Transference and restriction of Fourier multipliers on Orlicz spaces

OSCAR BLASCO
joint work with Ruya Üster (Istanbul University)

Universidad Valencia

XX EARCO
Encuentros de Análisis Real y Complejo
28 Mayo, 2022
Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a p-multiplier in $\mathcal{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x) \hat{f}(x) e^{ixy} \, dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$.

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \rightarrow \mathbb{C}$ is said to be a p-multiplier in $M_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x) \hat{f}(x) e^{i xy} \, dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$.

Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m : \mathbb{T} \rightarrow \mathbb{C}$) is said to be a p-multiplier in $M_p(\mathbb{Z})$ (respect. $M_p(\mathbb{T})$).
Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a p-multiplier in $\mathcal{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x) \hat{f}(x) e^{ixy} \, dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$.

Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m : \mathbb{T} \to \mathbb{C}$) is said to be a p-multiplier in $\mathcal{M}_p(\mathbb{Z})$ (respect. $\mathcal{M}_p(\mathbb{T})$), if

$$T_m(f)(t) = \sum_{n \in \mathbb{Z}} m_n \hat{f}(n)e^{int}$$

(respect. $\left(T_m((\alpha_n)) \right)_n = \left(\int_0^{2\pi} m(t)(\sum_k \alpha_k e^{ikt})e^{int} \frac{dt}{2\pi} \right)_n$)
Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a p-multiplier in $M_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x) \hat{f}(x) e^{i xy} \, dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$.

Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m : \mathbb{T} \to \mathbb{C}$) is said to be a p-multiplier in $M_p(\mathbb{Z})$ (respect. $M_p(\mathbb{T})$), if

$$T_m(f)(t) = \sum_{n \in \mathbb{Z}} m_n \hat{f}(n) e^{int}$$

(respect. $\left(T_m((\alpha_n)) \right)_n = \left(\int_{0}^{2\pi} m(t)(\sum_{k} \alpha_k e^{ikt}) e^{int} \, dt \frac{dt}{2\pi} \right)_n$) defines a bounded operator from $L^p(\mathbb{T})$ into $L^p(\mathbb{T})$ (respect. from $\ell^p(\mathbb{Z})$ into $\ell^p(\mathbb{Z})$.)
Transference and restriction

Let $m : \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$.

K. DeLeeuw, (1965) YES

Tool (Use the Bohr group \mathbb{D}, that is \mathbb{R} with the discrete topology.

$\mathcal{M}_p(\mathbb{R}) = \mathcal{M}_p(\mathbb{D})$

Aim: Similar questions for multipliers between Orlicz spaces

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi \lfloor t/2\pi \rfloor)$. Does it hold that $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?
Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi\lfloor t/2\pi \rfloor)$. Does it hold that $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?

Let $m_n = m(n)$. Does it hold that $(m_n) \in \mathcal{M}_p(\mathbb{T})$?
Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi \lfloor t/2\pi \rfloor)$. Does it hold that $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?

Let $m_n = m(n)$. Does it hold that $(m_n) \in \mathcal{M}_p(\mathbb{T})$?

K. DeLeeuw, (1965) YES
Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in M_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi \lfloor t/2\pi \rfloor)$. Does it hold that $\tilde{m} \in M_p(\mathbb{Z})$?

Let $m_n = m(n)$. Does it hold that $(m_n) \in M_p(\mathbb{T})$?

K. DeLeeuw, (1965) YES

Tool (Use the Bohr group D, that is \mathbb{R} with the discrete topology. $M_p(\mathbb{R}) = M_p(D)$)
Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi \lfloor t/2\pi \rfloor)$. **Does it hold that** $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?

Let $m_n = m(n)$. **Does it hold that** $(m_n) \in \mathcal{M}_p(\mathbb{T})$?

K. DeLeeuw, (1965) YES

Tool (Use the Bohr group \mathbb{D}, that is \mathbb{R} with the discrete topology. $\mathcal{M}_p(\mathbb{R}) = \mathcal{M}_p(\mathbb{D})$

Aim: Similar questions for multipliers between Orlicz spaces
Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group,
Groups

Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group, \(\hat{G}\) the dual group of \(G\) and
Groups

Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group, \(\hat{G}\) the dual group of \(G\) and \(m_G\) stands for the Haar measure.
Groups

Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group, \(\hat{G}\) the dual group of \(G\) and \(m_G\) stands for the Haar measure. **Examples to be used:** \(\mathbb{R}\) for the real line, \(\mathbb{D}\) for the \(\mathbb{R}\) with the discrete topology, \(\mathbb{T}\) for the unit circle and \(\mathbb{Z}\) for the integers.
Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure.

Examples to be used: \mathbb{R} for the real line, \mathbb{D} for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.

We write

$$\hat{f}(\gamma) = \int_G f(x)\gamma^{-1}(x)dm_G(x)$$

for $\gamma \in \hat{G}$ whenever $f \in L^1(G)$.
Groups

Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group, \(\hat{G}\) the dual group of \(G\) and \(m_G\) stands for the Haar measure.

Examples to be used: \(\mathbb{R}\) for the real line, \(\mathbb{D}\) for the \(\mathbb{R}\) with the discrete topology, \(\mathbb{T}\) for the unit circle and \(\mathbb{Z}\) for the integers.

We write

\[
\hat{f}(\gamma) = \int_G f(x)\gamma^{-1}(x)dm_G(x)
\]

for \(\gamma \in \hat{G}\) whenever \(f \in L^1(G)\).

Given a bounded measurable function \(m\) defined on \(G\) we write

\[
T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.
\]

for any \(f \in A(\hat{G}) = \{f : \hat{G} \to \mathbb{C} : \hat{f} \in L^1(G)\}\).
Groups

Throughout the paper \((G, \cdot)\) denotes a locally compact abelian group, \(\hat{G}\) the dual group of \(G\) and \(m_G\) stands for the Haar measure.

Examples to be used: \(\mathbb{R}\) for the real line, \(\mathbb{D}\) for the \(\mathbb{R}\) with the discrete topology, \(\mathbb{T}\) for the unit circle and \(\mathbb{Z}\) for the integers.

We write

\[
\hat{f}(\gamma) = \int_G f(x)\gamma^{-1}(x)dm_G(x)
\]

for \(\gamma \in \hat{G}\) whenever \(f \in L^1(G)\).

Given a bounded measurable function \(m\) defined on \(G\) we write

\[
T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.
\]

for any \(f \in A(\hat{G}) = \{f : \hat{G} \to \mathbb{C} : \hat{f} \in L^1(G)\}\).
Orlicz spaces

Given a Young function \(\Phi : [0, \infty) \rightarrow [0, \infty) \), that is convex, \(\Phi(0) = 0 \) and \(\lim_{x \to \infty} \Phi(x) = \infty \), we write

\[
\rho_\Phi(f) = \int_G \Phi(|f(x)|) dm_G(x).
\]
Orlicz spaces

Given a Young function $\Phi : [0, \infty) \to [0, \infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x \to \infty} \Phi(x) = \infty$, we write

$$\rho_\Phi(f) = \int_G \Phi(|f(x)|)dm_G(x).$$

Then the Orlicz space $L^\Phi(G)$ consists of the set of all measurable functions $f : G \to \mathbb{C}$ such that $\rho_\Phi(f/\lambda) < \infty$ for some $\lambda > 0$.

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
Orlicz spaces

Given a Young function $\Phi : [0, \infty) \to [0, \infty)$, that is convex, $\Phi(0) = 0$ and $
\lim_{x \to \infty} \Phi(x) = \infty$, we write

$$\rho_\Phi(f) = \int_G \Phi(|f(x)|) dm_G(x).$$

Then the Orlicz space $L^\Phi(G)$ consists of the set of all measurable functions $f : G \to \mathbb{C}$ such that $\rho_\Phi(f/\lambda) < \infty$ for some $\lambda > 0$.

Some equivalent norms:

(Luxemburg norm) $N_\Phi(f) = \inf\{\lambda > 0 : \rho_\Phi(f/\lambda) \leq 1\}$
Orlicz spaces

Given a Young function \(\Phi : [0, \infty) \to [0, \infty) \), that is convex, \(\Phi(0) = 0 \) and \(\lim_{x \to \infty} \Phi(x) = \infty \), we write

\[
\rho_\Phi(f) = \int_G \Phi(|f(x)|) dm_G(x).
\]

Then the Orlicz space \(L^\Phi(G) \) consists of the set of all measurable functions \(f : G \to \mathbb{C} \) such that \(\rho_\Phi(f/\lambda) < \infty \) for some \(\lambda > 0 \).

Some equivalent norms:

(Luxemburg norm) \(N_\Phi(f) = \inf\{\lambda > 0 : \rho_\Phi(f/\lambda) \leq 1\} \)

(Orlicz norm) \(\|f\|_\Phi = \sup\{\int_G |f(x)g(x)| dm_G(x) : \rho_\Psi(g) \leq 1\} \) where \(\Psi \) is the complementary Young function, i.e.

\(\Psi(y) = \sup\{xy - \Phi(x) : x \geq 0\} \) for \(y \geq 0 \).
Orlicz spaces

Given a Young function \(\Phi : [0, \infty) \to [0, \infty) \), that is convex, \(\Phi(0) = 0 \) and \(\lim_{x \to \infty} \Phi(x) = \infty \), we write

\[
\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).
\]

Then the Orlicz space \(L^{\Phi}(G) \) consists of the set of all measurable functions \(f : G \to \mathbb{C} \) such that \(\rho_{\Phi}(f/\lambda) < \infty \) for some \(\lambda > 0 \).

Some equivalent norms:

(Luxemburg norm) \(N_{\Phi}(f) = \inf \{ \lambda > 0 : \rho_{\Phi}(f/\lambda) \leq 1 \} \)

(Orlicz norm) \(\|f\|_{\Phi} = \sup \{ \int_{G} |f(x)g(x)| dm_{G}(x) : \rho_{\Psi}(g) \leq 1 \} \) where \(\Psi \) is the complementary Young function, i.e.

\(\Psi(y) = \sup \{ xy - \Phi(x) : x \geq 0 \} \) for \(y \geq 0 \).

(Amemiya norm) \(\|\|f\|\|_{\Phi} = \inf_{k > 0} \frac{1}{k}(1 + \rho_{\Phi}(kf)) \).
Δ₂-condition

A Young function Φ is said to satisfy Δ_2-condition (globally) if there exists a constant $K > 0$ such that

$$\Phi(2x) \leq K\Phi(x), \quad x \geq 0.$$ \hfill (2)

A Young function Φ is said to satisfy ∇_2-condition (globally) if there exists a constant $\ell > 1$ such that

$$\Phi(x) \leq \frac{1}{2\ell} \Phi(\ell x) \quad x \geq 0.$$ \hfill (3)
\[\Delta_2 \text{-condition} \]

A Young function \(\Phi \) is said to satisfy \(\Delta_2 \)-condition (globally) if there exists a constant \(K > 0 \) such that

\[
\Phi(2x) \leq K \Phi(x), \quad x \geq 0. \tag{2}
\]

A Young function \(\Phi \) is said to satisfy \(\nabla_2 \)-condition (globally) if there exists a constant \(\ell > 1 \) such that

\[
\Phi(x) \leq \frac{1}{2\ell} \Phi(\ell x) \quad x \geq 0. \tag{3}
\]
Multipliers

Given a bounded measurable function \(m \) defined on \(G \) and \(f \in A(\hat{G}) \) we write

\[
T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.
\] (4)
Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}. \quad (4)$$

Let Φ_1 and Φ_2 be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_1, Φ_2)-multiplier on G if there exists $C > 0$ such that

$$N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f) \quad (5)$$

for all $f \in A(\hat{G})$.
Multipliers

Given a bounded measurable function \(m \) defined on \(G \) and \(f \in A(\hat{G}) \) we write

\[
T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.
\] (4)

Let \(\Phi_1 \) and \(\Phi_2 \) be Young functions, and let \(m \) be a bounded measurable function defined on \(G \). The function \(m \) is said to be a \((\Phi_1, \Phi_2)\)-multiplier on \(G \) if there exists \(C > 0 \) such that

\[
N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)
\] (5)

for all \(f \in A(\hat{G}) \).
We write \(M_{\Phi_1, \Phi_2}(G) \) for the space of \((\Phi_1, \Phi_2)\)-multipliers on \(G \).
Multipliers

Given a bounded measurable function \(m \) defined on \(G \) and \(f \in A(\hat{G}) \) we write

\[
T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.
\]

(4)

Let \(\Phi_1 \) and \(\Phi_2 \) be Young functions, and let \(m \) be a bounded measurable function defined on \(G \). The function \(m \) is said to be a \((\Phi_1, \Phi_2)\)-multiplier on \(G \) if there exists \(C > 0 \) such that

\[
N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)
\]

(5)

for all \(f \in A(\hat{G}) \).

We write \(M_{\Phi_1,\Phi_2}(G) \) for the space of \((\Phi_1, \Phi_2)\)-multipliers on \(G \).

Whenever \(A(\hat{G}) \) is dense in \(L^{\Phi_1}(\hat{G}) \) we have that \(T_m \) extends to a bounded operator from \(L^{\Phi_1}(\hat{G}) \) to \(L^{\Phi_2}(\hat{G}) \) for any \((\Phi_1, \Phi_2)\)-multiplier \(m \).

Moreover \(\| T_m \|_{L^{\Phi_1}\to L^{\Phi_2}} = \| m \|_{(\Phi_1,\Phi_2)} \).
Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}. \quad (4)$$

Let Φ_1 and Φ_2 be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_1, Φ_2)-multiplier on G if there exists $C > 0$ such that

$$N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f) \quad (5)$$

for all $f \in A(\hat{G})$.

We write $\mathcal{M}_{\Phi_1, \Phi_2}(G)$ for the space of (Φ_1, Φ_2)-multipliers on G. Whenever $A(\hat{G})$ is dense in $L^{\Phi_1}(\hat{G})$ we have that T_m extends to a bounded operator from $L^{\Phi_1}(\hat{G})$ to $L^{\Phi_2}(\hat{G})$ for any (Φ_1, Φ_2)-multiplier m. Moreover

$$\|T_m\|_{L^{\Phi_1} \rightarrow L^{\Phi_2}} = \|m\|_{(\Phi_1, \Phi_2)}.$$

If Φ is a Young function satisfying Δ_2 condition then $A(G)$ is dense in $L^{\Phi}(G)$.
Basic Examples

As usual we denote $\hat{\mu}(x) = \int_{\hat{G}} \gamma^{-1}(x) d\mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G}.
Basic Examples

As usual we denote \(\hat{\mu}(x) = \int \hat{G} \gamma^{-1}(x) d\mu(\gamma) \) for the Fourier transform of a regular Borel measure \(\mu \) defined in \(\hat{G} \).

Proposition

Let \(\Phi_1, \Phi_2 \) and \(\Phi_3 \) be Young functions.

(i) Assume that there exists \(C > 0 \) such that

\[
\Phi_2(x) \leq C \Phi_1(x), \quad x > 0.
\]

If \(m(x) = \hat{\mu}(x) \) for some regular Borel measure \(\mu \) defined on \(\hat{G} \) then \(m \in \mathcal{M}_{\Phi_1, \Phi_2}(G) \). Moreover \(\| m \|_{(\Phi_1, \Phi_2)} \leq C \| \mu \|_1 \).

(ii) Assume that

\[
\Phi_1^{-1}(x) \Phi_2^{-1}(x) \leq x \Phi_3^{-1}(x), \quad x \geq 0.
\]

If \(m(x) = \hat{g}(x) \) for some \(g \in L^1(\hat{G}) \cap L^{\Phi_2}(\hat{G}) \) then \(m \in \mathcal{M}_{\Phi_1, \Phi_3}(G) \) and

\[
\| m \|_{(\Phi_1, \Phi_3)} \leq 2N_{\Phi_2}(g).
\]
Basic Examples

As usual we denote \(\hat{\mu}(x) = \int_{\hat{G}} \gamma^{-1}(x) d\mu(\gamma) \) for the Fourier transform of a regular Borel measure \(\mu \) defined in \(\hat{G} \).

Proposition

Let \(\Phi_1, \Phi_2 \) and \(\Phi_3 \) be Young functions.

(i) Assume that there exists \(C > 0 \) such that

\[
\Phi_2(x) \leq C \Phi_1(x), \quad x > 0.
\]

(6)

If \(m(x) = \hat{\mu}(x) \) for some regular Borel measure \(\mu \) defined on \(\hat{G} \) then \(m \in \mathcal{M}_{\Phi_1,\Phi_2}(G) \). Moreover \(\|m\|_{(\Phi_1,\Phi_2)} \leq C \|\mu\|_1 \).

(ii) Assume that

\[
\Phi_1^{-1}(x) \Phi_2^{-1}(x) \leq x \Phi_3^{-1}(x), \quad x \geq 0.
\]

(7)

If \(m(x) = \hat{g}(x) \) for some \(g \in L^1(\hat{G}) \cap L^{\Phi_2}(\hat{G}) \) then \(m \in \mathcal{M}_{\Phi_1,\Phi_3}(G) \) and

\[
\|m\|_{(\Phi_1,\Phi_3)} \leq 2N_{\Phi_2}(g).
\]
More Examples

Proposition

Let Φ, Φ_i for $i = 1, 2$ be Young functions and $m \in \mathcal{M}_{\Phi_1, \Phi_2}(G)$.

(i) If $\varphi \in L^1(G)$ then $\varphi \ast m \in \mathcal{M}_{\Phi_1, \Phi_2}(G)$. Moreover

$$\| \varphi \ast m \|_{(\Phi_1, \Phi_2)} \leq \| \varphi \|_1 \| m \|_{(\Phi_1, \Phi_2)}$$

(ii) If $\psi \in L^1(\hat{G})$ then $\hat{\psi} m \in \mathcal{M}_{\Phi_1, \Phi_2}(G)$. Moreover

$$\| \hat{\psi} m \|_{(\Phi_1, \Phi_2)} \leq \| \psi \|_1 \| m \|_{(\Phi_1, \Phi_2)}.$$
A bounded measurable function m defined in \mathbb{R} is (Φ_1, Φ_2)-multiplier on \mathbb{R} if there exists $C > 0$ such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi)\hat{f}(\xi)e^{2\pi ix\xi} d\xi$$

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathcal{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

$G = \mathbb{R}$
A bounded measurable function m defined in \mathbb{R} is (Φ_1, Φ_2)-multiplier on \mathbb{R} if there exists $C > 0$ such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} \, d\xi$$

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathcal{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathcal{M}_{p,q}(\mathbb{R})$.

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
A bounded measurable function \(m \) defined in \(\mathbb{R} \) is \((\Phi_1, \Phi_2)\)-multiplier on \(\mathbb{R} \) if there exists \(C > 0 \) such that

\[
T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi
\]

satisfies \(N_{\Phi_2}(T_m(f)) \leq C N_{\Phi_1}(f) \) for any \(f \in \mathcal{S}(\mathbb{R}) \), which in case that \(\Phi_1 \) satisfies \(\Delta_2 \) is equivalent to the fact that \(T_m \) extends to a bounded operator from \(L^{\Phi_1}(\mathbb{R}) \) into \(L^{\Phi_2}(\mathbb{R}) \).

There are a lot of results known about \((p, q)\)-multipliers corresponding to \(\Phi_1(x) = x^p \) and \(\Phi_2(x) = x^q \) and denoted by \(\mathcal{M}_{p, q}(\mathbb{R}) \).

- \(\text{sign}(\xi) \in \mathcal{M}_{p, p}(\mathbb{R}) \) for \(1 < p < \infty \).
G = ℝ

A bounded measurable function m defined in ℝ is (Φ₁, Φ₂)-multiplier on ℝ if there exists C > 0 such that

\[
T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi
\]

satisfies \(N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f) \) for any \(f \in \mathcal{S}(\mathbb{R}) \), which in case that \(\Phi_1 \) satisfies \(\Delta_2 \) is equivalent to the fact that \(T_m \) extends to a bounded operator from \(L^{\Phi_1}(\mathbb{R}) \) into \(L^{\Phi_2}(\mathbb{R}) \). There are a lot of results known about \((p,q)\)-multipliers corresponding to \(\Phi_1(x) = x^p \) and \(\Phi_2(x) = x^q \) and denoted by \(\mathcal{M}_{p,q}(\mathbb{R}) \).

- \(\text{sign}(\xi) \in \mathcal{M}_{p,p}(\mathbb{R}) \) for \(1 < p < \infty \).
- \(|2\pi \xi|^{-\alpha} \in \mathcal{M}_{p,q}(\mathbb{R}) \) for \(0 < \alpha < 1 \), \(1/q = 1/p - \alpha \).
A bounded measurable function m defined in \mathbb{R} is (Φ_1, Φ_2)-multiplier on \mathbb{R} if there exists $C > 0$ such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$

satisfies $N_{\Phi_2}(T_m(f)) \leq C N_{\Phi_1}(f)$ for any $f \in \mathcal{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathcal{M}_{p,q}(\mathbb{R})$.

- $\text{sign}(\xi) \in \mathcal{M}_{p,p}(\mathbb{R})$ for $1 < p < \infty$.
- $|2\pi \xi|^{-\alpha} \in \mathcal{M}_{p,q}(\mathbb{R})$ for $0 < \alpha < 1, 1/q = 1/p - \alpha$.
- $\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q',p'}(\mathbb{R})$ where $1/p + 1/p' = 1$.

$G = \mathbb{R}$
A bounded measurable function m defined in \mathbb{R} is (Φ_1, Φ_2)-multiplier on \mathbb{R} if there exists $C > 0$ such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi)\hat{f}(\xi)e^{2\pi i x \xi} d\xi \quad (8)$$

satisfies $N_{\Phi_2}(T_m(f)) \leq C N_{\Phi_1}(f)$ for any $f \in S(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $M_{p,q}(\mathbb{R})$.

- $\text{sign}(\xi) \in M_{p,p}(\mathbb{R})$ for $1 < p < \infty$.
- $|2\pi \xi|^{-\alpha} \in M_{p,q}(\mathbb{R})$ for $0 < \alpha < 1, 1/q = 1/p - \alpha$.
- $M_{p,q}(\mathbb{R}) = M_{q',p'}(\mathbb{R})$ where $1/p + 1/p' = 1$.
- $M_{2,2}(\mathbb{R}) = L^\infty(\mathbb{R})$.

$G = \mathbb{R}$
A bounded measurable function \(m \) defined in \(\mathbb{R} \) is \((\Phi_1, \Phi_2)\)-multiplier on \(\mathbb{R} \) if there exists \(C > 0 \) such that

\[
T_m(f)(x) = \int_{\mathbb{R}} m(\xi)\hat{f}(\xi)e^{2\pi i x \xi} \, d\xi
\]

satisfies \(N_{\Phi_2}(T_m(f)) \leq C N_{\Phi_1}(f) \) for any \(f \in \mathcal{S}(\mathbb{R}) \), which in case that \(\Phi_1 \) satisfies \(\Delta_2 \) is equivalent to the fact that \(T_m \) extends to a bounded operator from \(L^{\Phi_1}(\mathbb{R}) \) into \(L^{\Phi_2}(\mathbb{R}) \).

There are a lot of results known about \((p, q)\)-multipliers corresponding to \(\Phi_1(x) = x^p \) and \(\Phi_2(x) = x^q \) and denoted by \(\mathcal{M}_{p,q}(\mathbb{R}) \).

- \(\text{sign}(\xi) \in \mathcal{M}_{p,p}(\mathbb{R}) \) for \(1 < p < \infty \).
- \(|2\pi \xi|^{-\alpha} \in \mathcal{M}_{p,q}(\mathbb{R}) \) for \(0 < \alpha < 1 \), \(1/q = 1/p - \alpha \).
- \(\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q', p'}(\mathbb{R}) \) where \(1/p + 1/p' = 1 \).
- \(\mathcal{M}_{2,2}(\mathbb{R}) = L^\infty(\mathbb{R}) \).
- \(\mathcal{M}_{1,1}(\mathbb{R}) = \{ \hat{\mu} : \mu \in M(\mathbb{R}) \} \).
A bounded measurable function m defined in \mathbb{R} is (Φ_1, Φ_2)-multiplier on \mathbb{R} if there exists $C > 0$ such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} \, d\xi$$

satisfies $N_{\Phi_2}(T_m(f)) \leq C N_{\Phi_1}(f)$ for any $f \in \mathcal{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathcal{M}_{p, q}(\mathbb{R})$.

- $\text{sign}(\xi) \in \mathcal{M}_{p,p}(\mathbb{R})$ for $1 < p < \infty$.
- $|2\pi \xi|^{-\alpha} \in \mathcal{M}_{p,q}(\mathbb{R})$ for $0 < \alpha < 1, 1/q = 1/p - \alpha$.
- $\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q', p'}(\mathbb{R})$ where $1/p + 1/p' = 1$.
- $\mathcal{M}_{2,2}(\mathbb{R}) = L^\infty(\mathbb{R})$.
- $\mathcal{M}_{1,1}(\mathbb{R}) = \{ \hat{\mu} : \mu \in \mathcal{M}(\mathbb{R}) \}$
- $\mathcal{M}_{p,q}(\mathbb{R}) = \{ 0 \}$ for $p > q$.
The dilation operator D_λ

Denote $D_\lambda(f)(x) = f(\lambda x)$ for $\lambda > 0$.

$$C_\Phi(\lambda) = \| D_\lambda \|_{L^\Phi(\mathbb{R}) \to L^\Phi(\mathbb{R})} = \sup \{ N_\Phi(D_\lambda(f)) : N_\Phi(f) \leq 1 \}$$

Of course $C_\Phi(\lambda)$ is non-increasing, submultiplicative and $C_\Phi(1) = 1$.

(Boyd indices) $\alpha(\Phi) > 0$ implies Φ satisfies Δ^2 and $\beta(\Phi) < 1$ implies Φ satisfies ∇^2.

Oscar Blasco Transference and restriction of Fourier multipliers on Orlicz spaces
The dilation operator D_λ

Denote $D_\lambda(f)(x) = f(\lambda x)$ for $\lambda > 0$.

$$C_\Phi(\lambda) = \|D_\lambda\|_{L^\Phi(\mathbb{R}) \to L^\Phi(\mathbb{R})} = \sup\{N_\Phi(D_\lambda(f)) : N_\Phi(f) \leq 1\}$$

Of course $C_\Phi(\lambda)$ is non-increasing, submultiplicative and $C_\Phi(1) = 1$.

$$\alpha(\Phi) = \lim_{\lambda \to 0} \frac{\log C_\Phi(\frac{1}{\lambda})}{\log \lambda}, \quad \beta(\Phi) = \lim_{\lambda \to \infty} \frac{\log C_\Phi(\frac{1}{\lambda})}{\log \lambda}. \quad (Boyd \ indices)$$
The dilation operator D_λ

Denote $D_\lambda(f)(x) = f(\lambda x)$ for $\lambda > 0$.

$$C_\Phi(\lambda) = \|D_\lambda\|_{L^\Phi(\mathbb{R}) \to L^\Phi(\mathbb{R})} = \sup\{N_\Phi(D_\lambda(f)) : N_\Phi(f) \leq 1\}$$

Of course $C_\Phi(\lambda)$ is non-increasing, submultiplicative and $C_\Phi(1) = 1$.

$$\alpha(\Phi) = \lim_{\lambda \to 0} \frac{\log C_\Phi(\frac{1}{\lambda})}{\log \lambda}, \quad \beta(\Phi) = \lim_{\lambda \to \infty} \frac{\log C_\Phi(\frac{1}{\lambda})}{\log \lambda} \quad (Boyd \ indices)$$

$\alpha(\Phi) > 0$ implies Φ satisfies Δ_2 and $\beta(\Phi) < 1$ implies Φ satisfies ∇_2.
New results

Theorem

Let Φ_1, Φ_2 be Young functions satisfying Δ_2. If $\mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{R}) \neq \{0\}$ then $\beta(\Phi_1) \geq \alpha(\Phi_2)$.

Corollary

Let $\Phi_{p,q}(t) = \max\{t^p, t^q\}$. If $\max\{p_2, q_2\} < \min\{p_1, q_1\}$ then $\mathcal{M}_{\Phi_{p_1,q_1}, \Phi_{p_2,q_2}}(\mathbb{R}) = \{0\}$.
The Bohr group

It is well-known that \hat{D} is the Bohr compactification of D. We use the notation $AP(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R}, that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t}$ where $x_k \in \mathbb{R}$ and $\alpha_k \in \mathbb{C}$.
The Bohr group

It is well-known that \(\hat{D} \) is the Bohr compactification of \(D \). We use the notation \(AP(\mathbb{R}) \) for the set of all continuous almost periodic functions on \(\mathbb{R} \), that is to say uniform limits of polynomials \(\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t} \) where \(x_k \in \mathbb{R} \) and \(\alpha_k \in \mathbb{C} \).

Recall now the Besicovich-Orlicz spaces for almost periodic functions: If \(f \in AP(\mathbb{R}) \) and \(\Phi \) is a Young function we define

\[
\tilde{\rho}_\Phi(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \Phi(|f(x)|)dx = \lim_{T \to \infty} \int_{-1/2}^{1/2} \Phi(|D_T f(x)|)dx
\]

and

\[
\|f\|_{B\Phi} = \inf\{k > 0 : \tilde{\rho}_\Phi(f/k) \leq 1\}.
\]
The Bohr group

It is well-known that \(\hat{D} \) is the Bohr compactification of \(D \). We use the notation \(AP(\mathbb{R}) \) for the set of all continuous almost periodic functions on \(\mathbb{R} \), that is to say uniform limits of polynomials \(\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t} \) where \(x_k \in \mathbb{R} \) and \(\alpha_k \in \mathbb{C} \).

Recall now the Besicovich-Orlicz spaces for almost periodic functions: If \(f \in AP(\mathbb{R}) \) and \(\Phi \) is a Young function we define

\[
\tilde{\rho}_\Phi(f) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \Phi(|f(x)|)dx = \lim_{T \to \infty} \int_{-1/2}^{1/2} \Phi(|D_T f(x)|)dx
\]

and

\[
\|f\|_{B\Phi} = \inf\{k > 0 : \tilde{\rho}_\Phi(f/k) \leq 1\}.
\]

A basic fact to use for the Bohr group is that if \(\mu \) is any measure defined on \(\mathbb{R} \) having support on a finite number of points, then \(\hat{\mu} \in AP(\mathbb{R}) \) and

\[
\|\hat{\mu}\|_{B\Phi(\mathbb{R})} = \|\mu\|_{L\Phi(\hat{D})}.
\]

(9)
Multipliers for $G = D$

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in M_{\Phi_1, \Phi_2}(D)$ if there exists a constant $C > 0$ such that

$$N_{\Phi_2} \left(\sum \alpha_t m(t) \chi_t \right) \leq C N_{\Phi_1} \left(\sum \alpha_t \chi_t \right)$$

(10)

for any $\alpha = \sum \alpha_t \chi_t$ (finite sum).
Multipliers for $G = D$

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$ if there exists a constant $C > 0$ such that

$$N_{\Phi_2}\left(\sum \alpha_t m(t)\chi_t\right) \leq CN_{\Phi_1}\left(\sum \alpha_t \chi_t\right)$$

for any $\alpha = \sum \alpha_t \chi_t$ (finite sum).

Assume that Φ_2 satisfies ∇_2 and m is a bounded function on \mathbb{R}. The following are equivalent:

(i) $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$.

(ii) There exists a constant K such that

$$|\sum_{t \in \mathbb{R}} m(t)\mu(t)\lambda(t)dx| \leq C\|\hat{\mu}\|_{B_{\Phi_1}} \|\hat{\lambda}\|_{B_{\Psi_2}}$$

for any measures μ and λ on \mathbb{R} having supports on a finite number of points.
Multipliers for $G = D$

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$ if there exists a constant $C > 0$ such that

$$N_{\Phi_2}\left(\sum \alpha_t m(t) \chi_t\right) \leq CN_{\Phi_1}\left(\sum \alpha_t \chi_t\right)$$

(10)

for any $\alpha = \sum \alpha_t \chi_t$ (finite sum).

Assume that Φ_2 satisfies ∇_2 and m is a bounded function on \mathbb{R}. The following are equivalent:

(i) $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$.

(ii) There exists a constant K such that

$$\left| \sum_{t \in \mathbb{R}} m(t) \mu(t) \lambda(t) dx \right| \leq C \|\hat{\mu}\|_{B_{\Phi_1}} \|\hat{\lambda}\|_{B_{\Psi_2}}$$

(11)

for any measures μ and λ on \mathbb{R} having supports on a finite number of points.
Main results 1

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_1, Φ_2 be Young functions such that Φ_2 satisfies ∇_2 and

$$\sup_{\lambda > 1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty. \quad (12)$$

If $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$ then $m \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{R})$.
Main results 1

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_1, Φ_2 be Young functions such that Φ_2 satisfies ∇_2 and

$$\sup_{\lambda > 1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty. \quad (12)$$

If $m \in M_{\Phi_1, \Phi_2}(D)$ then $m \in M_{\Phi_1, \Phi_2}(\mathbb{R})$.

Corollary

Let m be a bounded continuous function on \mathbb{R} such that $m \in M_{\Phi_1, \Phi_2}(D)$ and let Φ_1, Φ_2 be Young functions such that $\alpha(\Phi_1) > \beta(\Phi_2)$. Then $m \in M_{\Phi_1, \Phi_2}(\mathbb{R})$.

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
Main results 2

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_1, Φ_2 be Young functions satisfying that Φ_2 has ∇_2 condition and

$$
\sup_{0<\lambda<1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty. \quad (13)
$$

If $m \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{R})$ then $m \in \mathcal{M}_{\Phi_1, \Phi_2}(D)$.

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces
Main results 2

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_1, Φ_2 be Young functions satisfying that Φ_2 has ∇_2 condition and

$$\sup_{0<\lambda<1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty. \quad (13)$$

If $m \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{R})$ then $m \in \mathcal{M}_{\Phi_1,\Phi_2}(D)$.

Corollary

Let m be a bounded continuous in \mathbb{R} and Φ be a Young function satisfying ∇_2 and

$$\sup_{\lambda > 0} C_{\Phi}(\lambda) C_{\Phi}(\frac{1}{\lambda}) < \infty. \quad (14)$$

Then $m \in \mathcal{M}_{\Phi}(\mathbb{R})$ iff $m \in \mathcal{M}_{\Phi}(D)$.

Oscar Blasco
Transference and restriction of Fourier multipliers on Orlicz spaces
A bounded sequence \(m = (m_n)_{n \in \mathbb{Z}} \) is \((\Phi_1, \Phi_2)\)-multiplier on \(\mathbb{Z} \) if there exists \(C > 0 \) such that

\[
T_m(P)(t) = \sum_{k \in \mathbb{Z}} m_k \alpha_k e^{2\pi i k t}
\]

satisfies \(N_{\Phi_2}(T_m(P)) \leq CN_{\Phi_1}(P) \) for any \(P(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{2\pi i k t} \in P(\mathbb{T}) \), or equivalently, in case that \(\Phi_1 \) satisfies \(\Delta_2 \), extends to a bounded operator from \(L^{\Phi_1}(\mathbb{T}) \) to \(L^{\Phi_2}(\mathbb{T}) \).
\(G = \mathbb{Z} \)

A bounded sequence \(m = (m_n)_{n \in \mathbb{Z}} \) is \((\Phi_1, \Phi_2)\)-multiplier on \(\mathbb{Z} \) if there exists \(C > 0 \) such that

\[
T_m(P)(t) = \sum_{k \in \mathbb{Z}} m_k \alpha_k e^{2\pi ikt} \tag{15}
\]

satisfies \(N_{\Phi_2}(T_m(P)) \leq CN_{\Phi_1}(P) \) for any \(P(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{2\pi ikt} \in P(\mathbb{T}) \), or equivalently, in case that \(\Phi_1 \) satisfies \(\Delta_2 \), extends to a bounded operator from \(L^{\Phi_1}(\mathbb{T}) \) to \(L^{\Phi_2}(\mathbb{T}) \).

If \(\Phi_2 \) satisfying \(\nabla_2 \) and let \(m = (m_n) \) be a bounded sequence on \(\mathbb{Z} \). The following are equivalent:

(i) \(m \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{Z}) \).

(ii) There exists a constant \(K \) such that

\[
| \sum_{n \in \mathbb{Z}} m_n \alpha_n \beta_n | \leq CN_{\Phi_1}(P) N_{\Psi_2}(Q) \tag{16}
\]

for any \(P(t) = \sum_{n \in \mathbb{Z}} \alpha_n e^{2\pi int} \) and \(Q(t) = \sum_{n \in \mathbb{Z}} \beta_n e^{2\pi int} \) in \(P(\mathbb{T}) \).
Main results 3

Theorem

Let m be a bounded continuous function on \mathbb{R} and Φ_1, Φ_2 be Young functions with Φ_2 satisfying ∇_2. (i) Assume that

$$\sup_{0 < \lambda < 1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < \infty. \quad (17)$$

If $m \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{R})$ then $m_n = (m(n)) \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{Z})$. (ii) Assume that

$$\sup_{\lambda > 1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < \infty. \quad (18)$$

*If $(D_{1/N} m(n)) \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{Z})$ for all $N \in \mathbb{N}$ with $
abla_{\Phi_1, \Phi_2}(\mathbb{Z})$ then $m \in \mathcal{M}_{\Phi_1, \Phi_2}(\mathbb{R})$.***

THANK YOU VERY MUCH FOR YOUR ATTENTION!