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Abstract. This paper is concerned with the elliptic system

∆v = φ, ∆φ = |∇v|2, (0.1)

posed in a bounded domain Ω ⊂ RN , N ∈ N . Specifically, we are interested in the existence and
uniqueness or multiplicity of “large solutions,” that is, classical solutions of (0.1) that approach
infinity at the boundary of Ω.

Assuming that Ω is a ball, we prove that the system (0.1) has a unique radially symmetric
and nonnegative large solution with v(0) = 0 (obviously, v is determined only up to an additive
constant). Moreover, if the space dimension N is sufficiently small, there exists exactly one addi-
tional radially symmetric large solution with v(0) = 0 (which, of course, fails to be nonnegative).
We also study the asymptotic behavior of these solutions near the boundary of Ω and determine
the exact blow-up rates; those are the same for all radial large solutions and independent of the
space dimension.

Our investigation is motivated by a problem in fluid dynamics. Under certain assumptions,
the unidirectional flow of a viscous, heat-conducting fluid is governed by a pair of parabolic
equations of the form

vt −∆v = θ, θt −∆θ = |∇v|2, (0.2)

where v and θ represent the fluid velocity and temperature, respectively. The system (0.1), with
φ = −θ , is the stationary version of (0.2).
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1 Introduction and Main Results

This paper is a contribution to the study of “explosive behavior” in certain
systems of elliptic and parabolic PDEs. Our investigation is motivated by a
question regarding the dynamics of a viscous, heat-conducting fluid.

In general, the flow of such a fluid is governed by a system of balance
equations for momentum, mass, and energy. Under the assumptions of
the so-called Boussinesq approximation, this system reduces to the Navier-
Stokes equations for an incompressible fluid, along with a heat equation; the
equations are nonlinearly coupled through the buoyancy force and viscous
heating. If viscous heating (that is, the production of heat due to internal
friction) is neglected, the resulting initial and boundary-value problems are
well posed in the same sense as for the classical Navier-Stokes equations
without thermal coupling; but if viscous heating is taken into account, well-
posedness is an open question. In fact, we conjecture that the solutions,
in this case, may exhibit “explosive behavior.” Such behavior would have
implications for the viability of the Boussinesq approximation in situations
where viscous heating cannot be neglected.

To address this issue, we are studying a simple prototype problem, which
can be physically justified by considering a unidirectional flow, independent
of distance in the flow direction:

vt −∆v = θ, θt −∆θ = |∇v|2. (1.1)

Here, v (the velocity) and θ (the temperature) are scalar functions of time t
and position x ; the spatial variable x varies over a bounded domain Ω ⊂ RN

with N ∈ N (N = 2 in the physically relevant case, where Ω is the cross-
section of the flow channel). The source terms θ and |∇v|2 represent the
buoyancy force and viscous heating, respectively. The system (1.1) must
be supplemented by suitable initial conditions at time t = 0 and boundary
conditions on the boundary ∂Ω of the domain Ω (for example, a homoge-
neous Dirichlet condition for v and a homogeneous Neumann condition for
θ if the walls of the flow channel are impermeable and thermally insulated).

Note that we cannot hope to find weak solutions of the resulting initial-
boundary value problem in the usual Hilbert-space setting: if v takes values
in H1(Ω), then the right-hand side of the second equation in (1.1) maps,
a priori, only into L1(Ω). However, local-in-time existence and uniqueness
of a strong solution can be established by means of semigroup theory in a
suitable Lp -space setting. We conjecture that this solution may blow up in
finite time, in the sense that a suitable norm of (v, θ) approaches infinity as
t → T−, for some T > 0. Preliminary analytical and numerical results for
the parabolic problem will appear in a forthcoming publication.
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In the present paper, we consider the stationary version of (1.1), that
is, the elliptic system

−∆v = θ, −∆θ = |∇v|2, (1.2)

posed in a domain Ω ⊂ RN with N ∈ N . Specifically, we are interested
in the possibility of “boundary blow-up,” that is, the existence of classical
solutions (v, θ) of (1.2) with |(v(x), θ(x))| → ∞ as dist(x, ∂Ω) → 0 (so-
called “large solutions”). Note that the θ -component of any solution of
(1.2) is superharmonic in Ω and thus, cannot approach ∞ at the boundary
(maximum principle); for a similar reason, v and θ cannot simultaneously
approach −∞ at the boundary. We therefore expect any large solution
(v, θ) of (1.2) to satisfy v(x) →∞ and θ(x) → −∞ as dist(x, ∂Ω) → 0.

The preceding observation implies that large solutions of (1.2) cannot be
expected to describe the asymptotics of explosive solutions of the parabolic
system (1.1). Assuming, for example, that the temperature θ in (1.1) satis-
fies a homogeneous Neumann boundary condition on ∂Ω, the temperature
minimum is a nondecreasing function of time (parabolic maximum princi-
ple); thus, θ cannot approach −∞ at the boundary. Nevertheless, boundary
blow-up in the elliptic system (1.2) does have implications for the dynam-
ics of the parabolic system (1.1) and its controllability. For example, large
solutions of (1.2) may be used to construct “universal distributed bounds”
(that is, interior bounds independent of the boundary data) for solutions
of associated initial-boundary value problems and their steady states. We
refer to [3, 6, 7, 14, 23] and the references therein for similar arguments
and applications in the context of other semilinear or quasilinear parabolic
problems with superlinear nonlinearities.

Henceforth, we assume that Ω is a ball in RN, centered at the origin;
that is, Ω = BN

R (0) for some R > 0. For convenience, we introduce the
function φ = −θ and seek radially symmetric large solutions of the problem

{
∆v = φ
∆φ = |∇v|2 in BN

R (0), (1.3)

that is, radial solutions (v, φ) with |(v(x), φ(x))| → ∞ as |x| → R−.

Remark 1.1 The problem (1.3) has a scaling property that we will exploit
repeatedly. Suppose (v1, φ1) is a (large) solution of (1.3) with R = R1 . For
λ ∈ (0,∞), let Rλ := λ−1R1 . For x ∈ BN

Rλ
(0), define

vλ(x) := λ2v1(λx) , φλ(x) := λ4φ1(λx) .

Then (vλ, φλ) is a (large) solution of (1.3) with R = Rλ .
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Remark 1.2 If (v, φ) is a (large) solution of (1.3), then so is (v + c, φ),
for any constant c ∈ R . Thus, we may restrict attention to solutions with
v(0) = 0.

We will now state our main results, the first of which guarantees the
existence of a unique (up to a shift in v) radially symmetric and nonnegative
large solution for any space dimension.

Theorem 1.3 For every N ∈ N and R > 0, the problem (1.3) has a unique
radially symmetric large solution (v, φ) with v(0) = 0 and φ(0) > 0. Both
components of this solution are increasing functions of the radial variable r .

If the space dimension is sufficiently small, there exists exactly one ad-
ditional radially symmetric large solution with v(0) = 0, which, of course,
fails to be nonnegative.

Theorem 1.4 For every N ∈ N with N ≤ 10 and every R > 0, the
problem (1.3) has a unique radially symmetric large solution (v, φ) with
v(0) = 0 and φ(0) < 0. The φ-component of this solution is an increasing
function of the radial variable r , while the v -component is decreasing to a
negative minimum and increasing thereafter.

Let us note that the bound on N in the above result is not sharp. In
fact, based on numerical evidence (see Remarks 3.5 and 4.4), we conjecture
that the solution of Theorem 1.4 exists if, and only if, N ≤ 14.

With regard to asymptotic behavior, we find that, as expected, both
components of a large solution approach infinity at the boundary, and we
determine the exact blow-up rates; those are the same for all radially sym-
metric large solutions and independent of the space dimension. Here and in
the sequel, we write f(x) ∼ g(x) if f, g : BN

R (0) → R satisfy f(x)/g(x) → 1
as |x| → R−.

Theorem 1.5 Let (v, φ) be any radially symmetric large solution of (1.3),
for a given N ∈ N and R > 0. Then, as |x| → R−,

v(x) ∼ 30
(R− |x|)2 and φ(x) ∼ 180

(R− |x|)4 .

The study of “explosive behavior,” be it finite-time blow-up in evolu-
tionary problems or boundary blow-up in stationary problems, has a long
history, going back to seminal work by Keller [15] and Osserman [20] in
the 1950’s; we refer to the papers [2, 4, 8, 24] and the references therein.
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However, virtually all of the existing literature is concerned with scalar
equations. Coupled systems of equations have been attacked only recently;
see for example [5, 9, 10, 11, 16]. Due to the lack of variational structure
and comparison principles, methods that have proven successful for scalar
equations will, in general, fail to be useful for systems, even if the expected
results are analogous. For example, our existence and multiplicity result for
the problem (1.3) (existence of one large nonnegative solution for any space
dimension, existence of a second large solution for sufficiently small space
dimension) is analogous to a result by McKenna, Reichel, and Walter [17] for
a class of scalar equations with variational structure. However, our method
of proof is entirely different, and our result appears to be the first of its kind
for an elliptic system. We expect that our work, while currently focussed
on a very specific problem, will lead to general insights and new methods
with potential applications to a much wider class of elliptic and parabolic
systems.

The rest of the paper is organized as follows. In Section 2 we reduce
our problem to the study of a system of first-order ODEs, establish some
basic properties of its solutions, and prove the existence and uniqueness of
a nonnegative large radial solution for the problem (1.3); Theorem 1.3 is an
immediate consequence of Proposition 2.5. Section 3 is devoted to the proof
of Theorem 1.4 (existence of a second large radial solution for sufficiently
small space dimension), which follows from Proposition 3.1. This section
also includes a discussion of numerical experiments, suggesting a sharper ver-
sion of Theorem 1.4, and observations about a related parameter-dependent
fixed-point equation, leading to a Liouville-type theorem for the Dirichlet
problem associated with the elliptic system (1.2). In Section 4 we ana-
lyze the asymptotic behavior of large radial solutions of (1.3); Theorem 1.5
follows from Proposition 4.1, whose proof relies on dynamical-systems the-
ory, applied to an asymptotically autonomous and cooperative ODE system
in R3 . Section 5 is an appendix, where we describe a Maple algorithm for
the computer-aided construction of a-priori bounds, needed in the proof of
Proposition 3.1.
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to express their gratitude to J. F. Padial and J. I. Dı́az for their generous support. Most of
the work was done while M. Lazzo was visiting Auburn University; she would like to thank the
faculty and staff of the Department of Mathematics and Statistics for their kind hospitality. Both
M. Lazzo and P. G. Schmidt are grateful for stimulating discussions with W. Shen and G. Hetzer
at Auburn. The research of J. I. Dı́az was partially supported by the projects REN2003-0223-C03
of the DGISGPI (Spain) and RTN HPRN-CT-2002-00274 of the European Union. Finally, we
wish to thank the anonymous referees for their constructive criticism and valuable suggestions.
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2 Preliminaries and Nonnegative Large Solutions

Given N ∈ N and R > 0, radially symmetric solutions of the problem (1.3)
correspond to solutions of the ODE system





v′′ +
N − 1

r
v′ = φ

φ′′ +
N − 1

r
φ′ = |v′|2

in (0, R)

with v′(0) = φ′(0) = 0; large solutions are those with |(v(r), φ(r))| → ∞
as r → R−. In view of Remark 1.2, we may impose the initial condition
v(0) = 0. Finding radially symmetric large solutions of the problem (1.3)
is therefore equivalent to finding initial conditions φ(0) = p such that the
solution of the Cauchy problem




v′′ +
N − 1

r
v′ = φ, v(0) = 0, v′(0) = 0

φ′′ +
N − 1

r
φ′ = |v′|2, φ(0) = p, φ′(0) = 0

(2.1)

exists on the interval [0, R) and “blows up” at R .
Despite the singularity at r = 0 for N > 1, the Cauchy problem (2.1) is

well posed. Indeed, for every p ∈ R , there exists a unique maximal solution,
which depends continuously on p (in the usual sense); see Lemma 2.3 below
for details.

Remark 2.1 The scaling property of the problem (1.3), as described in
Remark 1.1, and the well-posedness of (2.1) imply that all solutions of the
Cauchy problem with p > 0 (p < 0) are “rescalings” of the solution with
p = 1 (p = −1). Indeed, if (v1, φ1) is the maximal solution with initial
value p = 1 (p = −1), then the maximal solution with initial value p > 0
(p < 0) is given by (vλ, φλ) with λ = |p|1/4 . Consequently, if the maximal
solution with initial value p = 1 (p = −1) blows up at R1 , then the maximal
solution with initial value p > 0 (p < 0) blows up at Rp = |p|−1/4R1 .

Remark 2.2 In light of the preceding remark, it is clear that the elliptic
problem (1.3) has large radial solutions, for any given R > 0, if and only if
the solutions of the Cauchy problem (2.1) with p = ±1 exhibit finite-time
blow-up. More precisely, (1.3) has exactly one large radial solution with
v(0) = 0 and φ(0) > 0 if and only if the solution of (2.1) with p = 1 blows
up in finite time; (1.3) has exactly one large radial solution with v(0) = 0
and φ(0) < 0 if and only if the solution of (2.1) with p = −1 blows up
in finite time. In particular, (1.3) cannot have more than two large radial
solutions.
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The Cauchy problem (2.1) is equivalent to the first-order system




v′ = w , v(0) = 0 ,

w′ +
N − 1

r
w = φ , w(0) = 0 ,

φ′ = ψ , φ(0) = p ,

ψ′ +
N − 1

r
ψ = w2 , ψ(0) = 0 .

Obviously, we can eliminate v and drop the first equation and initial con-
dition; v is recovered from w via anti-differentiation. Furthermore, we may
replace the nonnegative integer N−1 with a continuous parameter µ ∈ R+ .
Thus, we are led to the Cauchy problem





w′ +
µ

r
w = φ , w(0) = 0 ,

φ′ = ψ , φ(0) = p ,

ψ′ +
µ

r
ψ = w2 , ψ(0) = 0 .

(2.2)

Lemma 2.3 For every µ ∈ R+ and p ∈ R, the Cauchy problem (2.2) has a
unique maximal, that is, noncontinuable, solution (w, φ, ψ) ∈ C1([0, R),R3),
for some R ∈ (0,∞]. If R < ∞, then |(w(r), φ(r), ψ(r))| → ∞ as r → R−.
Moreover, (w, φ, ψ) depends continuously on µ and p.

Proof. What we claim is that, despite the singularity at r = 0 in the case
µ > 0, the Cauchy problem (2.2) has the usual, well-known properties of a
regular initial-value problem in R3 . Since we could not find a general result
in the literature that would cover our problem, we provide a few remarks on
the proof.

Note that the first equation in (2.2) can be written as (rµw)′ = rµφ . To-
gether with the initial condition w(0) = 0, this is equivalent to the integral
equation

w(r) =
∫ r

0

(s

r

)µ
φ(s) ds. (2.3)

Similarly, the remaining differential equations and initial conditions in (2.2)
are equivalent to the integral equations

φ(r) = p +
∫ r

0
ψ(s) ds (2.4)
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and
ψ(r) =

∫ r

0

(s

r

)µ
w2(s) ds. (2.5)

Since we have 0 < s/r < 1 for 0 < s < r , the “singular term” (s/r)µ

does not cause any difficulties in proving the existence and uniqueness of a
solution (w, φ, ψ) ∈ C([0, ε],R3) of Equations (2.3)–(2.5), for some ε > 0,
by means of the contraction mapping principle. Clearly, w, φ and ψ are
continuously differentiable on (0, ε] and satisfy the differential equations
and initial conditions in (2.2). In fact, all three components are continuously
differentiable on the closed interval [0, ε] . This is obvious for φ , but less so
for w and ψ . Note, however, that

lim
r→0+

w′(r) = lim
r→0+

(
φ(r)− µ

r
w(r)

)
= p− µ lim

r→0+

1
r

∫ r

0

(s

r

)µ
φ(s)ds

= p− µ lim
r→0+

1
rµ+1

∫ r

0
sµφ(s)ds = p− µ lim

r→0+

rµφ(r)
(µ + 1)rµ

= p− µ lim
r→0+

φ(r)
µ + 1

= p− µ
p

µ + 1
=

p

µ + 1
,

where we used l’Hospital’s rule to get the fourth equality. This implies
that w ∈ C1([0, ε],R) with w′(0) = p/(µ + 1). Similarly, one shows that
ψ ∈ C1([0, ε],R) with ψ′(0) = 0.

Once existence and uniqueness of a local C1 -solution are established, the
remaining claims about maximal continuation and continuous dependence
on parameters and initial data can be proved in the same way as for regular
initial-value problems. ¤

Lemma 2.4 Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of the
Cauchy problem (2.2), for some µ ∈ R+ and p ∈ R with p 6= 0. Then
the function φ is strictly increasing on [0, R), and L := limr→R− φ(r) is
either 0 or ∞. In fact,
(a) if L < ∞, then R = ∞ and L = 0;
(b) if L = ∞, then R < ∞ and w(R−) = φ(R−) = ψ(R−) = ∞.

Proof. Taking into account the equations and initial conditions in (2.2), it is
easy to see that the function Ψ(r) := rµψ(r) is strictly increasing on [0, R).
As a consequence, Ψ (and thus, ψ ) is positive on (0, R), and this implies
that φ is strictly increasing on [0, R), with L := limr→R− φ(r) ∈ (p,∞] .
(a) Assume L < ∞ , that is, φ is bounded. By (2.3), w(r) grows at most
linearly with r , and by (2.5), ψ(r) grows no faster than r3. In particular,
|(w(r), φ(r), ψ(r))| cannot go to infinity in finite time. Thus, R = ∞ .
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Now suppose that L 6= 0. If L > 0, choose a number r0 > 0 such that
φ(r) ≥ L/2 for every r ≥ r0 . It follows that

w(r) ≥
∫ r0

0

(s

r

)µ
φ(s) ds +

L

2

∫ r

r0

(s

r

)µ
ds

for every r ≥ r0 , and we conclude that limr→∞w(r) = ∞ (note that
the last integral is of order r ). If L < 0, we infer in a similar way that
limr→∞w(r) = −∞ . In any case, we can choose a number r1 > 0 such that
w2(r) ≥ 1 for every r ≥ r1 . As a consequence,

ψ(r) ≥
∫ r1

0

(s

r

)µ
w2(s) ds +

∫ r

r1

(s

r

)µ
ds

for every r ≥ r1 , and so, limr→∞ ψ(r) = ∞ . But this implies

L = lim
r→∞φ(r) = p + lim

r→∞

∫ r

0
ψ(s) ds = ∞,

a contradiction. It follows that L = 0.
(b) Assume L = ∞ and, by way of contradiction, suppose that R = ∞ .
Then there exist c0, r0 > 0 such that φ(r) ≥ c0 for every r ≥ r0 , and as in
the proof of Part (a), it follows that w(r) →∞ and ψ(r) →∞ as r →∞ .
In particular, we can choose r∗ > 0 such that w(r), φ(r), ψ(r) > 0 for every
r ≥ r∗ . Define η := w φ ψ . Then we have

η′ = φ2ψ + wψ2 + w3φ− 2µ

r
w φ ψ

= Q
(
w, φ, ψ

)
η13/12 − 2µ

r
η in [r∗,∞), (2.6)

where Q is defined by

Q(x, y, z) :=
y2z + xz2 + x3y

(xyz)13/12
,

for x, y, z > 0. Note that Q = Q1 + Q2 + Q3 , with

Q1 :=
y2z

(xyz)13/12
, Q2 :=

xz2

(xyz)13/12
, Q3 :=

x3y

(xyz)13/12
.

It is easy to see that Q5
1 Q4

2 Q3
3 ≡ 1, which implies that max(Q1, Q2, Q3) ≥ 1.

Hence, we have Q(x, y, z) ≥ 1 for all x, y, z > 0, and (2.6) yields

η′ ≥ η
(
η1/12 − 2µ

r∗

)
in [r∗,∞). (2.7)
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Recall that w(r), φ(r), ψ(r) → ∞ as r → ∞ and choose r∗ ≥ r∗ such
that η(r∗) > (2µ/r∗)12 . Then the maximal solution ζ of the initial-value
problem

ζ ′ = ζ
(
ζ1/12 − 2µ

r∗

)
, ζ(r∗) = η(r∗)

approaches infinity in finite time. But due to (2.7), ζ is bounded from above
by η on [r∗,∞). This is a contradiction, and it follows that R is finite.

In order to prove our last claim, we first note that both w and ψ
have (proper or improper) limits as r → R−. Indeed, since φ is eventually
positive, the function W (r) := rµw(r) is eventually increasing and so, has
a limit as r → R−. As we observed earlier, the same holds for the function
Ψ(r) := rµψ(r). Since R is finite, it follows that w(r) and ψ(r), too, have
limits as r → R−. Moreover, since R is finite, all three of the functions
w, φ , ψ would be bounded if one of them were. But φ is unbounded (by
assumption) and so, w and ψ are unbounded as well. Clearly, this implies
that w(R−) = φ(R−) = ψ(R−) = ∞ . ¤

Proposition 2.5 For every µ ∈ R+ , the maximal solution of the Cauchy
problem (2.2) with p = 1 blows up in finite time.

Proof. Fix µ ∈ R+ and let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal
solution of (2.2) with p = 1. According to Lemma 2.4, φ is increasing with
L := limr→R− φ(r) ∈ {0,∞} . Since φ(0) > 0, we have L = ∞ , and then
Part (b) of the same lemma implies that R is finite. ¤

Proof of Theorem 1.3. Thanks to Remark 2.2, the preceding proposition
guarantees that the problem (1.3), for arbitrary N ∈ N and R > 0, has
exactly one large radial solution (v, φ) with v(0) = 0 and φ(0) > 0. By
Lemma 2.4, φ is a strictly increasing function of the radial variable r , and
the same then holds for v . (Note that, by Lemma 2.4, φ(r) approaches
infinity as r → R−, and so do v′(r) and φ′(r). That the same holds for v(r)
is not obvious at this point, but will follow from the blow-up estimates in
Section 4.) ¤

Figures 1 and 2 below show computed profiles of the nonnegative large
radial solutions (v, φ) of the problem (1.3), with R = 1, for two values of
the space dimension N (see Remark 4.4 for comments on the numerical
method).
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3 Existence of a Second Large Solution

To prove Theorem 1.4, we need to investigate for which values of µ ∈ R+ (if
any) the maximal solution of the Cauchy problem (2.2) with p = −1 blows
up in finite time.

It is easy to see that blow-up occurs at least if µ ∈ [0, 1]. Indeed, suppose
that µ ∈ R+ and that the corresponding maximal solution (w, φ, ψ) of (2.2)
with p = −1 exists globally. Lemma 2.4 then implies that φ(r) → 0 as
r → ∞ ; thus,

∫∞
0 ψ(s) ds = 1, due to (2.4). On the other hand, since

Ψ(r) := rµψ(r) is strictly increasing for r ≥ 0, we have c := Ψ(1) > 0 and
ψ(r) = Ψ(r) r−µ ≥ c r−µ for all r ≥ 1; thus,

∫∞
0 ψ(s) ds ≥ c

∫∞
1 s−µ ds .

These statements about
∫∞
0 ψ(s) ds are compatible only if µ > 1.

Recalling Remark 2.2, we conclude that the problem (1.3) has a second
large radial solution at least if the space dimension N is 1 or 2. The
following proposition allows us to draw the same conclusion for any space
dimension up to and including 10.

Proposition 3.1 For every µ ∈ [0, 9], the maximal solution of the Cauchy
problem (2.2) with p = −1 blows up in finite time.

Proof. Fix µ ∈ R+ and let (w, φ, ψ) ∈ C1([0, R),R3) be the corresponding
maximal solution of (2.2) with p = −1. By Lemma 2.4, R is finite if and only
if φ is eventually positive. We will prove the proposition by constructing
explicit lower bounds for φ that are eventually positive if µ is small enough.
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Clearly, since φ is an increasing function, we have

φ(r) ≥ φ(0) = −1 =: φ
0
(r),

for all r ∈ [0, R). From this, we derive a lower bound for w ; indeed,

w(r) =
∫ r

0

(s

r

)µ
φ(s) ds ≥

∫ r

0

(s

r

)µ
φ

0
(s) ds = − r

µ + 1
=: w1(r),

for all r ∈ [0, R). As long as w ≤ 0, a lower bound for w yields an upper
bound for ψ ; in particular,

ψ(r) =
∫ r

0

(s

r

)µ
w2(s) ds ≤

∫ r

0

(s

r

)µ
w2

1(s) ds =
r3

(µ + 1)2(µ + 3)
=: ψ1(r),

for all r ∈ [0, R) with w(r) ≤ 0 (note that w(r) ≤ 0 implies w1 ≤ w ≤ 0
on [0, r]). Next, we find an upper bound for φ , namely,

φ(r) = −1+
∫ r

0
ψ(s) ds ≤ −1+

∫ r

0
ψ1(s) ds = −1+

r4

4(µ + 1)2(µ + 3)
=: φ1(r),

still valid for all r ∈ [0, R) with w(r) ≤ 0. Continuation of this process
yields an upper bound for w ,

w(r) ≤
∫ r

0

(s

r

)µ
φ1(s) ds = − r

µ + 1
+

r5

4(µ + 1)2(µ + 3)(µ + 5)
=: w1(r),

valid for all r ∈ [0, R) with w(r) ≤ 0, and then a lower bound for ψ ,

ψ(r) ≥
∫ r

0

(s

r

)µ
w2

1(s) ds =: ψ
1
(r),

valid for all r ∈ [0, r0] , where r0 := (4(µ+1)(µ+3)(µ+5))1/4 is the unique
positive root of w1 (note that r0 < R and w ≤ w1 ≤ 0 on [0, r0]). Finally,
we obtain an improved lower bound for φ ,

φ(r) ≥ −1 +
∫ r

0
ψ

1
(s) ds =: φ

1
(r),

valid for all r ∈ [0, r0] .
If φ

1
(r0) is nonnegative, then so is φ(r0), and this would imply blow-

up. Now, φ
1
(r0) is easily seen to be a rational function of µ , with a unique

positive root, µ1 ≈ 3.512, and positive on the interval [0, µ1). Thus, blow-up
occurs if µ ≤ µ1 .
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To improve this result, we iterate the preceding estimates and construct
the improved bounds w2 , ψ2 , φ2 , w2 , ψ

2
, and φ

2
; since w ≤ w2 ≤ w1 ≤ 0

on [0, r0] , these are still valid on the entire interval [0, r0] . The actual
construction is best done with the aid of a computer-algebra system. All
the bounds being polynomials, the computations amount to symbolic oper-
ations on the coefficients and can be implemented very efficiently (a more
näıve approach, using symbolic antidifferentiation, is likely to fail). In an
appendix, at the end of the paper, we describe a Maple implementation of
the algorithm.

Once the improved lower bound φ
2

for φ is constructed, we may check
the sign of φ

2
(r0), which is again a rational function of µ , with a unique

positive root, µ2 ≈ 4.307, and positive on the interval [0, µ2). We conclude
that blow-up occurs if µ ≤ µ2 .

Attempting to push this method further by performing another round of
estimates turns out to be futile — the computational cost is prohibitive, the
gain marginal (the positive root of φ

3
(r0) is located near 4.311). Instead,

we will extend the lower bound φ
2

of φ beyond the interval [0, r0] . To this
end, let r1 ∈ (r0, R) be such that φ(r1) ≤ 0. Then we have φ ≤ φ2 on
[0, r0] and φ ≤ 0 on [r0, r1] . It follows that, for all r ∈ [r0, r1] ,

w(r) ≤
∫ r0

0

(s

r

)µ
φ2(s) ds =

(r0

r

)µ
∫ r0

0

(
s

r0

)µ

φ2(s) ds = α
(r0

r

)µ
,

where α := w2(r0) ≤ 0, and then,

ψ(r) ≥
∫ r0

0

(s

r

)µ
w2

2(s) ds+
∫ r

r0

(s

r

)µ
α2

(r0

s

)2µ
ds = β

(r0

r

)µ
−γ

(r0

r

)2µ−1
,

where β := γ + ψ
2
(r0), γ := r0α

2/(µ− 1), and we have implicitly assumed
µ 6= 1 (the case µ = 1 will not be needed). Finally, we see that for all
r ∈ [r0, r1] ,

φ(r) ≥ −1 +
∫ r0

0
ψ

2
(s) ds +

∫ r

r0

(
β

(r0

s

)µ
− γ

(r0

s

)2µ−1
)

ds

= α̃
(r0

r

)2(µ−1)
− β̃

(r0

r

)µ−1
+ γ̃,

with α̃ := 1
2r0γ/(µ−1), β̃ := r0β/(µ−1), γ̃ := 1

2r0(2β−γ)/(µ−1)+φ
2
(r0),

and hence,

0 ≥ (µ− 1)2φ(r) ≥ a
(r0

r

)2(µ−1)
− b

(r0

r

)µ−1
+ c , (3.1)
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where
a := (µ− 1)2α̃ =

1
2
r2
0 w2

2(r0) ,

b := (µ− 1)2β̃ = r2
0 w2

2(r0) + (µ− 1)r0ψ2
(r0) ,

c := (µ− 1)2γ̃ =
1
2
r2
0 w2

2(r0) + (µ− 1)r0ψ2
(r0) + (µ− 1)2φ

2
(r0) .

The estimate (3.1) holds for every r ∈ [r0, R), provided that φ(r) ≤ 0,
and for any value of µ (trivially if µ = 1). The coefficients a , b , and c are
rational functions of µ (note that r4

0 is a polynomial in µ , while r2w2
2(r),

rψ
2
(r), and φ

2
(r) are polynomials in r4 , whose coefficients are rational

functions of µ); this facilitates their symbolic computation and analysis. In
particular, it is easily verified (see the appendix) that c has a unique root,
µ̄ ≈ 9.073, in the interval (1,∞) and is positive on (1, µ̄). It follows that
if µ ∈ (1, µ̄), the right-hand side of the inequality (3.1) becomes positive as
r → ∞ . But then, the inequality cannot hold for all r ≥ r0 , which implies
that R is finite. Since this is already known to be true if µ ∈ [0, 1], the
proposition is proved. ¤

Remark 3.2 We emphasize that the proof of Proposition 3.1, while relying
heavily on the use of a computer-algebra system, does not involve any nu-
merical techniques or floating-point arithmetic. In fact, all the computations
amount to symbolic algebra on the coefficients of certain polynomials. The
crucial fact that the coefficient c in the estimate (3.1), a rational function
of µ , has a unique root, µ̄ ≈ 9.073, in the interval (1,∞) can be verified
by applying Descartes’s rule of signs (and the intermediate-value theorem)
to the numerator polynomial (the roots of the denominator polynomial are
negative integers). We refer to the appendix for implementation details.

Remark 3.3 The estimates in the proof of Proposition 3.1 involve some
deliberate choices, but are in some sense optimal. Of course, it is compu-
tationally much less expensive to use the bounds w1 , ψ

1
, and φ

1
(instead

of w2 , ψ
2
, and φ

2
) for the “tail estimate” (3.1); also the estimate itself is

simpler in this case, since the coefficient a vanishes. Again, the coefficient
c has a unique root in the interval (1,∞), but it is located near 5.606,
leading to a much weaker result. A slight improvement is achieved by using
the polynomial bounds w1 , ψ

1
, and φ

1
only on the smaller interval [0, r̃0]

(instead of [0, r0]), where r̃0 := (4(µ + 1)2(µ + 3))1/4 is the unique posi-
tive root of φ1 . The coefficient c in (3.1) then has a unique positive root
near 5.955. Using the improved bounds w2 , ψ

2
, and φ

2
(as in the proof of

Proposition 3.1), but on the smaller interval [0, r̃0] (instead of [0, r0]) yields
a coefficient c with a unique positive root near 7.709.
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It is natural to ask whether it would make sense to construct the bounds
w3 , ψ

3
, and φ

3
before proceeding with the “tail estimate.” The answer is

negative — the symbolic computations would require an enormous amount
of virtual memory, without leading to a tangibly improved result (the rele-
vant root of the coefficient c in (3.1) is located near 9.170).

Remark 3.4 The estimates in the proof of Proposition 3.1 yield explicit a-
priori bounds for the zero z0 of φ (the φ-component of the maximal solution
of the Cauchy problem (2.2) with µ ∈ R+ and p = −1), assuming that it
exists. Clearly, a lower bound is given by r̃0 := (4(µ + 1)2(µ + 3))1/4 , the
unique positive root of φ1 . To establish an upper bound, note that either
z0 ≤ r0 , where r0 := (4(µ + 1)(µ + 3)(µ + 5))1/4 is the unique positive root
of w1 , or z0 > r0 . In the latter case, which can arise only if µ > µ2 ≈ 4.307,
(3.1) implies that

a

(
r0

z0

)2(µ−1)

− b

(
r0

z0

)µ−1

+ c ≤ 0

and thus,

s1 ≤
(

r0

z0

)µ−1

≤ s2 ,

where s1,2 := (b±
√

d)/(2a) with d := b2−4ac (the discriminant d is positive
for µ 6= 1, zero for µ = 1). As long as µ > 1 and s1 is positive (which is
the case for 1 < µ < µ̄ ≈ 9.073), it follows that z0 ≤ r0s

1/(1−µ)
1 . Hence,

an upper bound for z0 is given by r0 if 0 ≤ µ ≤ µ2 and by r0s
1/(1−µ)
1

if µ2 < µ < µ̄ . A little computation shows that this upper bound may
be written, more concisely yet equivalently, as r0 max(1, s

1/(1−µ)
0 ), where

s0 := (b− sign(µ− 1)
√

d)/(2a). Summarizing, we have

r̃0 ≤ z0 ≤ r0 max(1, s
1/(1−µ)
0 ),

for every µ ∈ [0, µ̄); the upper bound is a continuous function of µ , positive
on [0, µ̄), with a vertical asymptote at µ̄ .

Proof of Theorem 1.4. Due to Remark 2.2, Proposition 3.1 implies that
the elliptic problem (1.3), for arbitrary R > 0, has exactly one large radial
solution (v, φ) with v(0) = 0 and φ(0) < 0 if µ = N − 1 ≤ 9, that is, if
N ≤ 10.

Lemma 2.4 shows that φ is a strictly increasing function of the radial
variable r and crosses zero at a point z0 ∈ (0, R). Hence, the function
W (r) := rµw(r), with w = v′ , is strictly decreasing for r < z0 and strictly
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increasing for r > z0 ; it crosses zero at a point z1 ∈ (z0, R). Thus, v′

is negative on (0, z1), positive on (z1, R), and consequently, v is strictly
decreasing to a negative minimum at z1 , strictly increasing thereafter. ¤

Remark 3.5 Numerical evidence suggests that Proposition 3.1 (and hence,
Theorem 1.4) may be improved. In fact, the maximal solution of the Cauchy
problem (2.2) with p = −1 appears to blow up in finite time if, and only if,
µ < µ̃ for some number µ̃ ≈ 13.755. As a consequence, we conjecture that
the large solution of Theorem 1.4 exists if and only if N ≤ 14.

Figures 3–6 depict computed profiles of the large radial solutions (v, φ)
with v(0) = 0 and φ(0) < 0 of the problem (1.3), with R = 1, for sev-
eral values of the space dimension N (see Remark 4.4 for comments on the
numerical method employed). Specifically, Figure 5 shows the solution for
N = 10, the largest space dimension for which we proved its existence; Fig-
ure 6 shows the solution for N = 14, the largest space dimension for which
we found it numerically. Of course, we can compute the large solution (v, φ)
with v(0) = 0 and φ(0) < 0 of the radial version of (1.3) for every value
of µ = N − 1, not necessarily integer, up to µ̃ ≈ 13.755. As µ → µ̃ , the
φ-component of the solution appears to approach cRδR−c0δ0 , for some pos-
itive constants c0 and cR , where δ0 and δR denote the Dirac distributions
centered at 0 and R , respectively.
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We will now describe how the question of finite-time blow-up in the
Cauchy problem (2.2) can be recast as a question regarding the existence
of nontrivial solutions of a related boundary-value problem or, equivalently,
a parameter-dependent fixed-point equation. This approach will allow us
to exploit standard tools of nonlinear analysis (such as the degree of map-
ping and bifurcation theory) and to gain some additional information, not
otherwise available. As a corollary, we will obtain a Liouville-type result
(existence of a positive solution) for the Dirichlet problem associated with
the elliptic system (1.2), which is of independent interest.

Given µ ∈ R+ , the maximal solution (w, φ, ψ) of the Cauchy problem
(2.2) with p = −1 blows up in finite time if and only if φ crosses zero at some
point r > 0. Due to the scaling property of the system (see Remark 2.1),
this happens if and only if there exists a (necessarily negative and unique)
initial value p such that the φ-component of the corresponding maximal
solution of (2.2) crosses zero at r = 1. In other words, the maximal solution
of (2.2) with p = −1 blows up in finite time if and only if the boundary-value
problem 




w′ +
µ

r
w = φ, w(0) = 0,

φ′ = ψ, φ(1) = 0,

ψ′ +
µ

r
ψ = w2, ψ(0) = 0,

(3.2)

has a (necessarily unique) nontrivial solution.

17



The problem (3.2) can be written as a parameter-dependent fixed-point
equation of the form

u = T (µ, u) (3.3)

in X := C([0, 1],R3), where T : R+ × X → X is a completely continuous
operator, defined by

T (µ, u)(r) :=
(∫ r

0

(
s
r

)µ
φ(s) ds , −∫ 1

r ψ(s) ds ,
∫ r
0

(
s
r

)µ
w2(s) ds

)
,

for µ ∈ R+ , u = (w, φ, ψ) ∈ X , and r ∈ [0, 1]. We are interested in the
structure of the solution set

Σ := {(µ, u) ∈ R+ ×X : u = T (µ, u)}.

Clearly, Σ contains the branch of trivial solutions of (3.3), R+×{0} . Also,
as mentioned above, (3.3) cannot have more than one nontrivial solution
for any µ ∈ R+ ; hence, the set Σ \ (R+ × {0}) is the graph of a function
µ 7→ uµ . Let M denote the domain of this function, that is,

M := {µ ∈ R+ : u = T (µ, u) for some u ∈ X \ {0}}, (3.4)

and define
µ∗ := sup{µ ∈ R+ : [0, µ] ⊂ M}, (3.5)

with the understanding that sup ∅ = 0 and supA = ∞ if A ⊂ R+ is
unbounded.

Remark 3.6 From the discussion leading to Equation (3.3), it is evident
that M , as defined in (3.4), coincides with the set of all µ ∈ R+ for which
the maximal solution of the Cauchy problem (2.2) with p = −1 blows up in
finite time. Thus, M contains the interval [0, 9], by Proposition 3.1. The
subsequent arguments will prove this again (we will only need the a-priori
estimates from Remark 3.4).

Remark 3.7 We can characterize M as the set of all µ ∈ R+ for which
the φ-component of the maximal solution of (2.2) with p = −1 is eventually
positive. Since the solution depends continuously on µ , this property is
stable under small perturbations of µ . It follows that the set M is open in
R+ , and hence, µ∗ is not an element of M . On the other hand, it is clear
from the definition of µ∗ that M contains the interval [0, µ∗).

Remark 3.8 Suppose that µ ∈ M , uµ = (wµ, φµ, ψµ) is the corresponding
nontrivial solution of (3.3), and u = (w, φ, ψ) is the corresponding maximal
solution of the Cauchy problem (2.2) with p = −1. Then, due to the scaling
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property of the problem, uµ is a “rescaling” of u . In fact, denoting the
unique zero of φ by zµ , we have wµ(r) = z3

µ w(zµr), φµ(r) = z4
µ φ(zµr),

and ψµ(r) = z5
µ ψ(zµr), for all r ∈ [0, 1]. Since u = (w, φ, ψ) depends

continuously on µ , so does zµ . It follows that the function µ 7→ uµ is
continuous as a mapping from M ⊂ R+ into X .

Lemma 3.9 Given µ ∈ M , let uµ denote the unique nontrivial solution
of Equation (3.3). Then ‖uµ‖∞ ≥ 4(µ + 1)2(µ + 3) ≥ 12. Moreover, there
exists a continuous function f̄ : [0, µ̄) → R+ , with µ̄ ≈ 9.073, such that
‖uµ‖∞ ≤ f̄(µ), provided that µ ∈ [0, µ̄).

Proof. Fix µ ∈ M , let uµ = (wµ, φµ, ψµ) denote the corresponding non-
trivial solution of (3.3), and let u = (w, φ, ψ) denote the corresponding
maximal solution of the Cauchy problem (2.2) with p = −1. According
to Remark 3.8, we have φµ(r) = z4

µ φ(zµr), for all r ∈ [0, 1], where zµ is
the zero of φ ; in particular, |φµ(0)| = z4

µ . Recalling the a-priori bounds in
Remark 3.4, we obtain the estimate

|φµ(0)| ≥ 4(µ + 1)2(µ + 3) ≥ 12 , (3.6)

and furthermore, the existence of a continuous function f : [0, µ̄) → [1,∞),
with µ̄ ≈ 9.073, such that

|φµ(0)| ≤ 4(µ + 1)(µ + 3)(µ + 5)f(µ) , (3.7)

provided that µ ∈ [0, µ̄). Next, observe that

‖φµ‖∞ = |φµ(0)| , ‖wµ‖∞ ≤ |φµ(0)|
µ + 1

≤ |φµ(0)| ,
and

‖ψµ‖∞ ≤ |φµ(0)|2
(µ + 1)2(µ + 3)

≤ 1
3
|φµ(0)|2 ;

since |φµ(0)| ≥ 12 by (3.6), this implies that ‖(wµ, φµ, ψµ)‖∞ ≤ |φµ(0)|2 .
Consequently, we have

|φµ(0)| ≤ ‖uµ‖∞ ≤ |φµ(0)|2,
and now the assertions of the lemma follow from (3.6) and (3.7). ¤

Proposition 3.10 For every µ ∈ [0, µ∗), with µ∗ defined by (3.5), the
unique nontrivial solution uµ of Equation (3.3) has fixed-point index −1.
The graph C := {(µ, uµ) : µ ∈ [0, µ∗)} is an unbounded, continuous curve in
R+ ×X , and µ∗ is greater than 9.
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Proof. We begin by computing the (Leray-Schauder) fixed-point index of
the map T (0, ·) in u0 , the nontrivial solution of (3.3) for µ = 0. (While the
existence of u0 was established previously, the following argument will prove
it once again.) Inspired by similar reasoning in [1], we define a completely
continuous operator S : R+ ×X → X , with X := C([0, 1],R3), by

S(λ, u)(r) :=
(∫ r

0 φ(s) ds , −∫ 1
r ψ(s) ds ,

∫ r
0

(
w2(s) + λ

)
ds

)
,

for λ ∈ R+ , u = (w, φ, ψ) ∈ X , and r ∈ [0, 1], and consider the parameter-
dependent fixed-point problem in X ,

u = S(λ, u). (3.8)

Note that S(0, ·) = T (0, ·); that is, if λ = 0, then Equation (3.8) coincides
with Equation (3.3) with µ = 0.

Now let λ ∈ R+ and suppose that u0λ = (w0λ, φ0λ, ψ0λ) is a solu-
tion of (3.8). Since φ′′0λ = w2

0λ + λ ≥ 0, the function φ0λ is convex; thus,
φ0λ(r) ≤ φ0λ(0)(1 − r) for all r ∈ [0, 1]. Arguing as in the proof of Propo-
sition 3.1, we derive an upper bound for w0λ , then a lower bound for ψ0λ .
Since |φ0λ(0)| =

∫ 1
0 ψ0λ(s) ds , the lower bound for ψ0λ yields a quadratic

inequality for |φ0λ(0)| , namely, |φ0λ(0)|2 − 24 |φ0λ(0)|+ 12λ ≤ 0. It follows
that λ ≤ 12 and |φ0λ(0)| ≤ 24. This shows that (3.8) does not have any
solutions if λ > 12; moreover, the uniform bound on |φ0λ(0)| implies a
uniform bound on ‖u0λ‖∞ .

Choosing a sufficiently large constant ρ > 0, we infer that the number
deg

(
IdX − S(λ, ·), BX

ρ (0), 0
)

is well defined for λ ∈ R+ , independent of λ
(due to homotopy invariance), and in fact equal to zero (since (3.8) has no
solutions for λ > 12). It follows that

deg
(
IdX − T (0, ·), BX

ρ (0), 0
)

= deg
(
IdX − S(0, ·), BX

ρ (0), 0
)

= 0 .

However, a routine homotopy argument shows that the index of T (0, ·) in
the trivial fixed point 0 equals 1. This proves, once again, the existence
of the nontrivial fixed point u0 (and thereby, the fact that µ∗ > 0) and
shows, more importantly, that the index of T (0, ·) in u0 is −1. But then,
by homotopy along the continuous curve C := {(µ, uµ) : µ ∈ [0, µ∗)} , the
fixed-point index of T (µ, ·) in uµ is −1 for every µ ∈ [0, µ∗).

We are now in a position to complete the proof of the proposition by
applying a Rabinowitz-type argument (see [21]). Suppose that the curve C
is bounded. Then µ∗ < ∞ , and there exists a constant ρ > 0 such that
‖uµ‖∞ < ρ for all µ ∈ [0, µ∗). Also, due to Lemma 3.9, ‖uµ‖∞ ≥ 12 for all
µ ∈ [0, µ∗), and according to Remark 3.7, the equation (3.3) has no nontriv-
ial solution for µ = µ∗ . It follows that deg

(
IdX − T (µ, ·), BX

ρ (0) \B
X
1 (0), 0

)
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is well defined for µ ∈ [0, µ∗] , independent of µ , and in fact equal to zero.
Clearly, this contradicts the fact that T (0, ·) has index −1 in u0 . It follows
that C is unbounded in R+×X . In conjunction with Lemma 3.9, according
to which C∩ ([0, µ̂]×X) is bounded for every µ̂ ∈ R+ with µ̂ < µ̄ ≈ 9.073,
this proves, once again, that µ∗ ≥ µ̄ and thus, µ∗ > 9. ¤

Remark 3.11 In light of the numerical evidence described in Remark 3.5,
we conjecture that µ∗ ≈ 13.755, that the set M coincides with the interval
[0, µ∗), and that the solution branch C bifurcates from ∞ at µ∗ .

We conclude this section with a comment on the Dirichlet problem for
the elliptic system (1.2) on a ball in RN,





−∆v = θ in BN
R (0),

−∆θ = |∇v|2 in BN
R (0),

v = θ = 0 on ∂BN
R (0).

(3.9)

Assuming that R = 1 (due to the scaling property, this entails no loss
of generality), there is a one-to-one correspondence between the radial so-
lutions of (3.9) and the solutions of the boundary-value problem (3.2) or
the equivalent fixed-point equation (3.3), with µ = N − 1, θ = −φ , and
v(r) = − ∫ 1

r w(s) ds , for r ∈ [0, 1]. Hence, Proposition 3.10 implies that
(3.9) has a unique nontrivial radial solution (v, θ) as long as the space di-
mension N does not exceed 10; it is easily checked that both components
of this solution are positive and strictly decreasing functions of the radial
variable r .

Corollary 3.12 For every N ∈ N with N ≤ 10 and every R > 0, the
Dirichlet problem (3.9) has a unique nontrivial radially symmetric solution
(v, θ). Both components of this solution are positive and decreasing functions
of the radial variable r .

Our numerical evidence (see Remark 3.5) suggests that the solution of
Corollary 3.12 exists, in fact, if and only if N ≤ 14. Figures 7 and 8 show
computed profiles of this solution for R = 1 and the two extreme values
of the space dimension, N = 1 and N = 14. Of course, we can compute
the nontrivial solution (v, θ) of the radial version of (3.9) for any µ ∈ [0, µ̃),
with µ̃ ≈ 13.755, in place of the integer N−1. As µ → µ̃ , the θ -component
of the solution appears to approach a multiple of δ0 (the Dirac distribution
centered at 0).
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4 Asymptotic Behavior

Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of the Cauchy prob-
lem (2.2) for a given µ ∈ R+ and p ∈ R . By Lemma 2.4, we know that
R is finite if and only if φ(r) is eventually positive and that in this case,
w(r), φ(r), ψ(r) → ∞ as r → R−. In view of the existing literature on
boundary blow-up in elliptic equations (see, for example, [4, 24]), it is nat-
ural to expect asymptotic behavior of the form Q/(R− r)q , with positive
constants Q and q . In fact, we will prove the following result.

Proposition 4.1 Let (w, φ, ψ) ∈ C1([0, R),R3) be the maximal solution of
the Cauchy problem (2.2), for a given µ ∈ R+ and p ∈ R, and suppose that
R is finite. Then, as r → R−,

w(r) ∼ 60
(R− r)3

, φ(r) ∼ 180
(R− r)4

, ψ(r) ∼ 720
(R− r)5

.

Let us note that if all three of the functions w, φ, ψ exhibit asymptotic
behavior of the form Q/(R− r)q , it is easy to see that the constants Q and
q are necessarily as above.

We will prove Proposition 4.1 under the assumption that R = 1; thanks
to the scaling property, this entails no loss of generality. The proof will be
achieved by analyzing a system of equations derived from (2.2) by a suitable
change of variables.
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Given any solution (w, φ, ψ) of (2.2), define functions α, β, γ by

α(r) :=
(1− r)3

60
w(r) , β(r) :=

(1− r)4

180
φ(r) , γ(r) :=

(1− r)5

720
ψ(r) ;

then (α, β, γ) is a solution of




(1− r)
(
α′ +

µ

r
α
)

= 3(β − α) , α(0) = 0 ,

(1− r)β′ = 4(γ − β) , β(0) = p/180 ,

(1− r)
(
γ′ +

µ

r
γ
)

= 5(α2 − γ) , γ(0) = 0 .

(4.1)

Just like (2.2), the system (4.1) is singular at r = 0, but this does not affect
the well-posedness of the initial value problem; in addition, (4.1) is singular
at r = 1.

Remark 4.2 Suppose that (w, φ, ψ) is the maximal solution of (2.2), for
a given µ ∈ R+ and p ∈ R , with interval of existence [0, Rp); let (α, β, γ)
be the corresponding solution of (4.1), as defined above. Clearly, if Rp < 1,
then (α, β, γ) ceases to exist before reaching the singularity at r = 1; in
fact, α(r), β(r), γ(r) →∞ as r → R−

p . Also, if Rp > 1, then (α, β, γ) can
be continued beyond the singularity at r = 1, and α(r), β(r), γ(r) → 0 as
r → 1−. Finally, if Rp = 1, then (α, β, γ) exists up to the singularity at
r = 1, but the behavior near the singularity is not obvious. The assertion
of Proposition 4.1 (with R = 1) is that, in this case, α(r), β(r), γ(r) → 1
as r → 1−.

Remark 4.3 Recall that for every µ ∈ R+ , there is exactly one initial
value p+

µ > 0 and at most one initial value p−µ < 0 such that the maximal
solution of (2.2) with p = p±µ blows up at r = 1. Let p∗µ denote one
such value. Due to the scaling property of the problem, all solutions with
sign(p) = sign(p∗µ) blow up in finite time. Moreover, there is a one-to-one
correspondence between the initial value p and the exit time Rp of the
solution; in fact, R4

p = p∗µ/p (see Remark 2.1). It follows that if p > p∗µ > 0
or p < p∗µ < 0, then Rp < 1, and consequently, α(r), β(r), γ(r) → ∞ as
r → R−

p . Also, if 0 < p < p∗µ or p∗µ < p < 0, then Rp > 1, and consequently,
α(r), β(r), γ(r) → 0 as r → 1−.
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Remark 4.4 The observations in the preceding remark allow us to use a
shooting method to numerically approximate p+

µ and, if it exists, p−µ , that
is, the critical initial values p for which the maximal solution of (2.2), for a
given µ ∈ R+ , blows up at r = 1. Solving the Cauchy problem (4.1) with
p = p±µ , we can then construct the solutions of (2.2) that blow up at r = 1,
and thereby, the large radial solutions of the problem (1.3) on the unit ball.
All the graphs in the preceding sections were generated in this way (with a
suitable rescaling in the case of Figures 7 and 8).

Our experiments suggest that p−µ exists if and only if µ < µ̃ , for some
number µ̃ ≈ 13.755, which, due to the scaling property, must coincide with
the number µ∗ defined in (3.5). In fact, we find that p−µ is a strictly de-
creasing function of µ that approaches −∞ as µ → µ̃ .

In order to prove Proposition 4.1 for R = 1, we must show that all three
components of the maximal solution (α, β, γ) of the Cauchy problem (4.1)
with µ ∈ R+ and p = p±µ converge to 1 as r → 1− (recall Remarks 4.2
and 4.3). While our numerical experiments leave no doubt about this (see
Figures 9–12 for examples of computed solutions), the proof requires a small
detour in dynamical systems; we refer to [22] for terminology and basic
properties.
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It is convenient to perform another change of variables in the sys-
tem (4.1), letting r = 1 − e−t and a(t) = α(r), b(t) = β(r), c(t) = γ(r).
With this rescaling of the independent variable, (4.1) is equivalent to





a′ +
µ

et − 1
a = 3(b− a) , a(0) = 0 ,

b′ = 4(c− b) , b(0) = p/180 ,

c′ +
µ

et − 1
c = 5(a2 − c) , c(0) = 0 .

(4.2)

Note that the singularity of (4.1) at r = 1 has been moved to t = ∞ ;
moreover, the system (4.2) is autonomous for µ = 0 and asymptotically
autonomous for µ > 0. For notational convenience, we write the system of
differential equations in (4.2) as

x′ +
µ

et − 1
E(x) = F (x), (4.3)

where x = (a, b, c) takes values in R3 , E : R3 → R3 is the linear mapping
defined by E(a, b, c) := (a, 0, c), and F : R3 → R3 is the vector field defined
by

F (a, b, c) :=
(
3(b− a), 4(c− b), 5(a2 − c)

)
.

Remark 4.5 For t > 0 and a ≥ 0, the system (4.3), with arbitrary
µ ∈ R+ , satisfies the Kamke condition and thus, a comparison principle
(see, for example, [25]).
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To be precise, let t0, t1 ∈ [0,∞] with t0 < t1 and suppose that x1, x2 ∈
C([t0, t1),R3) ∩ C1((t0, t1),R3). If x1 is a subsolution of (4.3) with a1 ≥ 0,
x2 is a supersolution of (4.3), and x1(t0) ≤ x2(t0) (x1(t0) < x2(t0)), then
x1(t) ≤ x2(t) (x1(t) < x2(t)) for all t ∈ [t0, t1).

By a subsolution (supersolution) of (4.3) we mean, of course, a function
x = (a, b, c) satisfying the differential inequality obtained from (4.3) by
replacing “=” with “≤” (“≥”). Also, given vectors x1, x2 ∈ R3 , we write
x1 ≤ x2 or x2 ≥ x1 (x1 < x2 or x2 > x1 ), if the respective inequality holds
componentwise, and we call a vector x ∈ R3 nonnegative (positive) if x ≥ 0̄
(x > 0̄), where 0̄ := (0, 0, 0).

Remark 4.6 For every λ ∈ [0,∞] , let λ̄ denote the vector (λ, λ, λ). For
arbitrary µ ∈ R+ , 0̄ is a solution of (4.3), and 1̄ is a supersolution (a so-
lution if µ = 0). More generally, for every λ ∈ [0, 1], λ̄ is a supersolution.
Furthermore, for every λ ∈ (1,∞), there exists a number τ ∈ [0,∞), de-
pending only on λ and µ , such that

(
λ+1

2 , λ, λ
)

is a subsolution on the
interval (τ,∞) (where τ = 0 if µ = 0).

Proposition 4.7 For a given µ ∈ R+ , let x be a nonnegative maximal
forward solution of (4.3).
(a) If x is unbounded, then x blows up in finite time and approaches ∞.
(b) If x is bounded, then x converges to either 0̄ or 1̄.

Proof. Fix µ ∈ R+ and let x = (a, b, c) be a nonnegative maximal forward
solution of (4.3).
(a) Suppose that x = (a, b, c) is unbounded. First we will show that b is
unbounded. By way of contradiction, suppose that b ≤ b0 for some positive
constant b0 . Then we have

a′ ≤ a′ +
µ

et − 1
a = 3(b− a) ≤ 3(b0 − a) ,

which implies that a is bounded. A similar argument then shows that c is
bounded as well, and this contradicts the unboundedness of x = (a, b, c).
Thus, b is unbounded.

Now fix a number p0 > 0 such that the solution (w0, φ0, ψ0) of the
initial-value problem (2.2) with p = p0 blows up at a point R0 < 1. The
corresponding solution x0 = (a0, b0, c0) of the initial-value problem (4.2)
then blows up at − ln(1−R0). Recall that the b-component of the trajectory
x = (a, b, c) is unbounded and choose a point τ in the interval of existence
of x such that b(τ) ≥ p0/180; define x̃ := x(τ + · ). Then we have

x̃′ +
µ

et − 1
E(x̃) ≥ x̃′ +

µ

eτ+t − 1
E(x̃) = F (x̃)
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and
x̃(0) = x(τ) =

(
a(τ), b(τ), c(τ)

) ≥ (0, p0/180, 0) = x0(0) .

Thanks to the comparison principle in Remark 4.5, it follows that x̃ ≥ x0 .
In particular, x̃ blows up in finite time, and then, so does x . Reasoning as in
the proof of Lemma 2.4(b), it is now easy to verify that all three components
of x approach infinity.
(b) Suppose that x is bounded. First, consider the autonomous case, µ = 0.
The vector field F is cooperative in the half-space a ≥ 0 and, in particular,
in the nonnegative cone R3

+ ; moreover, div(F ) ≡ −12, and F has exactly
two zeros, at 0̄ and 1̄. Thus, F generates a monotone, volume-contracting
semiflow Φ in R3

+ , with exactly two equilibria, at 0̄ and 1̄. The equilibrium
at 0̄ is a stable node, the one at 1̄ is unstable, with a two-dimensional stable
manifold (the eigenvalues are 1 and −13/2± i

√
71/2).

Moreover, the system can be embedded into a cooperative system in
all of R3 by replacing the nonlinear term a2 in the third component of the
vector field F with a|a| ; the extended system still has negative divergence
and equilibria at 0̄ and ±1̄ . Hirsch proved (see [13], Theorem 1) that every
compact limit set of a cooperative or competitive system in R3 is either a
cycle or contains an equilibrium. Another result of Hirsch’s (see [12], Theo-
rem 7) guarantees that a cooperative system in R3 with negative divergence
cannot have any cycles. Moreover, for our particular system, it is easy to
see that any compact limit set containing one of the equilibria is in fact a
singleton. Combining these results we infer that every bounded (forward or
backward) trajectory of the system converges. In particular, the trajectory
x converges to either 0̄ or 1̄ .

Now consider the nonautonomous case, µ > 0. As we observed before,
the system (4.3) is asymptotically autonomous. An old result of Markus [18]
implies that the ω -limit set K of the trajectory x is a nonempty compact
and connected subset of R3

+ ; moreover, dist(x(t),K) → 0 as t →∞ , and K
is invariant under the semiflow Φ of the autonomous limit system, that is,
(4.3) with µ = 0. A more recent result by Mischaikow, Smith, and Thieme
(see [19], Theorem 1.8) implies that K is also chain-recurrent under Φ.

We claim that K ⊂ {0̄, 1̄} . By way of contradiction, suppose there
is a point z ∈ K \ {0̄, 1̄} . In light of what we proved for the autonomous
case, since K is compact and Φ-invariant, the Φ-trajectory through z must
converge, both forward and backward in time. Backward in time, it can only
converge to 1̄ (since 0̄ is stable). Thus, z belongs to the unstable manifold
of 1̄ , and it follows that, forward in time, the Φ-trajectory through z can
only converge to 0̄. Hence, K consists of the two equilibria, 0̄ and 1̄, and
a heteroclinic orbit connecting the two; such a set is obviously not chain-
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recurrent. The contradiction proves that K ⊂ {0̄, 1̄} . In fact, since K is
nonempty and connected, we have either K = {0̄} or K = {1̄} ; that is, x
converges to either 0̄ or 1̄. ¤

Corollary 4.8 Let µ ∈ R+ and p ∈ R be such that the maximal solution
(w, φ, ψ) of the Cauchy problem (2.2) blows up at r = 1. Then the maximal
solution (a, b, c) of (4.2) converges to 1̄.

Proof. Under the assumptions of the corollary, (w, φ, ψ) approaches ∞
at r = 1; thus, the corresponding solution (α, β, γ) of (4.1) is eventually
positive and exists on [0, 1) (see Remark 4.2). This means that x = (a, b, c)
is eventually positive and exists on [0,∞). By Part (a) of Proposition 4.7,
it follows that x is bounded, and then, Part (b) of the same proposition
implies that x converges to either 0̄ or 1̄ . Now, suppose that x(t) → 0̄
as t → ∞ , and choose t0 ∈ (0,∞) such that 0̄ < x(t0) < 1̄ . Since the
solution of (4.2) depends continuously on p , we can find a value p̃ , close to
p , with |p̃| > |p| such that the corresponding maximal solution x̃ of (4.2)
exists at t = t0 and satisfies 0̄ < x̃(t0) < 1̄ . Since 0̄ is a solution and 1̄ is a
supersolution of (4.3), the comparison principle in Remark 4.5 implies that
0̄ < x̃(t) < 1̄ for all t ≥ t0 , as long as x̃ exists. From Remark 4.3, however,
we know that x̃ goes to ∞ (in finite time). This contradiction proves that
x does not converge to 0̄, and so, it must converge to 1̄. ¤

Proof of Proposition 4.1. Due to the scaling property of the system (2.2)
(see Remark 2.1), it suffices to prove the assertion of the proposition for
R = 1; in this case, it is an immediate consequence of Corollary 4.8 (see
Remark 4.2). ¤

Proof of Theorem 1.5. Since every large radial solution (v, φ) of the problem
(1.3), for a given R > 0, corresponds to a solution (w, φ, ψ) of (2.2) that
blows up at R , the asymptotic behavior of φ is clear from Proposition 4.1.
Moreover, the asymptotic behavior of v , given by v(r) =

∫ r
0 w(s) ds for

0 ≤ r < R , follows readily from that of w . ¤

In closing, we note that Hirsch’s results on cooperative systems in R3

(see [12, 13]) allow us to completely describe the dynamics of the monotone,
volume-contracting semiflow Φ in R3

+ , induced by the vector field F . First,
it is easily verified that Φ is, in fact, strongly monotone (even though F is
irreducible only for a > 0). As shown in the first part of the proof of Propo-
sition 4.7(b), Hirsch’s results imply that every forward trajectory of Φ either
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converges to 0̄ (a stable node) or to 1̄ (a saddle point), or it approaches
∞ , necessarily in finite time. Clearly, both 0̄ and ∞ are stable attractors.
In fact, using the sub and supersolutions constructed in Remark 4.6, we see
that the open order intervals (0̄, 1̄) and (1̄,∞) are positively invariant and
contained in the basins of attraction of 0̄ and ∞ , respectively. The two
basins of attraction are separated by the (two-dimensional) stable manifold
Ws(1̄) of the saddle point. The (one-dimensional) unstable manifold Wu(1̄)
has a positive tangent vector at 1̄, which implies that Wu(1̄) \ {1̄} is con-
tained in the union of the order intervals (0̄, 1̄) and (1̄,∞). Thus, every
forward trajectory on Wu(1̄) \ {1̄} either converges to 0̄ or approaches ∞ .
It follows that Wu(1̄) \ {1̄} consists of two heteroclinic orbits, connecting 1̄
to 0̄ and ∞ , respectively.

5 Appendix

The following algorithm allows the construction of increasing sequences of
polynomial lower bounds and decreasing sequences of polynomial upper
bounds for the maximal solution (w, φ, ψ) of the Cauchy problem (2.2) with
p = −1 and arbitrary µ ∈ R+ . The bounds being polynomials, the compu-
tations amount to symbolic algebra on the coefficients. We used Maple to
perform these computations; the relevant commands are provided below.

Given a polynomial P in r (whose coefficients are rational functions of
another variable), the command

L:=normal(CoefficientList(P,r)):

generates the list of coefficients of P (in decreasing order, starting with the
leading one), and writes each coefficient in “normal form” (that is, as a
quotient of polynomials). The command

n:=nops(L):

gives the number of entries in the list L ; that is, n− 1 is the degree of P .

Construction of Polynomial Bounds
Step 0. Specify a lower bound (or an upper bound) for φ : φ0 (a suitable
polynomial in r ).

with(PolynomialTools):
phi0:=-1; # Other choices are possible.

Step 1. Compute a lower (an upper) bound for w : w0 :=
∫ r
0

(
s
r

)µ
φ0(s) ds .

L:=normal(CoefficientList(phi0,r)): n:=nops(L):
w0:=sum(L[i]*r^i/(mu+i),i=1..n);
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Step 2. Compute an upper (a lower) bound for ψ , valid as long as w, w0 ≤ 0:
ψ0 :=

∫ r
0

(
s
r

)µ
w2

0(s) ds .

L:=normal(CoefficientList(w0^2,r)): n:=nops(L):
psi0:=sum(L[i]*r^i/(mu+i),i=1..n);

Step 3. Compute an upper (a lower) bound for φ : φ0 := −1 +
∫ r
0 ψ0(s) ds .

L:=normal(CoefficientList(psi0,r)): n:=nops(L):
phi0:=-1+sum(L[i]*r^i/i,i=1..n);

Step 4. Go to Step 1 (or proceed to “Computation of Coefficient c” below).

Starting with the trivial lower bound φ
0

:= −1 for φ , the algorithm
produces the bounds w1 , ψ1 , φ1 , w1 , ψ

1
, φ

1
, . . . , referred to in the proof

of Proposition 3.1; these bounds are valid on the interval [0, r0] , where
r0 := (4(µ+1)(µ+3)(µ+5))1/4 is the unique positive root of w1 (note that
for all k ∈ N , w1 ≤ wk ≤ w ≤ wk ≤ w1 ≤ 0 on [0, r0]).

Now suppose that w0 , ψ0 , and φ0 have been constructed according to
Steps 1–3 of the algorithm, starting with an initially negative upper bound
for φ . Then we have w ≤ w0 ≤ 0, ψ ≥ ψ0 ≥ 0, and φ ≥ φ0 on some
interval [0, r0] with r0 > 0. The arguments in the proof of Proposition 3.1
show that the following “tail estimate” holds for every r > r0 , provided that
φ(r) ≤ 0:

0 ≥ (µ− 1)2φ(r) ≥ a
(r0

r

)2(µ−1)
− b

(r0

r

)µ−1
+ c ,

where
a :=

1
2
r2
0 w2

0(r0) ,

b := r2
0 w2

0(r0) + (µ− 1)r0ψ0(r0) ,

c :=
1
2
r2
0 w2

0(r0) + (µ− 1)r0ψ0(r0) + (µ− 1)2φ0(r0) .

If we use the bounds w0 = wk , ψ0 = ψ
k
, and φ0 = φ

k
, for some k ∈ N ,

and choose r0 to be the positive root of w1 (or the positive root of φ1 ), the
coefficients a , b , c , and various other relevant quantities, such as φ0(r0),
are rational functions of µ ; in fact, r4

0 is a polynomial in µ , while r2w2
0(r),

rψ0(r), and φ0(r) are polynomials in r4, whose coefficients are rational func-
tions of µ . This facilitates the symbolic computation of these quantities and
allows us to locate their positive roots by inspecting the coefficients of the
respective numerator polynomials (the roots of the denominator polynomi-
als are negative integers). Recall that finding the positive roots of c , in
particular, is a crucial step in the proof of Proposition 3.1.
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Computation of Coefficient c
Step 0. Specify r0 : r0 := ρ1/4 (ρ a suitable polynomial in µ).

rho:=4*(mu+1)*(mu+3)*(mu+5): # Or: rho:=4*(mu+1)^2*(mu+3):

Step 1. Compute coefficients of 1
2r2w2

0(r) + (µ− 1)rψ0(r) + (µ− 1)2φ0(r).

P:=r^2*w0^2/2+(mu-1)*r*psi0+(mu-1)^2*phi0:
L:=normal(CoefficientList(P,r)): n:=(nops(L)-1)/4+1:

Step 2. Compute c = c1/c2 , with numerator polynomial c1 and denominator
polynomial c2 .

c:=normal(sum(L[4*i-3]*rho^(i-1),i=1..n)):
c1:=sort(numer(c)); c2:=denom(c);

If we choose w0 = w2 , ψ0 = ψ
2
, φ0 = φ

2
, and ρ = 4(µ+1)(µ+3)(µ+5),

as in the proof of Proposition 3.1, then the numerator polynomial c1 of c has
exactly two positive roots (by Descartes’s rule of signs and the intermediate-
value theorem), one near 0.747, the other near 9.073.
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