystem [17], denoted
as DME-(m, n, e), is based on a polynomial map P ∶ 𝔽 nm

q → 𝔽 nm
q where

P is the composition of five maps, P = L3◦G2◦L2◦G1◦L1, according to
(1).

(1)

The map L1 = 𝜋1 ∘ L̃1 ∘ l̃ is given by the composition of three linear
𝔽q-isomorphism according to the diagram (2).

(2)

The isomorphism l̃ is obtained by grouping the components of the input
x in m vectors according to its index, i.e., l̃ (x1,… , xnm) = (x1,… , xm),
where xi = (xi1,… , xin). The isomorphism L̃1 =

(
L11,… , L1m

)
is

defined by its components L1i ∶ 𝔽 n
q → 𝔽 n

q given by L1i(xi) = xiA1i,
where A1i∈ Mn×n(𝔽q) and det(A1i) ≠ 0. Finally, the map 𝜋1 =
(𝜋1,… , 𝜋1) is defined by the 𝔽q-linear isomorphism 𝜋1 ∶ 𝔽 n

q → 𝔽qn ,
𝜋1(v1,… , vn) = 𝛼1v1 + · · · + 𝛼nvn, where {𝛼1,… , 𝛼n} is a fixed
𝔽q basis of 𝔽qn .

The 𝔽q-linear isomorphism L2 = 𝜋2 ∘ L̃2 ∘ M ∘ 𝜋−1
1 is given by the

composition according to the diagram (3).

(3)

The mixing isomorphism M transforms the m vectors of 𝔽 n
q in n vec-

tors of 𝔽m
q in such a way that the components of x1,… , xn are

placed in the first n components of x′1,… , x′n and the components of
xm−n+1,… , xm are placed in the last m − n components of x′1,… , x′n

[17]. The isomorphism L̃2 = (L21,… , L2n) is defined (in a similar way
as L̃1) by its components L2i ∶ 𝔽m

q → 𝔽m
q with L2i(xi) = xiA2i, where

A2i∈ Mm×m(𝔽q) and det(A2i) ≠ 0. The map 𝜋−1
1 is the inverse of 𝜋1 and

𝜋2 = (𝜋2,… , 𝜋2) is defined by the isomorphism 𝜋2 ∶ 𝔽m
q → 𝔽qm , where

𝜋2(v1,… , vm) = 𝛼1v1 + · · · + 𝛼mvm, where {𝛼1,… , 𝛼m} is a fixed 𝔽q
basis of 𝔽qm .

The 𝔽q-linear isomorphism L3 = ẽ−1 ∘ L̃3 ∘ 𝜋−1
2 is given by the com-

position according to the diagram (4).

(4)

The isomorphism L̃3 = (L31,… , L3n) is defined by its components L3i ∶
𝔽m

q → 𝔽m
q with L3j(x′j ) = x′jA3j, where A3j∈ Mm×m(𝔽q) and det(A3j) ≠ 0.

The map 𝜋−1
2 is the inverse of 𝜋2 and the map ẽ−1 is the inverse of the

isomorphism ẽ that is obtained by grouping the components of x in n
vectors according to its index, i.e., ẽ(x1,… , xnm) = (x1,… , xn), where
xj = (xj1,… , xjm).

The exponential map G1 ∶ (𝔽qn )m → (𝔽qn )m is built as
G1

(
u1,… , um

)
=

((
ua11

1 · … · ua1m
m

)
,… ,

(
uam1

1 · … · uamm
m

))
, where

A = (aij) ∈ ℤm×m is invertible modulo qn − 1 (this is equivalent to
gcd(det(A), qn − 1) = 1) and the entries aij are either zero or powers
of two (up to qn − 1).

The exponential map G2 ∶ (𝔽qm )n → (𝔽qm )n is built as
G2(w1,… ,wn) = ((wb11

1 · … · wb1n
n ),… , (wbn1

1 · … · wbnn
n )), where

B = (bij) ∈ ℤn×n is invertible modulo qm − 1 (equivalent to gcd(det(B),
qm − 1) = 1) and the entries bij are either zero or powers of two (up
to qm − 1).

If x = (x11,… , xnm) ∈ 𝔽 nm
q are the initial coordinates, then the com-

position of the five maps L1, G1, L2, G2, and L3 allows the compu-
tation of the components of P(x) as polynomials Pi ∈ 𝔽q[x11,… , xnm].
The secret key consists of the three maps L1, L2 and L3, which are cho-
sen to be invertible. The public key consists of the nm polynomials in nm
variables that define P. The security of the cryptosystem relies on the
conjecture that it is very hard to recover the maps L1, L2 and L3 from
the polynomial expression of P, and that it is hard to compute P−1(y)
for a given y ∈ 𝔽 nm

q without access to L1, L2 and L3 [17].

3. DME-(3,2,48)

In this paper, a high-throughput pipelined implementation of DME-
(3,2,48), with m = 3, n = 2, and q = 2e = 248, is presented. These set-
tings correspond with the reference implementation given in the NIST
proposal [18].

The finite field 𝔽248 = GF(248) is generated by the type I irreducible
pentanomial [19] f(y) = y48 + y28 + y27 + y + 1 over GF(2). The
elements of the binary extension field GF(248) can be represented in
the polynomial basis (PB) {1, x,… , xm−1}, where x is a root of the irre-
ducible generating polynomial f(y). Any element C ∈ GF(248) is repre-
sented in PB as C = ∑47

i=0 cixi, where c′i s ∈ GF(2) are the coefficients of
C. The composite fields 𝔽(248)2 = GF((248)2) and 𝔽(248)3 = GF((248)3) are
generated by the irreducible polynomials f2(T) = T2 + aT + b and
f3(S) = S3 + cS2 + dS + e over 𝔽248 , respectively, where the ele-
ments a, b, c, d, e ∈ GF(248) were randomly chosen and given as [18]
a = 1 + x + x3 + x4 + x8 + x9 + x13 + x19 + x20 + x21 + x22

+ x23 + x24 + x25 + x26 + x29 + x34 + x36 + x38 + x43,
b = 1 + x2 + x3 + x7 + x8 + x9 + x14 + x16 + x17 + x18 + x21

+ x22 + x23 + x24 + x26 + x27 + x30 + x31 + x35 + x37 + x38

+ x39 + x40 + x43 + x45 + x46 + x47, c = x + x2 + x3 + x5 + x8

+ x11 + x12 + x13 + x14 + x15 + x17 + x19 + x20 + x22 + x24 +
x26 + x29 + x30 + x32 + x33 + x34 + x36 + x37 + x38 + x39,
d = 1 + x + x2 + x3 + x4 + x7 + x9 + x10 + x12 + x14 + x15 +
x16 + x17 + x20 + x21 + x25 + x30 + x31 + x32 + x33 + x37 +
x38 + x41 + x44 + x45 + x46, and e = x + x2 + x5 + x6 + x8 +
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x9 + x11 + x12 + x13 + x14 + x15 + x17 + x19 + x20 + x23 + x24

+ x25 + x26 + x32 + x35 + x38 + x39 + x42 + x46 + x47.
The exponential maps G1 ∶ (𝔽(248)2 )3 → (𝔽(248)2 )3 and

G2 ∶ (𝔽(248)3 )2 → (𝔽(248)3 )2 are induced by the matrices A and B,
respectively, that are given as follows

A =
⎛⎜⎜⎜⎝
2a11 2a12 0

2a21 0 2a23

0 2a32 2a33

⎞⎟⎟⎟⎠ ,B =
(

2b11 2b12

2b21 2b22

)
(5)

where 0 ≤ a11, a12, a21, a23, a32, a33 < 96 and 0 ≤ b11, b12, b21,
b22 < 144 were chosen in such a way that gcd(det(A), 296 − 1) = 1
and gcd(det(B), 2144 − 1) = 1, and that the modular inverses of A
and B (modulo 296 − 1 and 2144 − 1, respectively) have the maxi-
mum number of non-zero bits [18]. Therefore, the chosen values have
been a11 = 24, a12 = 59, a21 = 21, a23 = 28, a32 = 29, a33 = 65
and b11 = 50, b12 = 24, b21 = 7, b22 = 88. The secret key con-
sists of the three maps L1, L2 and L3. L1 is given by the matrices
A11,A12,A13∈ M2×2(𝔽248 ), L2 is given by A21,A22∈ M3×3(𝔽248 ) and L3
is given by A31,A32∈ M3×3(𝔽248 ), where their coefficients are randomly
chosen. DME requires an initial padding step of the input in order to fit
36 bytes (6 inputs with 48 bits). With the above parameters, the public
key has 2304 bytes (6 polynomials with 64 monomials each and with
48-bit coefficients), the secret key has 288 bytes (48-bit coefficients of
the L1, L2 and L3 matrices) and the ciphertext has 36 bytes (6 outputs
with 48 bits each).

4. Pipelined architecture of DME

The pipelined architecture presented for DME-(3,2,48) is given in
Fig. 1, where L1, G1, L2, G2 and L3 are implemented as combinational
modules with 288-bit inputs and outputs. The communication between
these modules are performed through 288-bit pipeline registers. The
architectures of L1, G1, L2, G2 and L3 are described in next subsections.

4.1. Module L1

The map L1 ∶ (𝔽248 )6 → (𝔽(248)2 )3 is implemented with the module
L1 that has six inputs (x1, x2, x3, x4, x5, x6), with xi ∈ GF(248), and
three outputs (v1, v2, v3), with vi ∈ GF((248)2).

The isomorphism l̃ groups the inputs in three vectors in the
form l̃ (x1, x2, x3, x4, x5, x6) = (x1, x2, x3), where x1 = (x1, x2), x2 =
(x3, x4), x3 = (x5, x6) ∈ 𝔽 2

248 . The isomorphism L̃1 = (L11, L12, L13) is
defined by its components L1i ∶ 𝔽 2

248 → 𝔽 2
248 given by L1i(xi) = xiA1i,

where A1i∈ M2×2(𝔽248 ). For example, L11(x1) is given by

L11(x1) = L11(x1, x2) = (x1, x2) ·
(

a11 a12

a13 a14

)
=

(
x1a11 + x2a13, x1a12 + x2a14

)
=

(
v11, v12

)
(6)

where v11 = (x1a11 + x2a13) and v12 = (x1a12 + x2a14) are elements
of the finite field 𝔽248 . The products and additions involved in (6)
are operations over GF(248). In this paper, the bit-parallel polynomial
basis multiplier over GF(248) generated by the type I irreducible pen-
tanomial f(y) = y48 + y28 + y27 + y + 1 given in Ref. [19]
has been used, and addition is performed by bitwise XOR operation.
Finally, the map 𝜋1 = (𝜋1, 𝜋1, 𝜋1) is defined by 𝜋1 ∶ 𝔽 2

248 → 𝔽(248)2 , with
𝜋1(vi1, vi2) = vi1 + vi2𝜏 = vi, i ∈ {1,2,3}, where {1, 𝜏} is the PB
of the composite finite field 𝔽(248)2 = GF((248)2) generated by the irre-
ducible polynomial f2(T) = T2 + aT + b over 𝔽248 , being 𝜏 a
root of f2(T). For example, v1 = v11 + v12𝜏 = (x1a11 + x2a13) + (x1a12 +
x2a14)𝜏 ∈ 𝔽(248)2 .

4.2. Module G1

The exponential map G1 ∶ (𝔽(248)2 )3 → (𝔽(248)2 )3 is implemented
with the module G1 that has three inputs (v1, v2, v3) and three out-
puts (h1, h2, h3), where vi, hi ∈ GF((248)2). G1 is induced by the A matrix
given in (5), in such a way that G1(v1, v2, v3) = (h1, h2, h3) is given by

h1 = v224

1 · v259

2 = h11 + h12𝜏

h2 = v221

1 · v228

3 = h21 + h22𝜏 (7)

h3 = v229

2 · v265

3 = h31 + h32𝜏

where {1, 𝜏} is the PB of the composite field 𝔽(248)2 generated by the
irreducible polynomial f2(T) = T2 + aT + b over 𝔽248 , with 𝜏 a root
of f2(T). The operations involved in (7) are the multiplication (v2k

i ·
v2l

j ) and the k-squared exponentiation (v2k

i ) of 𝔽(248)2 elements. These
operations are described in the following subsections.

4.2.1. Multiplication over 𝔽(248)2
The product p = u1 · u2, with p, u1, u2 ∈ 𝔽(248)2 generated by

f2(T) = T2 + aT + b over 𝔽248 , with 𝜏 a root of f2(T), can be done as
follows

p = p1 + p2𝜏 = u1 · u2 = (u11 + u12𝜏) · (u21 + u22𝜏) =

u11u21 + u11u22𝜏 + u12u21𝜏 + u12u22𝜏
2 =

u11u21 + (u11u22 + u12u21)𝜏 + u12u22(a𝜏 + b) =

(u11u21 + bu12u22) + (u11u22 + u12u21 + au12u22)𝜏 (8)

where 𝜏2 = a𝜏 + b. It must be noted that the operations involved
in (8) are products and additions over GF(248), implemented using the
multiplier given in Ref. [19] and with bitwise XORs, respectively. The
architecture for the multiplication over 𝔽(248)2 is given in Fig. 2, where
⊠ and ⊕ stand for multiplication and addition over GF(248), respec-
tively.

4.2.2. k-squared exponentiation over 𝔽(248)2

In order to give an expression for the computation of v2k

i , with vi ∈
𝔽(248)2 , we can first compute the expression for v2

i as follows:

(9)

where we use the facts that we are working with finite fields
of characteristic 2 and that we use the irreducible polynomial
f2(T) = T2 + aT + b with root 𝜏, so 𝜏2 = a𝜏 + b. The compu-
tation of successive squares gives

v21

i = (v2
i1 + v2

i2b) + (av2
i2)𝜏

v22

i = (v4
i1 + v4

i2(b
2 + ba2)) + (a3v4

i2)𝜏 (10)

v23

i = (v8
i1 + v8

i2(b
4 + b2a4 + a6b)) + (a7v8

i2)𝜏

v24

i = (v16
i1 + v16

i2 (b
8 + b4a8 + a12b2 + a14b)) + (a15v16

i2 )𝜏

…

from where the following general expression can be given for the com-
putation of the k-squared exponentiation of vi

v2k

i = (v2k

i1 + v2k

i2 Φab(k)) + (a2k−1v2k

i2 )𝜏 (11)

The function Φab(k) in (11) can be deduced from (10) and is given
by the expression

Φab(k) = b2k−1 +
k−2∑
i=1

a(
∑i

j=1 2k−j)b2k−1−i + a(2
k−2)b (12)
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Fig. 1. Pipelined architecture of DME-(3,2,48).

Fig. 2. Multiplication over 𝔽(248)2 .

Using the fact that the sum of the first k terms of a geometric series
is

∑k−1
h=0 2h = 2k − 1, then it can be proven that

∑i
j=1 2k−j = (2k − 1) −∑k−i−1

h=0 2h = 2k − 2k−i, so the general expression for the function Φab(k)
is given by

Φab(k) = b2k−1 +
k−2∑
i=1

a(2
k−2k−i)b2k−1−i + a(2

k−2)b (13)

The expression in (11) requires the computation of Φab(k) given
in (13) and a2k−1, where a is a constant randomly chosen given in
Ref. [18]. These values were precomputed with Maple environment for
the specific values used in (7), k = 21,24,28,29,59,65, and stored
as constants for the implementation. The computation of v2k

i in (11)
also requires the computation of v2k

i− , with vi− ∈ GF(248). This k-squared
exponentiation were performed by successive squaring of vi− using the
method given in Ref. [19]. As an example, the architecture for the com-
putation of v221

1 = e1 + e2𝜏 over 𝔽(248)2 using (11) is given in Fig. 3,
where ⊠ and ⊕ stand for multiplication and addition over GF(248),
respectively.

Fig. 3. Architecture for v221

1 over 𝔽(248)2 .

4.3. Module L2

The map L2 ∶ (𝔽(248)2 )3 → (𝔽(248)3 )2 is implemented with the mod-
ule L2 that has three inputs (h1, h2, h3), with hi ∈ GF((248)2), and two
outputs (k1, k2), where ki ∈ GF((248)3).

The map 𝜋−1
1 = (𝜋−1

1 , 𝜋−1
1 , 𝜋−1

1 ) is the inverse of 𝜋1, in such a way
that 𝜋−1

1 ∶ 𝔽(248)2 → 𝔽 2
248 , with 𝜋−1

1 (hi) = 𝜋−1
1 (hi1 + hi2𝜏) = (hi1, hi2), i ∈

{1,2,3}, where {1, 𝜏} is the PB of the composite field 𝔽(248)2 generated
by f2(T) = T2 + aT + b over 𝔽248 , with 𝜏 a root of f2(T). The mixing
isomorphism M ∶ (𝔽 2

248 )3 → (𝔽 3
248 )2 transforms the three vectors of 𝔽 2

248

in two vectors of 𝔽 3
248 as follows

⎛⎜⎜⎜⎝
h11 h12

h21 h22

h31 h32

⎞⎟⎟⎟⎠
M
⟹

(
h11 h12 h31

h21 h22 h32

)
(14)

where h1 = (h11, h12, h31) and h2 = (h21, h22, h32). The isomorphism
L̃2 = (L21, L22) is defined by L2i ∶ 𝔽 3

248 → 𝔽 3
248 with L2i(hi) = hiA2i and
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Fig. 4. Multiplication over 𝔽(248)3 .

A2i∈ M3×3(𝔽248 ). For example, L21(h1) = (k11, k12, k13) is computed by

L21(h1) = (h11, h12, h31) ·
⎛⎜⎜⎜⎝
a11 a12 a13

a14 a15 a16

a17 a18 a19

⎞⎟⎟⎟⎠ (15)

where k11 = (h11a11 + h12a14 + h31a17), k12 =
(h11a12 + h12a15 + h31a18) and k13 = (h11a13 + h12a16 + h31a19)
are elements of the finite field 𝔽248 . The products and additions
involved in (15) are operations over GF(248). Finally, the map
𝜋2 = (𝜋2, 𝜋2) is defined by the isomorphism 𝜋2 ∶ 𝔽 3

248 → 𝔽(248)3 ,
with 𝜋2(ki1, ki2, ki3) = ki1 + ki2𝜈 + ki3𝜈

2 = ki, i ∈ {1,2},
where {1, 𝜈, 𝜈2} is the polynomial basis of the composite field
𝔽(248)3 = GF((248)3) generated by the irreducible polynomial
f3(S) = S3 + cS2 + dS + e over 𝔽248 , being 𝜈 a root of f3(S).
For example, k1 = k11 + k12𝜈 + k13𝜈

2 ∈ 𝔽(248)3 .

4.4. Module G2

The exponential map G2 ∶ (𝔽(248)3 )2 → (𝔽(248)3 )2 is implemented
with the module G2 that has two inputs (k1, k2) and two outputs
(w1,w2) with ki,wi ∈ GF((248)3). G2 is induced by the B matrix given in
(5), in such a way that G2(k1, k2) = (w1,w2) is given by

w1 = k250

1 · k224

2 = w11 + w12𝜈 + w13𝜈
2

w2 = k27

1 · k288

2 = w21 + w22𝜈 + w23𝜈
2 (16)

where {1, 𝜈, 𝜈2} is the PB of 𝔽(248)3 generated by
f3(S) = S3 + cS2 + dS + e over 𝔽248 , with 𝜈 a root of f3(S).

The operations involved in (16) are the multiplication (k2r

i · k2s

j ) and

the r-squared exponentiation (k2r

i ) of 𝔽(248)3 elements. These operations
are described in the following subsections.

4.4.1. Multiplication over 𝔽(248)3
The product p = u1 · u2, with p, u1, u2 ∈ 𝔽(248)3 generated by

f3(S) = S3 + cS2 + dS + e over 𝔽248 , with 𝜈 a root of f3(S), can
be done as

p = p1 + p2𝜈 + p3𝜈
2 = u1 · u2 =

(u11 + u12𝜈 + u13𝜈
2) · (u21 + u22𝜈 + u23𝜈

2) = u11u21+

(u11u22 + u12u21)𝜈 + (u11u23 + u12u22 + u13u21)𝜈2+

(u12u23 + u13u22)𝜈3 + u13u23𝜈
4 =

[u11u21 + e(u12u23 + u13u22) + ceu13u23]+

[(u11u22 + u12u21) + d(u12u23 + u13u22)+

(cd + e)u13u23]𝜈 + [(u11u23 + u12u22 + u13u21)+

c(u12u23 + u13u22) + (c2 + d)u13u23]𝜈2 (17)

where 𝜈3 = c𝜈2 + d𝜈 + e and 𝜈4 = (c2 + d)𝜈2 + (cd + e)𝜈 + ce.
It must be noted that the arithmetic operations involved in (17)

are multiplications and additions over GF(248), implemented using the
multiplier given in Ref. [19] and with bitwise XORs, respectively. The
architecture for the multiplication over 𝔽(248)3 is given in Fig. 4, where
⊠ and ⊕ stand for multiplication and addition over GF(248), respec-
tively.

4.4.2. r-squared exponentiation over 𝔽(248)3

In order to give an expression for the computation of k2r

i , with ki =
(ki1 + ki2𝜈 + ki3𝜈

2) ∈ 𝔽(248)3 , we can first compute the expression for k2
i

as follows:

(18)

where we use the facts that we are working with finite fields
of characteristic 2 and that we use the irreducible polynomial
f3(S) = S3 + cS2 + dS + e with 𝜈 a root of f3(S), so
𝜈3 = c𝜈2 + d𝜈 + e and 𝜈4 = (c2 + d)𝜈2 + (cd + e)𝜈 + ce.

In order to compute the r-squared exponentiation k2r

i , it must be
noted the following modular reduction property. The computation of
successive powers of 𝜈 gives:

𝜈3 = c𝜈2 + d𝜈 + e

𝜈4 = [c2 + d]𝜈2 + [cd + e]𝜈 + ce (19)

𝜈5 = [c3 + e]𝜈2 + [(c2 + d)d + ce]𝜈 + [(c2 + d)e]

𝜈6 = [c4 + c2d + d2]𝜈2 + [c3d + c2e]𝜈 + [(c3 + e)e]

…

from where it can be observed that if 𝜈i = 𝜂𝜈2 + 𝜓𝜈 + 𝜔, then

𝜈i+1 = [𝜂c + 𝜓]𝜈2 + [𝜂d + 𝜔]𝜈 + [𝜂e] (20)
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Fig. 5. Architecture for k27

1 over 𝔽(248)3 .

Furthermore, it can also be observed that if the j-squared exponentia-
tion 𝜈2j = 𝛼𝜈2 + 𝛽𝜈 + 𝛾 , then

𝜈2j+1 = [𝛽2 + 𝛼2(c2 + d)]𝜈2 + [𝛼2(cd + e)]𝜈+

[𝛾2 + 𝛼2ce] = 𝛿𝜈2 + 𝜖𝜈 + 𝜁 (21)

Using the expressions (20) and (21), the successive squarings of ki
can be computed. For example, k22

i is given by

k22

i = [k4
i1 + cek4

i2 + (c2e2 + ce(c4 + d2))k4
i3]+

[(cd + e)k4
i2 + ((cd + e)(c4 + d2))k4

i3]𝜈+ (22)

[(c2 + d)k4
i2 + (c6 + e2 + d(c4 + d2))k4

i3]𝜈
2

The computation of successive squarings as in (22) let us to give a
general expression for the computation of k2r

i . Let 𝜈2r = 𝛼𝜈2 + 𝛽𝜈 + 𝛾
and 𝜈2r+1 = 𝛿𝜈2 + 𝜖𝜈 + 𝜁 (21). Then the r-squared exponentiation k2r

i is
given by the expression

k2r

i = [k2r

i1 + 𝛾k2r

i2 + 𝜁k2r

i3 ] + [𝛽k2r

i2 + 𝜖k2r

i3 ]𝜈+

[𝛼k2r

i2 + 𝛿k2r

i3 ]𝜈
2 (23)

where 𝛿 = 𝛽2 + 𝛼2(c2 + d), 𝜖 = 𝛼2(cd + e) and 𝜁 = 𝛾2 + 𝛼2ce.
The computation of k27

1 , k
224

2 , k250

1 and k288

2 given in (16) can be
done using (23), where the values 𝛼, 𝛽, 𝛾 and 𝛿, 𝜖, 𝜁 must be computed
for 𝜈27

, 𝜈224
, 𝜈250

, 𝜈288 and 𝜈28
, 𝜈225

, 𝜈251
, 𝜈289 , respectively. In order to

speed up the implementation, these values were precomputed using
(21) with Maple environment and stored as constants. The computation
of k2r

i in (23) also requires the computation of k2r

i−, with ki− ∈ GF(248).
This r-squared exponentiation were performed by successive squaring
of ki− using the method given in Ref. [19]. As an example, the architec-
ture for the computation of k27

1 = e1 + e2𝜈 + e3𝜈
2 over 𝔽(248)3 using (23)

is given in Fig. 5, where ⊠ and ⊕ stand for multiplication and addition
over GF(248), respectively.

4.5. Module L3

Module L3 implements the map L3 ∶ (𝔽(248)3 )2 → (𝔽248 )6, so it
has two inputs (w1,w2) with wi ∈ GF((248)3) and six outputs
(o1, o2, o3, o4, o5, o6) with oi ∈ GF(248). The inputs (w1,w2) to L3 are
the outputs of G2.

The map 𝜋−1
2 = (𝜋−1

2 , 𝜋−1
2 ) is the inverse of 𝜋2, in such a way

that 𝜋−1
2 ∶ 𝔽(248)3 → 𝔽 3

248 , with 𝜋−1
2 (wi) = 𝜋−1

2 (wi1 + wi2𝜈 + wi3𝜈
2) =

Table 1
Comparison of clock cycles.

Scheme Clock cycles

enTTS(28,20) [14] 16,000
ECC-163 [20] 4050
ECC-163 [21] 3308
Rainbow(42,24) [13] 3150
UOV(60,20) [13] 2260
ECC-163 [22] 1371
Rainbow(42,24) [23] 804
UOV(30,10) [13] 630
Rainbow(42,24) [7] 198
amTTS(34,24) [13] 195
enTTS(28,20) [13] 162
Rainbow(42,24) [24] 148
enTTS(28,20) [25] 90
DME-(3,2,48) 5

(wi1,wi2,wi3) = wi, i ∈ {1,2}, where {1, 𝜈, 𝜈2} is the PB of the com-
posite field 𝔽(248)3 generated by f3(S) = S3 + cS2 + dS + e over
𝔽248 , being 𝜈 a root of f3(S). The isomorphism L̃3 = (L31, L32) is defined
by its components L3i ∶ 𝔽 3

248 → 𝔽 3
248 given by L3i(wi) = wiA3i = oi, where

A3i∈ M3×3(𝔽248 ). For example, L31(w1) = (o1, o2, o3) = o1 is computed
by

L31(w1) = (w11,w12,w31) ·
⎛⎜⎜⎜⎝
a11 a12 a13

a14 a15 a16

a17 a18 a19

⎞⎟⎟⎟⎠ (24)

where o1 = (w11a11 + w12a14 + w31a17), o2 =
(w11a12 + w12a15 + w31a18) and o3 = (w11a13 + w12a16 + w31a19)
are elements of 𝔽248 . The products and additions involved in (24)
are operations over GF(248). Finally, the map ẽ−1 is the inverse
of the isomorphism ẽ that groups the six inputs in two vectors,
so ẽ−1(o1, o2) = (o1, o2, o3, o4, o5, o6), with o1 = (o1, o2, o3) and
o2 = (o4, o5, o6).

5. FPGA implementation and performance comparison

The pipelined architecture for DME-(3,2,48) has been compared in
Table 1 with other multivariate public-key cryptosystems, with respect
to the number of clock cycles needed for performing the computations.
In Table 1, efficient architectures for Elliptic-Curve Point Multiplication
in GF(2163) (ECC-163) have also been included for comparison, where
parameters (n,m) for UOV, Rainbow, amTTS and enTTS correspond with
n- and m-bytes signature and message sizes, respectively. In Table 1 it
can be observed that the architecture for DME-(3,2,48) only requires
five clock cycles in comparison with other multivariate schemes, which
require a minimum of 90 clock cycles (enTTS). It must also be noted
that the pipelined architecture is valid for any DME-(m, n, e).

The architecture previously presented for DME-(3,2,48) has been
described in VHDL (VHSIC-Hardware Description Language), where the
modules L1, G1, L2, G2 and L3 were modeled as combinational logic
with 288-bit inputs/outputs using 288-bit interleaved pipeline regis-
ters. The design was synthesized and implemented using Xilinx ISE 14.7
tool on Artix-7 XC7A200T-FFG1156 FPGA device. Furthermore, speed
high optimizations have been part of the design methodology. Experi-
mental post-place and route results of our implementation are given in
Table 2, where FPGA results reported in the literature for other mul-
tivariate schemes have also been included for comparison. In order to
determine the frequency of our pipelined implementation, time restric-
tions were imposed to the synthesis tool that determined a minimum
clock period of 15.0 ns and, therefore, a clock frequency of 67 MHz. In
Table 2, T (μs) represent the execution time for each scheme and the
Area × T metrics (less is better) expresses area by execution time (in
slices × miliseconds) in order to compare the area and delay. It must be
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Table 2
FPGA implementation comparison.

Scheme Device F (MHz) T (μs) Area (slices) Throughput (Mb/s) Area × T (slices × ms)

ECC-163 [20] V2 100 41.000 3416 3.98 140.06
ECC-163 [20] V4 197 21.000 4080 7.93 85.68
ECC-163 [21] VE 48 68.900 – 2.36 447.90
ECC-163 [22] V5 250 5.500 6150 29.64 33.82
Rainbow(42,24) [13] V3 80 7.780 4123 43.18 32.08
Rainbow(42,24) [13] V5 200 5.600 2000 60.00 11.20
Rainbow(42,24) [7] St-II 50 3.960 – 84.85 –
Rainbow(42,24) [24] V7 200 0.610 5878 550.82 3.58
UOV(60,20) [13] V3 80 14.620 9821 32.82 143.60
UOV(60,20) [13] V5 200 5.850 5334 82.05 31.20
UOV(30,10) [13] V3 80 4.190 3060 57.31 12.80
UOV(30,10) [13] V5 200 1.670 1585 143.28 2.70
amTTS(34,24) [13] V3 80 2.440 3139 111.57 7.70
amTTS(34,24) [13] V5 200 0.970 1659 278.97 1.60
enTTS(28,20) [13] V3 80 2.020 3060 110.62 6.20
enTTS(28,20) [13] V5 200 0.810 1585 276.54 1.20
enTTS(28,20) [25] St 100 0.900 – 248.90 –
DME-(3,2,48) A7 67 0.075 24,562 3840.00 1.84

VE = Xilinx Virtex-E, V2 = Virtex-2, V3 = Virtex-3, V4 = Virtex-4, V5 = Virtex-5, V7 = Virtex-7, A7 = Artix-7, St = Altera Stratix,
St-II = Stratix II.

noted that the Artix-7 XC7A200T-FFG1156 used for the implementation
has a limited number of 500 input/output user pins, so the architecture
given in Fig. 1 had to be slightly modified. In order to include the com-
plete architecture in only one FPGA, the outputs obtained from the L3
module were loaded into a 288-bit shift-register (controlled by a small
FSM) in such a way that the results oi ∈ GF(248), with i = {1,… ,6},
were obtained in additional clock cycles (one per cycle). The results
reported in Table 2 do not include these additional cycles because they
are due to the limited number of pins.

Experimental results show that DME-(3,2,48) can perform a com-
plete computation in 75 ns, one magnitude order (87.7%) faster than
Rainbow(42,24) [24], the fastest scheme given in the literature. This
result is specially important because Rainbow is one of the candidates to
the NIST PQC Standardization Process that has moved on to the second
round of the competition. Furthermore, the throughput of our imple-
mentation is 3.84 Gbps, again one magnitude order (597%) higher than
Rainbow(42,24) [24], the best multivariate throughput result given in
Table 2. A comparison of throughputs is shown in Fig. 6, where the best
results for the different schemes considered in Table 2 are included. Due
to the pipelined architecture and combinational modeling of the differ-
ent DME modules, the number of slices used for the implementation is
the highest one among the other schemes. Anyway, the Area × T metrics
(less is better) expresses a very good value of 1.84 slices × miliseconds,
that is the third best result among the other implementations given in
Table 2.

6. Conclusion

DME-(m, n, e) is a new proposal of quantum-resistant multivariate
PKC algorithm. In this paper, a pipelined architecture of DME-(3,2,48)
has been presented and hardware implementations over Xilinx FPGAs
have been performed. The proposed pipelined architecture, that is valid
for any DME-(m, n, e) cryptosystem, only requires five clock cycles for
performing computations. Experimental results show that the archi-
tecture here presented exhibits the lowest execution time and highest
throughput when it is compared with other multivariate PQC imple-
mentations. Specifically, DME-(3,2,48) is 87.7% faster and presents
a throughput 597% higher than Rainbow(42,24), the best multivari-
ate implementation found in the literature. These results are specially
important because Rainbow is one of the candidates to the NIST PQC
competition that has moved on to the second round. Furthermore, the
Area × T metrics for DME-(3,2,48) presents the third best result among
the other multivariate schemes here considered.

Fig. 6. Throughput for most relevant schemes given in Table 2.
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