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Abstract. This paper is devoted to a mathematical analysis of some general models of
mass transport and other coupled physical processes developed in simultaneous flows of
surface, soil and ground beginabstract waters. Such models are widely used for forecasting
(numerical simulation) of a hydrological cycle for concrete territories. The mathemat-
ical models that proved a more realistic approach are obtained by combining several of
mathematical models for local processes. The water - exchange models take into account
the following factors: water flows in confined and unconfined aquifers, vertical moisture
migration with allowing earth surface evaporation, open-channel flow simulated by one-
dimensional hydraulic equations,transport of contamination, etc. These models may have
different levels of sophistication. We illustrate the type of mathematical singularities which
may appear by considering a simple model on the coupling of a surface flow of surface and
ground waters with the flow of a line channel or river.
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1 INTRODUCTION

It is well known that one of the central issues of the Mathematical Environment is
the study of general mathematical models for the hydrological cycle (MMHC) obtained
trough the consideration of mass transport balances with other connected physical pro-
cesses arising in the coupling of the different type of water flows: surface, soil and ground
waters. The water exchange models (MMHC) take into account many different factors as,
for instance: water flows in confined and unconfined aquifers, vertical moisture migration
with allowing earth surface evaporation, open-channel flow simulated by one-dimensional
hydraulic equations, transport of contamination, etc. These models may have different
levels of sophistication leading, in any case, to different systems of nonlinear partial dif-
ferential equations. Some illustration of the hydrological cycle and a possible grid used
in numerical simulation are presented in the Figure 1. Some example of the vertical and
horizontal sections of the spatial modelling area are presented in the Figures 2 and 3, 4.

The mathematical treatment of such type of models (of a great diversity) started in
the second half of the past century (see, for instance, [1, 4, 8, 10], [13]-[24], [26]-[28], [31]-
[33] and their references). The study of these mathematical models and their numerical
approximation has lead to important theoretical advances in the study of nonlinear par-
tial differential equations (very often of mixed and degenerate type). The mathematical
results can be of a very different nature: questions concerning the mathematical well-
possedness of the models (such as the existence and uniqueness of some suitable notion
of solution), the study of the qualitative properties of such solutions (as, for instance,
the asymptotic behavior with respect to time and spatial variables), the stability and
continuous dependence with respect to initial data and physical parameters, etc.

In the paper we shall illustrate the type of mathematical singularities which may appear
by considering a simple model on the coupling of a surface flow of surface and ground
waters with the flow of a line channel or river. After some comments on the modelling,
we present some results on the mathematical treatment of this simple model. This type
of considerations seem of relevance in the study of propagation of desert.

2 A collection of mathematical models for the hydrological cycle

2.1 Basic equations

To fix ideas, we start by making some comments on the spatial domain in study. We
consider a bounded multiply connected region Ω ⊂ R2 of exterior boundary Γ = ∂Ω =∑n

i=1 Γi (see Figure 4). We assume that at the interior of Ω there is a system of channels
or rivers described by a set of curves Π =

∑l
i=1 Πi. The interior of Ω may also contain

some basins or lakes of boundaries given by some closed curves Γ0 =
∑m

j=1 Γ0j. We can
assume also that some curves Πi may have some points of intersection with Π (which we
denote as N =

∑
i,j=1 Nij ), with the boundary Γ (which we denote as P =

∑
i=1 Pi ),

or with the lakes boundaries Γ0 (which we denote as P0 =
∑

i=1 P0i ).
The different mathematical models on the hydrological cycle are based on the consider-
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ation of some of the following local subsystems: 1. Vertical filtration in a porous ground.
By applying the Darcy law, it is well known that [1, 29, 33] if we denote by ϑ to the
volumetric moisture content and by ψ to the pressure of the soil moisture then we arrive
to the so called Richards equation

∂ϑ(ψ)

∂t
=

∂

∂x3

[
K (ψ)

(
∂ψ

∂x3

+ 1

)]
+ f (H, ϑ, x3, x, t) , (1)

where K is the hydraulic conductivity, f (H, ϑ, x3, x, t) is a source / absorption term
and x3 is the vertical coordinate direct upward. The nonlinear parabolic equation takes
place on the set

H(x, t) < x3 < He(x), x = (x1, x2) ∈ Ω ∈ R2,

whereH(x, t) is the level of the ground water (elevation of the ground free surface) and
He(x1, x2) is the given surface of the earth. A typical constitutive law used to transform
the equation in a self-contained equation for ψ is the one given in the following terms

ϑ = ϑs/

[
1 +

(
−ψ

a

)m]
, ψ < 0, K = Ks [ ( ϑ− ϑr) / ( ϑs − ϑr)]

n ,

2. Horizontal plane filtration equations for the levels of ground waters. By using the
so called Boussinesq and Shchelkachev equations, it is well known ([26, 28, 30, 33]) that if
we denote by H(x, t) and H1(x, t), respectively, to the elevation of the groundwater free
surface in the upper layer and the piezometric head in the lower layer, then we arrive to
the coupled system of

µ
∂H

∂t
= div (M∇H)− k′

T ′ (H −H1) + fΩ, x = (x1, x2) ∈ Ω, t ∈ (0, T ), (2)

µ1
∂H1

∂t
= div (k1T1∇H1) +

k′

T ′ (H −H1), x ∈ Ω, t ∈ (0, T ), (3)

where
M = k(x)(H −H1) , fΩ = fΩ(H, ϑ, x, t),

µ is the yield coefficient (the deficiency of saturation), µ1 the storage coefficient, k, k1 and k′ are
the hydraulic conductivity (percolation) coefficients for the corresponding layers (see Fig-
ure 3), fΩ is a source function (see [4, 33]). Here the div operator must be understood
only in the spatial variable. The last term in (3) characterize the rate of vertical flow
from the upper layer to the one through the semipermeable intermediate layer.

3. Water level flow in open channels. By applying a diffusion wave approximation to
the Saint Venant equations, it is well known ([4, 15, 23, 26, 33] and its references) that if
we denote by u(s, t) to the water level in the channel stream, by ω to the cross sectional
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area (ωu = B is the width) and to s to the channel curvilinear length variable measured
along its axial cross-section, then we arrive to the nonlinear parabolic equation

∂ω

∂t
=

∂

∂s

(
ψφ

(
∂u

∂s

))
−Q + fΠ, s ∈ Π, t ∈ (0, T ), (4)

under the constitutive laws

ω = ω(s, u), φ

(
∂u

∂s

)
=

∣∣∣∣
∂u

∂s

∣∣∣∣
1
2

sign

(
∂u

∂s

)
,

and

Q = α u|Π + α0

[
M

∂H

∂n

∣∣∣∣
Π+

− M
∂H

∂n

∣∣∣∣
Π−

]
,

where ψ(s, u) = CωR
2
3 is the discharge modulus, C is the coefficient Chezy, R is the

hydraulic radius, fΠ is a source function,

[MHn] =
(

MHn|Π+
+ MHn|Π−

)

is the total filtration inflow of ground water from the right Π+ and left Π−banks of
the channel, and Hn = ∂H/∂n is the outer normal derivative to the boundary of Π. We
point out that in many other references the Saint Venant equations are applied to other
constitutive laws leading to first order hyperbolic equations (see, e.g., [24]).

4. Water level balance in reservoirs. It is well known ([4]) that denoting by z(t) to the
level on the boundaries of reservoirs we arrive to the equation

λ
dz

dt
= −

∮

Γ0

M
∂H

∂n
ds− (ψφ)Γ0

, t ∈ (0, T ). (5)

To obtain other models describing the quality of ground and surface water flows we need
to coupled the above equation with some other equations expressing the mass transfer
between the different chemical components (see, e.g., [25]):

a. Solute transport equation. For instance, in the case of a confined aquifer we must
add the diffusion equation

∂(mC)

∂t
= div (D∇C − vC) + Φ(C,N) + f, (6)

where
v = −M∇H, D = D0 + λ|v| and m = m0 + µ(H −Hp).

b. Dynamics of a reactive solid medium. In some cases, there is a chemical reaction
modifying the skeleton of the porous medium and we must add then a kinetic equation
of the form

∂N

∂t
= Φ(C,N). (7)

4



S. N. Antontsev, J.I. Díaz

c. Solute transport phenomena in open-channels. In many cases, as for instance in
rivers we must add a transport equation of the form

∂($S)

∂t
=

∂

∂s
(D1

∂S

∂s
− v1S)− (q1C) + f, (8)

under some constitutive law of the type

D1 = D1
0 + λ1|v1|, v1 = −Ψ(s, u)|us|1/2sign(us).

2.2 Elaboration of a coupled model: the case of simultaneous surface ground
water and open channel flows

Usually the mathematical models for the hydrological cycle take into account several
simultaneous processes and the modelling is carried out by coupling some of the above
mentioned equations involved in the phenomena under consideration completed with the
corresponding initial and boundary conditions.

To illustrate this we consider now, for instance, the interplay process between surface
(lake channel) and ground waters (on which, for the sake of simplicity in the formulation,
we neglect the unsaturate zone and assume that there is only one nonpressure layer). A
simplified representation can be found in the Figures 3 and 4. Then the mathematical
model equations collects of the equations (2)-(5) which here we reduce to the following
ones:

µ
∂H

∂t
= div (M∇H) + fΩ, x = (x1, x2) ∈ Ω, t ∈ (0, T ), (9)

∂ω

∂t
=

∂

∂s

(
ψφ

(
∂u

∂s

))
−Q + f, s ∈ Π, t ∈ (0, T ), (10)

λ
∂z

∂t
= −

∮

Γ0

M
∂H

∂n
ds− (ψφ)Γ0

, x ∈ Γ0, t ∈ (0, T ), (11)

for the unknown W(x, t) = (H(x, t), u(s, t), z(t)) .
Obviously, the above system of parabolic partial differential equations must be com-

pleted by adding a set of initial and boundary conditions:

W(x, 0) = W0(x), x ∈ Ω, (12)

σ1M
∂H

∂n
+ σ2H = g, (x, t) ∈ ΓT = Γ×(0, T ), (13)

κ1ψ(s, u)φ(
∂u

∂s
) + κ2u = g, (x, t) ∈ PT = P × (0, T ), (14)

M
∂H

∂n

∣∣∣∣
Π±

= α (u−H±) + α0 (H+ −H−) , (x, t) ∈ ΠT = Π× (0, T ), (15)
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ui = uj,
∑
i=1

ψ(s, ui)φ(
∂ui

∂s
) = 0 (s, t) ∈ NT = N × [0, T ], (16)

H(x, t) = z(x, t), x ∈ Γ0, t ∈ (0, T ). (17)

The complete mathematical model is then described by the equations (9)-(11), (12)-
(17) and, as we shall develop in the following Section, its mathematical treatment is far
to be obvious. We shall require the analysis of a combined-type of nonlinear partial dif-
ferential equations which are defined on different sets of space variables: equation (9) is
defined in the two dimensional domain Ω, equation (10) on the curve Π and although
equation (11) is a time ordinary differential equation its right hand side is given by a
nonlocal operator depending on H and∂H

∂n
. Moreover, the parabolic equations may de-

generate changing type or order at certain values of the solution that is sought (case of
(9)) or/and its derivatives (case of (10)). Finally, notice that all these equations contain
numerous physical parameters which may leads to completely different behaviour of its
solutions. We point out that the interaction between the different physical processes is
given by the coupling source functions included into differential equations, as well as by
the common boundary conditions.

Due to the presence of nonlinear terms, the solutions of such equations may exhibit
many different behaviors that cannot occur in the (more or less well-known) case of linear
models. The list of peculiar effects of this kind includes properties as the finite time of
localization (or extinction in finite time), finite speed of propagation of disturbances from
the initial data, waiting time effect, etc.

A previous study to the questions of the mathematical well-possedness of the above
system (existence, uniqueness and some qualitative properties of solutions) was carried
out in [7]. In the following section we shall recall a part of those results, adding some
new ones and developing other qualitative properties which explain the mathematical
peculiarities of such model.

3 Mathematical treatment of a simplified model coupling the channel level
and surface ground water flows

In this section we shall give an idea of the mathematical analysis of the model coupling
the channel level and surface ground water flows mentioned before (see Figures 5,6). As a
matter of fact, for the sake of the exposition, we shall limit ourselves to the consideration
of a simplified case in which the ground is assumed to be homogeneous and isotropic, the
impermeable base is assumed to be horizontal

M = H, (18)

the flow cross-section of the channel is assumed by uniform and with area given by

ω(s, u) = u, (19)
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and we assume the constitutive relation ψ(s, u) = |u|α, where the parameter α is defined
by the geometry of channel.

We shall assume also coefficients σ1 = κ1 = 0 and the coincidence among the levels of
the ground waters on the left and right banks and the level of the channel water. Last
condition corresponds, formally, to assume that (15) holds for α = ∞ and α0/α = 0.

3.1 Statement of the mathematical problem

3.1.1 System of Equations

Under the above simplifications, the stated equations the model reduce to the system

∂H

∂t
= ∇ (H∇H) + fΩ, (x, t) ∈ ΩΠ

T = ΩΠ × (0, T ), ΩΠ = Ω/Π, (20)

∂u

∂t
=

∂

∂s

(
| u |α

∣∣∣∣
∂u

∂s

∣∣∣∣
−1/2

∂u

∂s

)
+

[
H

∂H

∂n

]

Π

+ fΠ, (s, t) ∈ ΠT , (21)

3.1.2 Initial and boundary conditions

Under the above simplifications, the set of initial and boundary conditions takes the
form

H(x, 0) = H0(x), u(s, 0) = u0(s), (22)

H+= H−= u, (s, t) ∈ ΠT = Π×(0, T ), (23)

H = g, (x, t) ∈ ΓT , u = g, (x, t) ∈ PT ∪NT . (24)

An illustration of the cross-section and planar view of the modelling domain is presented
in the Figures 5, 6. We shall assume (for simplicity) that there exist some functions
H0(x, t), u0(x, t) defined on Ω× (0, T ) and such that

H0|ΓT
= g, u0|ΠT

= g; H0(x, 0) = H0(x), x ∈ Ω and u0(s, 0) = u0(s),s ∈ Π, (25)

|H0| , |u0| , ‖|∇H0|+|H0t|‖2,ΩT
, ‖u0s‖3/2,ΠT

, ‖u0t‖2,ΠT
≤ C < ∞. (26)

We assume also
∫ T

0

(
max

x
|fΩ(x, t)|+ max

s
|fΠ(s, t)|

)
dt ≤ C < ∞ (27)

The above conditions can be weakened in some of the results which follow but we are not
trying to state the more general statements of our results.
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Remark 1 Notice that due to the boundary coupling given by (23) the partial differential
for u can be understood as a boundary condition (on ΠT ) for H. So that, it is a dy-
namic boundary condition involving a diffusion term. This type of "boundary conditions"
also arises in the study of some systems which appears when coupling the surface Earth
temperature with the ones of a deep ocean (see [20], [21]).

Remark 2 As mentioned before, the equation (21) become degenerate on the set of points
where u = 0 and singular on the set of points where ∂u

∂s
= 0. This type of equations arises,

mainly, in the study of suitable non-Newtonian flows (see, e. g. [3]). Here, by the
contrary, no assumption about the Newtonian type of the fluid is made (for other contexts
leading to doubly nonlinear parabolic equations quite similar to equation (21) see the paper
[22]).

3.2 Existence and uniqueness theorems

Definition 1 A non negative pair of bounded functions (H, u) = W such that

0 ≤ H(x, t), u(s, t) ≤ C < ∞ (28)

and ∫ T

0

(∫

Ω±
H| ∇H |2dx +

∫

Π

(
uα| us |

3
2

)
ds

)
dt ≤ C < ∞ (29)

is called a weak solution of the model (20)− (24) if for every test function η such that

η ∈ W 1,1
2 (ΩT ) ∩W 1,1

3/2(ΠT ), η = 0, (x, t) ∈ ΓT = Γ× (0, T )

and for every t ∈ [0, T ] the following identity holds

t∫

0

∫

Ω

(−Hηt + H∇H·∇η) dxdt +

∫

Ω

H(x, τ)η(x, τ)dx|τ=t
τ=0 (30)

+

t∫

0

∫

Π

(−uηt + ψϕ(us)ηs) dsdt +

∫

Π

u(s, τ)η(s, τ)ds|τ=t
τ=0

=

t∫

0

∫

Ω

fΩηdxdt +

t∫

0

∫

Π

fΠηdsdt.

Theorem 1 Let us assume that (26), (27) hold and

0 ≤ fΩ, fΠ, H0, u0 ≤ C0 < ∞, 0 < α < ∞. (31)
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Then the above model has at least one weak solution W(x, t) = (H, u) . If we assume that
Wt ∈ L1 then the weak solution is unique. Moreover, if we assume additionally that

0 < δ ≤ u0, H0, g ≤ C0 < ∞, (32)
∫ T

0

(
max

x
|∂fΩ/∂t|+ max

s
|∂fΠ/∂t|

)
dt ≤ C < ∞ (33)

H0xt, H0tt ∈ L2(Ω±
T ), u0s∈ L∞(0, T ; L

3
2 (Π)), u0st∈ L2(ΠT ), (34)

then there exist a small T0 > 0 such that this weak solution is unique and the following
estimates are valid

sup
0≤t≤T0

(∫

Ω±
| ∇H |2dx +

∫

Π

| u
s

| 32 ds

)
≤ C < ∞ (35)

∫ T0

0

∫

Ω±

(
Ht

2 + | Hxx |2
)
dxdt +

∫ T

0

∫

Π

(
ut

2 + | us |−1/2| uss |2
)

dsdt ≤ C < ∞. (36)

Proof 1 First we assume that (32) holds. Then it follows from the definition of weak
solution that 0 < δ ≤ H, u. The weak solution can be constructed, for instance, as the limit
of a sequence of Galerkin’s approximations. From the assumptions on the domain Ω we
know that there exists a complete system of the functions Φk ∈ W 1

2 (Ω), with Φk(~x)Γ =
0, which are dense in W 1

2 (Ω). Respectively. we can assume that the set of curves Π
admits also a complete system of functions Ψk∈ W 1

3
2

(Π), with Ψk(s)Γ∪Π = 0, which is
dense in W 1

3
2

(Π). Moreover, without loss of the generality we can assume that the functions
Φk and Ψk are orthogonal in L2(Ω) and L2(Π) respectively Then, we can construct a
sequence of approximate solutions of the form

WN = (HN , uN) =

(
N∑

k=1

Hk(t)Φk(~x) + H0,

N∑

k=1

uk(t)Ψk(s) + u0

)
, (37)

where the functions H0 and u0 satisfy the corresponding boundary conditions.
We substitute last expression into the corresponding partial differential equations, mul-

tiply by Φ±
j (x) and Ψj(s), respectively, and integrate over Ω± and Π.

This leads us to a suitable Cauchy problem

dYN

dt
= F(t,YN), YN(0) = YN

0 , (YN = (H1, .., HN , u1, .., uN)), (38)

for some given smooth (with respect to Y) vectorial function F(t,Y). Multiplying equations
(38) by the vector YN and summing, we arrive at the estimate (35). To prove the estimates
(36) we differentiate (38) with respect to t and multiply by dYN/dt. Obtained estimates
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permit us to pass to the limit when N →∞ and δ > 0 and next to pass to the limit when
δ → 0.

To prove the uniqueness of weak solutions under the additional information that Wt ∈
L1 we apply the following continuous dependence formula

∫
Ω± [H

1
(t, x)−H2(t, x)]+dx +

∫
Π

[u1(t, s)− u2(t, s)]+ds
≤ ∫

Ω± [H
1
(0, x)−H2(0, x)]+dx +

∫
Π

[u1(0, s)− u2(0, s)]+

+

∫ t

0

∫
Ω± [f1,Ω(τ, x)− f2,Ω(τ, x)]+dx +

∫
Π

[f1,Π(τ, s)− f2,Π(τ, s)]+ds

which holds when we work for two couples of solutions Wi(x, t) = (Hi, ui) associated to
two set of data Hi(0, x), ui(0, s), fi,Ω(t, x) and fi,Π(t, s) (but satisfying the same Dirichlet
boundary conditions Hi = g, (x, t) ∈ ΓT , ui = g, (s, t) ∈ ∂ΠT ) for i = 1, 2. This
formula is obtained by multiplying the difference of the associate equations (20) by a
regularized approximation of the function sign+(H1(t, x) − H2(t, x))[= 1 if H1(t, x) −
H2(t, x) > 0 and = 0 if H1(t, x)−H2(t, x) ≤ 0]. Calling, for instance p(H1 −H2) to this
approximation, using the weak formulation (i.e. the integration by parts formula) and
using that (thanks to the assumption (23) we get that p(H1 −H2) = p(u1 − u2) on ΠT ,we
end by using the equation (21) and passing to the limit as in [22].

Remark 3 Notice that presentation (37) may be used as an approximative solutions if
the functions Φj, Ψj may be constructed effectively.

Remark 4 The continuous dependence formula implies the comparison principle for Wi

in the sense that if H(0, x), u(0, s), fΩ(t, x) and fΠ(t, s) are nonnegative in their respective
domains, and if we assume g ≥ 0 then the associated solutions satisfy that H, u ≥ 0 (take
one of the pair identically zero and apply the formula). We also point out that it seems
possible to get this formula without the technical condition Wt ∈ L1 by using the notion
of renormalized solutions (see references in the monograph [3]).

3.3 Splitting with respect to physical process.

For numerical proposes it can be useful to take separately into account the two different
processes appearing in the model.

3.3.1 Iterative process for differential equations

We propose here an algorithm which uses the splitting of the initial problem into the
two following independent problems: I.Plane filtration in the domain x ∈ Ω/Π, t ∈ (0, T ),
k = 1, 2, ...

∂Hk

∂t
= ∇ (

Hk∇Hk
)

+ fΩ, x ∈ Ω/Π, (39)

Hk(x, 0) = H0(x), x ∈ Ω (40)
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Hk ∂Hk

∂n
|
±

= σ
(
uk−1 −Hk±

)
, x ∈ Π (41)

(
σ1H

k Hk∂Hk

∂n
+ σ2H

k

)
= g, x ∈ Γ = ∂Ω (42)

II. Level flow in the channel Π

∂uk

∂t
=

∂

∂s

(
| uk |α| ∂uk

∂s
|
−1/2

∂uk

∂s

)
+

[
Hk ∂Hk

∂n

]

Π

+ fΠ, x ∈ Π (43)

(
κ1ψ(s, uk)φ(

∂uk

∂s
) + κ2u

k

)
= g, x ∈ Π ∩ Γ. (44)

uk(x, 0) = u0(x), , x ∈ Ω (45)

Let us introduce the notation hk = Hk −Hk−1, zk = uk − uk−1.

Theorem 2 Let us assume the conditions (32)−(34)) of the existence theorem. Then the
"global error iterated energy" yk(t) = ||hk||22,Ω + ||∇hk||22,ΩT

+ ||uk||22,Π + ||uk
s ||3/2

3/2,ΠT
satisfies

the estimate

yk(t) ≤ (Ct)k−1

(k − 1)!
y0(t) → 0, as k →∞, for t ≤ T.

Remark 5 The numerical simulation of the independent problems I and II can now be
obtained by well-known finite-difference or finite elements schemes.

4 Localization Properties of Solutions

Now we use the same philosophy than some of the localization properties of solutions
presented in [3]. Their proofs can be carried out with the techniques presented there. We
start with the initial-boundary value problem for the uncoupled equation (equation (10)
with Q = 0).

4.1 Pure diffusion channel level equation

Let us consider the following initial boundary value problem

∂u

∂t
=

∂

∂s

(
|u|α

∣∣∣∣
∂u

∂s

∣∣∣∣
−1/2

∂u

∂s

)
+ fΠ, s ∈ Π = [−1, 1], t ∈ [0, T ], (46)

u(i, t) = u0(t), i = −1, 1, (or
∂u(1, t)

∂s
= 0), (47)

u(s, 0) = u0(s), t ∈]0, T [, (48)

0 < δ ≤ (ui(t), u0(s)) ≤ C0 (49)

11



S. N. Antontsev, J.I. Díaz

4.1.1 Finite time stabilization to a non zero state

Theorem 3 Let conditions (49), (32) be fulfilled and fΠ(s, t) ≡ 0. Then the solution of
problem (46)− (48) becomes identically constant after a finite time t∗, i.e.

u(s, t) ≡ u0 for s ∈ [0, 1], t ≥ t∗.

Moreover if fΠ 6≡ 0 but

‖fΠ(., t)‖3/2

L2(Π) ≤ ε

(
1− t

tf

)4

+

, (50)

for some tf > t∗, and for some suitable small constant ε, then the following estimate
holds:

∥∥u(·, t)− u0
∥∥2

L2(Π)
≤ C

(
1− t

tf

)4

+

.

In particular,
u(s, t) ≡ u0, for any s ∈ [−1, 1] and t ≥ tf .

In physical terms, the first assertion of the theorem means that the water level in the
channel becomes constant in a finite time provided that the external source fΠ is absent
(see Figure 7). If f 6≡ 0 and condition (50) is fulfilled, one can find a small source intensity
ε > 0, such that the water level in the channel stabilizes at the same instant tf when the
source disappears.

4.1.2 Wetting finite speed of propagation and formation of a wetting front.
Waiting time phenomenon

We consider now local properties of weak solution of (46) with zero initial data on some
subinterval [−ρ, ρ] (see Figures 8, 9).

Theorem 4 (Finite speed of wetting of a dry bottom) Let u(s, t) ≥ 0 be a weak
solution of equation (46) with α > 1/2 and let

fΠ = 0, u0(s) = u(s, 0) = 0 for |s| ≤ ρ0, t ∈ (0, T ). (51)

Then
u(s, t) = 0 for |s| ≤ ρ(t), θ = θ(α) > 0. (52)

where ρ(t) is defined by the formula

ρ1+σ(t) = ρ1+σ
0 − Ctθ

with constants C = C(C0, α), θ = θ(α), σ = σ(α). If, additionally to (51) we assume that

12
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∫ ρ

−ρ

|u0(s)|2ds +

∫ T

0

∫ ρ

−ρ

|fΠ|2dsdt ≤ ε(ρ− ρ0)
1/(1−ν)
+ , ρ0 ≤ ρ,

then there exists t∗ ∈ [0, T ) such that

u(s, t) = 0, for s ∈ [−ρ0, ρ0] and t ∈ [0, t∗].

4.2 Coupled channel level and surface ground water flows

Let us return to the system of equations (15), (20),(21), with α0 = 0, describing the
mentioned coupled flows. We consider the domain Bρ×(0, T ), Bρ = {x ∈ Ω| |x−x0| < ρ}.

4.2.1 Wetting Finite Speed of Propagation. Waiting Time Phenomenon.

Theorem 5 Let W = (H, u) be a local weak solution of equations (15), (20), (21) under
the assumptions

H0(x) = 0, fΩ = 0 (x, t) ∈ Bρ0 × [0, T ),

u0(s) = 0, fΠ = 0 (s, t) ∈ Πρ0 × [0, T ).

Then there exist t∗ ∈ (0, T ) and ρ(t) such that

H(x, t) = 0 x ∈ Bρ(t), u(s, t) = 0 s ∈ Πρ(t), t ∈ [0, t∗]

with ρ(t) defined by the formula

ρ1+σ(t) = ρ1+σ
0 − Ctθ,

with some constant C. If, moreover,

‖H0‖2
L2(Bρ) + ‖u0‖2

L2(Πρ) +

∫ T

0

(
‖fΩ‖2

L2(Bρ) + ‖fΠ‖2
L2(Πρ)

)
dτ

≤ ε (ρ− ρ0)
ϑ
+ , ρ > ρ0, ϑ(α) > 0,

then there exists t∗ ∈ [0, T ) such that

H(x, t) = 0 x ∈ Bρ0 , u(s, t) = 0 s ∈ Πρ0 , for any t ∈ [0, t∗]

In terms of the original physical problem we can understand the results as follows: if
the domain Bρ0 was dry at the initial time i.e. the levels of the surface and ground water
were zero therein, then the first assertion of the theorem gives some estimates on the
location of the free boundaries (the curves and points where they are zero) generated by
H(x, t) and u(s, t) (see Figure 10). The second assertion states that whatever the flux is

13
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outside Bρ0 , this domain can only be swamped not instantaneously but after a positive
finite time.
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Figure 1: Scheme of interaction of underground and surface waters: a) area of modelling; b) interface of
computational grids

Figure 2: Vertical cross-section of the flow domain and plan view
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Figure 3: Vertical cross-section of the flow domain

Figure 4: Plan view
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Figure 6: Vertical cross-section of the flow domain

Figure 7: Stabilization to a stationary state(EDW)-vertical cross-section
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Figure 8: Finite speed of wetting(EDW)

Figure 9: Waiting time of wetting(EDW)
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Figure 10: Finite speed of wetting(CF)
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