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Abstract—We present a finite element algorithm of a climate diagnostic model that takes as a climate

indicator the atmospheric sea-level temperature. This model belongs to the category of energy balance models

introduced independently by the climatologists M.I. Budyko and W.D. Sellers in 1969 to study the influence of

certain geophysical mechanisms on the Earth climate. The energy balance model we are dealing with consists of

a two-dimensional nonlinear parabolic problem on the 2-sphere with the albedo terms formulated according to

Budyko as a bounded maximal monotone graph in R
2: The numerical model combines the first-order Euler

implicit time discretization scheme with linear finite elements for space discretization, the latter is carried out for

the special case of a spherical Earth and uses quasi-uniform spherical triangles as finite elements. The numerical

formulation yields a nonlinear problem that is solved by an iterative procedure. We performed different

numerical simulations starting with an initial datum consisting of a monthly average temperature field, calculated

from the temperature field obtained from 50 years of simulations, corresponding to the period 1950–2000, carried

out by the Atmosphere General Circulation Model HIRLAM.
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1. Introduction

During recent decades there has been significant progress in climate modelling with

the construction and testing of several Atmosphere-Ocean-General-Circulation-Models.

These models are the ultimate tool that can be used to study and predict the Earth’s

climate system, in that they can include many phenomena taking part in it. However,

there remain difficulties for these numerical models to be fully reliable. The first type of

difficulty pertains to the lack of understanding of the physical nature of some of these

phenomena such as, for example, sub-grid scale processes; so that, they have to be

parameterized in order to be included in the models. However, one can argue that most of

the sub-grid scale processes can be handled by direct numerical simulation (DNS) of the

Navier-Stokes equations, the problem is that in the light of present and near future
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Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. E-mail: rbermejo@etsii.upm.es
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computer power such an approach is not practical for the moment. A second source of

difficulty arises from the computational and numerical resources these models demand to

perform well designed experiments; although one may expect that this latter problem can

be partially alleviated with the continuous improvements and advances in computer

technology, as well as with the development of more accurate and efficient numerical

methods. In parallel with the development of general circulation models, the climatol-

ogists have developed simpler models intended to clarify the role of some phenomena,

whose influence on the evolution of the climate system is considered to be very

significant. This approach to the understanding of the climate phenomenology yields the

so-called hierarchy of climate models. Perhaps the simplest class of models which may

produce interesting results to understand the gross features of the past glacial and

interglacial epochs are the so called Energy Balance Models (hereafter, EBMs) which are

based on the balance between the incoming solar energy and the energy reflected to the

outer space. Although simple in construction, these models may yield under different

assumptions to nonlinear problems quite difficult to analyze; this being the reason why

these models have caught the attention of many mathematicians. The progress of the

mathematical analysis for the EBMs was a function of the different assumptions made on

the spatial domain and the nonlinear terms involved in the equation. Among the many

results that have appeared in the literature we mention here, in particular, the ones

concerning discontinuous co-albedo functions due to XU (1991) and DIAZ (1993) for the

one-dimensional case. The analysis of DIAZ (1993) was extended to two dimensions, but

with c(x): 1, in DIAZ and TELLO (1999) and HETZER (1990). Many other references can be

found in DIAZ (1996).

As for works on the numerical approximation of EBMs, we mention the contri-

butions of North and co-workers such as HYDE et al. (1990) and NORTH and COAKLEY

(1979), and HETZER et al. (1989), where some numerical experiments were carried out.

In North and co-workers model the numerical method consists of a first-order Euler

implicit scheme for time discretization combined with an spectral method (Legendre

polynomial expansion for latitude and trigonometric polynomial expansion for

longitude) for space discretization. On the other hand, HETZER et al. (1989) use a

stationary quasi-linear energy balance model in their study on multiparameter

sensitivity analysis of the solutions. In this model, the albedo function is continuous,

while the nonlinearity originates from the radiation term which is modelled according

to the Stefan-Boltzman radiation law. The model is formulated in spherical coordinates

and uses second-order finite differences to discretize the diffusion terms, dealing with

the singularities at the poles in an ad hoc manner. More recently, BERMEJO et al. (2007)

formulate and analyze a finite element model of a global nonlinear EBM of Budyko

type with a nonlinear diffusion term modelled by the so-called p-Laplacian and a non-

linear discontinuous co-albedo function. The advantages of this finite element model, as

well as the model of this paper, are the flexibility to use variable meshes, in particular,

if one wants to properly resolve the mushy regions which appear in the transition

between ice-covered and ice-free regions, and the form to avoid the singularities at the
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poles, which appear when the problem is formulated in spherical coordinates and

discretized by grid-point methods such as finite differences, and finite elements of

bounded finite volumes.

The layout of the paper is as follows. We introduce in Section 2 the model. In

Section 3 we present the mathematical formulation of the model as well as

mathematical properties and results concerning the existence and uniqueness of the

solution. Section 4 is devoted to the numerical formulation of the model, which is

carried out for the special case of a spherical Earth and uses quasi-uniform spherical

triangles as finite elements. Finally, Section 5 contains numerical experiments in

which we have taken as initial condition a temperature calculated by averaging

50 years of surface temperature data given by the atmospheric general circulation

model HIRLAM.

2. The Model

Roughly speaking, the energy balance on the Earth surface is established according to

the following law

Variation of internal energy ¼ Ra � Re þ D; ð1Þ

where Ra denotes the amount of solar energy absorbed by the earth, Re is the amount of

infrared energy radiated to the space and D is a term which represents the diffusion of heat

energy by atmospheric turbulence. Let u(t, x) be the atmospheric sea-level temperature in

Celsius degrees, i.e., u(t, x) is defined on ½0; TÞ �M; whereM is a compact Riemannian

manifold without boundary approximating the Earth surface; in fact,M is a 2-sphere of

radius a. Under suitable conditions, the variation of internal energy can be expressed

as c(x)qu/qt, where c(x) is the heat capacity (we neglect the possible time dependence

of c). The constitutive assumptions for the terms on the right-hand side of (1) are the

following:

Ra ¼ QSðt; xÞbðx; uÞ; ð2Þ

where Q is the so-called solar constant which is the average (over a year and over the

surface of the Earth) value of the incoming solar radiative flux, Q is currently believed to be

Q ¼ 1
4
ð1360 Wm�2 � 2 Wm�2Þ; the function S(t, x) is the normalized seasonal distribu-

tion of heat flux entering the top of the atmosphere known as the insolation function. The

incident solar flux at the top of the atmosphere at time t and latitude h can be computed from

celestial mechanics (see, e.g., SELLERS, 1969); however, we shall use in our model the

approximated formulas derived from the exact Sellers formulas by NORTH and COAKLEY

(1979). Specifically, in our model

Sðt; xÞ ¼ S0ðtÞ þ S1ðtÞ sin hþ S2ðtÞ
3 sin2 h� 1

2

� �
; ð3aÞ
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with

S0ðtÞ ¼ 1þ 2e cosð2pt � kÞ;
S1ðtÞ ¼ S1 cos 2pt þ 2e sin k sin 2pt½ �;
S2ðtÞ ¼ S2 1þ 2e cosð2pt � kÞ½ �;

8><
>: ð3bÞ

where h is the latitude of the point x 2M; e denotes the eccentricity of the earth ’s orbit,

presently, e = 0.017; k is the angle formed by the lines connecting the Sun with the

position of the Earth at the Northern Hemisphere winter solstice and the perihelion, at

present k = - 20�; so that, the perihelion occurs shortly after the winter solstice in the

Northern Hemisphere. The coefficients S1 and S2 depend upon the obliquity, d, the

present value of d is 23.45� , so that S1 = - 0.796 and S2 = - 0.477. The unit of time t

is 1 year, with t = 0 corresponding to the Northern Hemisphere winter solstice.

The term b(x, u) is the so-called co-albedo function that takes values between 0 and 1.

b(x, u) represents the ratio between the absorbed solar energy and the incident solar

energy at the point x on the Earth surface; obviously, b(x, u) depends on the nature of the

Earth surface. For instance, it is well known that on ice sheets b(x, u) is considerably

smaller than on the ocean surface because the white color of the ice sheets reflects a large

portion of the incident solar energy, whereas the ocean, due to its dark color and high heat

capacity, is able to absorb a larger amount of the incident solar energy. We further

distinguish between ocean ice sheets and land ice sheets in our model. Following the

approach of BUDYKO (1969) we take b(x, u) as a nonlinear discontinuous function of the

spatial coordinates x and the temperature u of the form given by GRAVES et al. (1993):

bðx; uÞ ¼ a0 þ a1 sin hþ a2

3 sin2 h� 1

2

� �
þ aIðuÞ; ð4Þ

where the coefficients a0, a1 and a2 may depend on time and represent the background

albedo characterizing the U-shaped dependence of the albedo. The coefficient aI takes

care of the changes of the albedo in the presence of snow cover and is a function of the

temperature u. Table 1, borrowed from GRAVES et al. (1993), shows the average values of

a0, a1 and a2 calculated from the monthly values of these parameters tabulated in Table 1

of GRAVES et al. (1993)

The values of aI (u) are displayed in Table 2.

Notice that b(x, u) is only discontinuous at the level sets u = us1 and u = us2,

with us1 = - 2�C or - 5�C and us2 = - 7�C or - 12�C, due to the fact that aI (u) is

Table 1

Coefficients of the co-albedo function

Average Sky Clear Sky

a0 0.679 0.848

a1 - 0.012 - 0.020

a2 - 0.241 - 0045
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discontinuous at these sets. Moreover, b(x, u) is nonlinear because aI (u) is. To see that

this statement is true, we must recall the definition of a linear function; that is, if aI (u)

were a linear function then it would follow that given u1 and u2 and the real parameters

l1 and l2, aI (l1u1 + l2u2) = l1aI (u1) + l2aI (u2), but it is obvious from the definition of

aI (u) that the latter equality does not hold. Hence, aI (u) is a nonlinear function. It is

worth remarking that b(x, u) is not a single-valued function, rather, since for u = us1

(resp. u = us2) aI (u) [ [ - 0.14,0.0] or aI (u) [ [ - 0.5,0.0] (resp. aI (u) [ [ - 0.07,0.0]

or aI (u) [ [ - 0.25,0.0]) then for these values of u the only thing we know is that b(x, u)

is in bounded real intervals, but we do not know which points of these intervals are

b(x, u); this is the reason why we say that b(x, u) is a multi-valued relation, or by abuse of

mathematical language, it is said that b(x, u) is a multi-valued graph. So that, it makes

sense to write z [ b(x, u) as we do below.

The term Re(u) was modelled by Budyko by performing a linear regression fitting to

empirical data as

ReðuÞ ¼ Buþ C; ð5Þ

where B and C are empirical parameters relating the outgoing infrared flux to the surface

temperature. According to GRAVES et al. (1993) the values that fit best the observations in

a least square sense are shown in Table 3.

As for the diffusion term D, Budyko and Sellers proposed the expression

D ¼ divðkðxÞruÞ;

where k(x) is an eddy diffusion coefficient given by the formula (GRAVES et al., 1993):

Table 2

The values of aI(u)

Average Sky Clear Sky

aI(Land) (u)

�0:14 if u\� 2�C;
�½0:14; 0:0� if u ¼ �2�C;

0:0 otherwise,

�0:50 if u\� 5�C;
�½0:50; 0:0� if u ¼ �5�C;

0:0 otherwise;

aI(Ocean)(u)

�0:07 if u\� 7�C;
�0:07; 0:0½ �if u ¼ �7�C;

0:0 otherwise;

�0:25 if u\� 12�C;
�0:25; 0:0½ �if u ¼ �12�C;

0:0 otherwise;

Table 3

Coefficients of Budyko radiation energy Re(u) = Bu + C

Average Sky Clear Sky

C(Wm-2) 212.8 249.8

B(Wm-2� C-1) 1.9 2.26
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kðxÞ ¼ k0ð1þ k1 sin2 hþ k2 sin4 hÞ: ð6Þ

The coefficients k0, k1 and k2 are given in Table 4.

Finally, we show the values per unit area of the heat capacity c(x). This coefficient is

assumed to be a piecewise continuous function, depending on whether the local surface is

land, ice or sea. See Table 5.

By substituting the above expressions into (1) we obtain the following energy balance

model:

Pð Þ
cðxÞut � divMðkðxÞrMuÞ þ Buþ C 2 QSðt; xÞbðx; uÞ in ð0; TÞ �M
uð0; xÞ ¼ u0ðxÞ on M;

(

where the initial datum u0 always will be assumed to be bounded. More precise structural

assumptions to solve (P) are formulated in Section 3. A special feature of (P) is that the

presence of the co-albedo function b(x, u) may be responsible, in the case of a

discontinuous function, of both the existence of free boundaries at the level sets us1 and

us2, and multiple solutions for certain initial conditions (even if the problem is formulated

in terms of a parabolic type equation).

3. On the Existence and Uniqueness of Solutions of the Model (P)

To state the mathematical formulation of (P) we need to recall some basic concepts of

differential geometry because the spatial domainM is the 2-sphere of radius a. Given an

index set K and k [ K, let Wk be an open subset of M such that fWkgk2K is an open

covering of M; and wk : Wk ! wkðWkÞ � R2 a homeomorphism. For k 2 K; the pair

fWk;wkg is called a chart ofM and the family of charts fWk;wkgk2K is called an atlas of

M: Given a point P 2 Wk �M; we set wkðPÞ ¼ ðw1
kðPÞ;w2

kðPÞÞ ¼ ðhk;ukÞ 2 R2: The

Table 4

Coefficients of the eddy diffusion coefficient

Average Sky Clear Sky

k0 1.1175 1.331

k1 - 0.957 - 2.258

k2 0 1.616

Table 5

Heat capacity coefficient values

cwater (Wm-2 � C-1year) 9.7

cland (Wm-2� C-1year) 0.016

cice (Wm-2� C-1year) 0.10
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tangent space at P is denoted by TPM . TPM is a vector space of dimension 2 with a

basis formed by the vectors e1 :¼ o=ohk; e2 :¼ o=ouk: The tangent bundle TM is defined

as TM :¼ [P2MTPM: A Riemannian metric g onM is defined from a family of scalar

products gP : TPM� TPM! R:

For a differentiable function u :M! R the tangent gradient rMu 2 TM; and for

v :M!T differentiable, the surface divergence divMv 2 R:We denote by L2ðMÞ the set

fu :M! R measurable :
R
M juj

2dA\1g: This set is a Hilbert space with inner product

ðu; vÞ ¼
Z
M

uvdA

and norm

uk kL2ðMÞ¼
Z
M
juj2dA

� �1=2

:

Analogously,

L2ðTMÞ ¼ fX :M! TMmeasurable :

Z
M

\X;X [ dA\1g:

Also, we shall use the spaces L1ðMÞ and L1ðTMÞ defined as

L1ðMÞ ¼ fu :M! R measurable : ess sup
M

uðxÞj j\1g

and

L1ðTMÞ ¼ fX :M! TM measurable : ess sup
M

XðxÞj j \1g;

where ess sup is a shorthand notation for the essential supremum defined as

ess sup
M

uðxÞj j ¼ inf sup
x2S

uðxÞj j : S � M; withMnS of measure zero

� �
:

We also need the Sobolev space

H1ðMÞ ¼ fu 2 L2ðMÞ : rMu 2 L2ðTMÞg;

with inner product

u; vð Þð Þ ¼
Z
M

uvdA þ
Z
M

\rMu;rMv [ dA

and norm

uk kH1ðMÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u; vð Þð Þ
p

:

H1ðMÞ is the closure of the set of infinitely continuous functions, C1ðMÞ; in the H1-

norm. When m integer, m > 1, the Sobolev space of order m is the closure of C1ðMÞ in

the norm
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uk kHmðMÞ¼
Z
M

X
1� k�m

X
ij¼1;2 j¼1;::;k

Di1 Di2 :::Dik uj j2þ uj j2
0
@

1
AdA

0
@

1
A

1=2

;

where D1 ¼ De1
and D2 ¼ De2

: When m ¼ 0;H0ðMÞ ¼ L2ðMÞ:
Given a bounded and strictly positive function c(x), and Q > 0, we consider the

problem (P)

ðPÞ cðxÞut � divMðkðxÞrMuÞ þ Buþ C 2 QSðt; xÞbðx; uÞ þ f ðt; xÞ in ð0; TÞ �M;
uð0; xÞ ¼ u0ðxÞ onM;

�

under the following assumptions:

(A1) b(x,�) is a bounded maximal monotone graph of R2;

(A2) f 2 L1ðð0; TÞ �MÞ;
(A3) S : ½0; T � �M! R; S 2 C1ð½0; T � �MÞ; 0\S0� Sðt; xÞ� S1 a:e:x 2 M; for any t

[ [ 0,T],

(A4) c 2 L1ðMÞ; cðxÞ	 c0 [ 0;

(A5) k 2 CðMÞ; kðxÞ	 k0 [ 0;

(A6) u0 2 L1ðMÞ;
(A7) B > 0 and C > 0 constants.

Note the presence of a forcing term f(t, x) in the general statement of problem (P). We

do not expect the existence of classical solutions to (P) due to the possible discontinuity

of the co-albedo function. For this reason, we need the notion of weak solution to (P).

Definition 1. A function u 2 Cð½0; T�; L2ðMÞÞ \ L1ðð0; TÞ �MÞÞ \ L2ð0; T; H1Þ is

termed a bounded weak solution of (P) if there exists z 2 L1ðð0; TÞ �MÞ; zðt; xÞ 2
bðx; uðt; xÞÞ a.e. ðt; xÞ 2 ð0; TÞ �M such that

Z
M

cðxÞuðT ;xÞvðT ;xÞdA�
Z T

0

Z
M

cðxÞvtðt;xÞuðt;xÞdAdt

þ
Z T

0

Z
M

\kðxÞrMu;rMv[dAdtþ
Z T

0

Z
M
ðBuþCÞvdAdt

¼
Z T

0

Z
M

QSðt;xÞzðt;xÞvdAdtþ
Z T

0

Z
M

fvdAdt

þ
Z
M

cðxÞu0ðxÞvð0;xÞdA; ð7Þ

Vv [ L2(0,T;H1) such that vt [ L2(0,T;H-1). Here H-1 denotes the dual space of H1.

The main results on the existence and uniqueness of bounded weak solutions to

problem (P) are collected in Theorem 2 and Theorem 4; the proofs of which can be found

in BERMEJO et al. (2007).
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Theorem 2. Under the above assumptions there exists at least one bounded weak

solution of (P). Moreover, if u0 [ H1 then ut 2 L2ð0; T ; L2ðMÞÞ and divðkðxÞrMuÞ
2 L2ð0; T; L2ðMÞÞ.

Since b(x, u) is considered to be a multi-valued graph discontinuous at the level sets

u ¼ us1
and u ¼ us2

; then there are cases for which problem (P), although parabolic, does

not have a unique solution. Nevertheless, it can be proved, BERMEJO et al. (2007), the

uniqueness of the bounded weak solution to (P) in the class of non-degenerate functions

which is introduced next.

Definition 3. Let u 2 L1ðMÞ: Given e0, 0 < e0 < 1, for e [ (0, e0) and i = 1,2 let

Bsi
ðu; usi

; �Þ ¼ fx 2 M : ju� usi
j\�g

and

Bwi
ðu; usi

; �Þ ¼ fx 2M : 0\ju� usi
j\�g:

It is said that u is a non-degenerate function in a strong (resp. weak) sense if it satisfies

the following strong (resp. weak) non-degeneracy property: There exists a constant C > 0

such that for any e [ (0, e0)

areaðBsi
ðu; usi

; �ÞÞ�C� ðresp:areaðBwi
ðu; usi

; �ÞÞ�C�Þ:

Theorem 4. Let u0 2 L1ðMÞ: Then:

(i) If a bounded weak solution u(t) to (P) is a strong non-degenerate function for all t [
[0,T], then u is the unique bounded weak solution to (P).

(ii) For any t [ (0, T] there is at most one bounded weak solution u(t) to (P) in the class

of weak non-degenerate functions.

4. The Numerical Model

4.1. Preliminaries

We now proceed to formulate the numerical method to compute the bounded weak

solution to problem (P). This method consists of a combination of C0 - finite elements

for space discretization with a first-order Euler implicit scheme to discretize in time. This

time scheme is also used in HYDE et al. (1990). We must point out that we choose the

Euler implicit scheme for the main reason that our codes have been developed to

integrate problem (P) when the diffusion term is also a nonlinear term modelled by the so

called p-Laplacian, that is, as divMðjrujp�2ruÞ; p integer > 2; and according to

theoretical results of BARRET and LIU (1994), and JU (2000), one may conclude that the

optimal time discretization scheme (optimality must be understood here in the sense that

there is a balance between computational cost versus accuracy) combined with linear

Climate Energy Balance Finite element Model



finite elements to integrate the time dependent p-Laplacian diffusion equation is the first-

order Euler implicit scheme. However, we are aware that for problem (P), in which the

diffusion terms are linear, it would be more convenient, as one of the reviewers has

pointed out to us, to use in combination with finite elements the second- order implicit

BDF2 (see Chap. III in HAIRER et al., 1993) because the good properties this scheme has

for stiff problems. The 2-sphere M is partitioned into quasi-uniform spherical triangles

using the scheme of BAUMGARDNER and FREDERICKSON (1985), which consists of taking as

the initial partition D0 the spherical icosahedron and then to generate a sequence of

partitions Dk, k = 1, 2,..., by joining the mid-points on the sides of the triangles of the

partition Dk-1. This procedure yields triangles with the following properties. Let Nk be the

number of triangles in the partition Dk, then (a) M¼ [Nk

j¼1Tj; Tj �M; (b) for

i 6¼ j; Ti \ Ti is either empty or has one vertex xp, or Ti and Tj share a common edge

cij; (c) there exists a positive constant l such that for all Tj, hj/qj < l, where hj denotes the

diameter of Tj and qj is the diameter of the largest circle inscribed in Tj.

Following the approach of DZIUK (1988) to solve by finite elements the Poisson

equation on manifolds, it is convenient to view the spherical triangles of the partition Dk

ofM as the radial projection ontoM of 2-simplices Xj � R3; such that if Tj is the image

of X j, then for all j;Tj \ Xj ¼ fx1j; x2j; x3jg; where xij, i = 1, 2, 3, are the vertices of both

Tj and Xj. By analogy with the elements Tj, the simplices Xj form a partition Dhk of a

polyhedron Mh such that

Mh :¼ [jXj; Xj 2 Dhk:

We show in Figure 1 the initial icosahedron and the partition Dh after four refinements.

The radial projection is defined as

/ :Mh !M

bx1bx2bx3

0
@

1
A!

abx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx1Þ2þðbx2Þ2þðbx3Þ2

p
abx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbx1Þ2þðbx2Þ2þðbx3Þ2
p

abx3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbx1Þ2þðbx2Þ2þðbx3Þ2

p :

0
BBBBB@

1
CCCCCA
;

so that, we write

M¼ [j/ðXjÞ

and denote the restriction of / on the element Xj by /j. Note that / is a Cm-

diffeomorphism, m C 1. We define the family of finite element spaces associated with the

partitions Dhk.

bVh ¼ fbvh 2 C0ðMhÞ : bvhjXj
2 P1ðXjÞ; 1� j�Nkg;

where P1(Xj) is the set of polynomials of degree B 1 defined on Xj. Let M be the global

number of vertices in the partition Dk, and let falgM
l¼1 be the set of global basis functions

for bVh; such that al 2 bVh and at the vertex bxj alðbxjÞ ¼ djl; any bv 2 bVh can be expressed as

R. Bermejo et al. Pure appl. geophys.,



bvhðbxÞ ¼X
M

l¼1

bvhðxlÞalðbxÞ:
We define a finite element space Vh � H1ðMÞ associated with the partition Dk via the

radial / - lifting as follows:

Vh ¼ fvh 2 C0ðMÞ : vhjTj
¼ bvh � /�1

j with bvh 2 bVhg:

The approximation spaces Vh and bVh satisfy:

For all u 2 L1ðð0; TÞ �MÞ
T

L2ð0; T ; VÞ; ut 2 L2ðð0; TÞ �MÞ

lim
h!0

inf
uh2Vh

ku� uhkL1ðð0;TÞ�MÞ ¼ 0:

Moreover, from computational and numerical analysis points of view it is convenient

to define the spaces HlðMhÞ; l	 0 (with the convention that for l ¼ 0;HlðMhÞ 

L2ðMhÞÞ as

HlðMhÞ ¼ fbv :Mh ! R : for a:e: x 2M and v 2 HlðMÞ; bv � /�1ðxÞ ¼ vðxÞg:

In relation with the radial projection / defined on Mh we have the following results

(BERMEJO et al., 2007):

Proposition 5. Let J/j
and J/�1

j
denote the absolute values of the Jacobian determinants

of the mappings /j and /j
-1, respectively. Then, for h sufficiently small there exist

constants C1 and C2 independent of h such that

max
j
kJ/j
� 1kL1ðXjÞ �C1h2 and max

j
kJ/j�1

� 1kL1ðTjÞ �C2h2:
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Figure 1

Initial Icosahedron and mesh after 4 refinements.
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Proposition 6. For 1 B p B ? there exist constants c1 and c2 such that

c1 bvk kLpðMhÞ � vk kLpðMÞ � c2 bvk kLpðMhÞ;

c1 bvk kH1ðMhÞ � vk kH1ðMÞ � c2 bvk kH1ðMhÞ;

bvj jH2ðMhÞ � c2 vj jH2ðMÞþh vj jH1ðMÞ

� �
:

The relevance of these results, in particular Proposition 6, lies in the fact that by

virtue of it the approximation error in the family of finite element spaces bVh is of the

same order as the error in the family of spaces Vh associated to the partition Dk of

spherical triangles. In terms of the numerical calculations this means that one can

substitute the spherical triangles (curved triangles) by plane triangles in R
3 and, therefore,

make use of the finite element technology for plane triangles. At this point, we must say

that the idea of approximating the 2-sphere by a R
3 polyhedra of triangular faces has a

long tradition in numerical computations of atmospheric flows. Just to cite a few, we

mention the works of SADOURNY et al. (1968), and WILLIAMSON (1968) at the end of the

sixties of the past century, and more recently the integration of the shallow water

equations via a Lagrange-Galerkin method carried out by HEINZE and HENSE (2002), and

GIRALDO and WARBURTON (2005).

Since the numerical solution to problem (P) is computed at a discrete set of time

instants tn, with n = 0, 1, ..., N, we choose a fixed time step Dt, such that for all n,

tn+1 = tn + Dt, and consider the discrete set IN = {0,t1,t2,...,tN = T}. The numerical

solution to (P) is thus the map U:IN?Vh such that there exists Zn 2 L1ðMÞ
T

Vh; Z
n 2 bðx;UnÞ; verifying that for any vh[Vh

ðPh;DtÞ
R
M c Un�Un�1

Dt vhdAþ
R
M krMUn;rMvhh idAþR

MðBUn þ CÞvhdA ¼
R
MQSnZnvhdAþ

R
M f nvhdA;

(

where the notation b(tn,x) = bn is used unless otherwise stated.

An important property of the finite element space Vh is that if a function wh [ Vh is an

approximation to a function w 2 L1ð 0; Tð Þ �MÞ that belongs to the class of non-

degenerate functions (either strong or weak), then for h sufficiently small wh also belongs

to that class. Specifically, we have the following results. For i = 1 and 2, let Bsi
ðw; usi

; �Þ
and Bwi

ðw; usi
; �Þ be the sets introduced in Section 3, and we consider the level sets

Ai ¼ fx 2M : wðt; xÞ ¼ usi
g; Ahi ¼ fx 2 M : whðt; xÞ ¼ usi

g;
M�i ¼ fx 2M : wðt; xÞ?usi

g and M�hi ¼ fx 2M : whðt; xÞ?usi
g:

Note that M¼ Ai [Mþi [M�i ¼ Ahi [Mþhi [M�hi : It is easy to ascertain that for z [ b
(x,w) and zh 2 bðx;whÞ it holds

z� zhj j �max aIðuÞj j if x 2 Ai [ Ahi [ ðMþi \M�hiÞ [ ðM�i \MþhiÞ;
z� zhj j ¼ 0 if x 2 ðMþi \MþhiÞ [ ðM�i \M�hiÞ:

(

Moreover, the following lemma can be proved (BERMEJO et al. 2007):
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Lemma 7. Given a function v 2 L1ðð0; TÞ �MÞ \ L2ð0; T ; VÞ; and its approximation

vh [ Vh, for h depending on [ sufficiently small the relation

Ai [ Ahi [ ðMþi \M�hiÞ [ ðM�i \MþhiÞ � Bsi
ðv; usi

; �Þ

holds for i = 1 and 2. Consequently, there exists a constant C > 0 such that

area Ai [ Ahi [ ðMþi \M�hiÞ [ ðM�i \MþhiÞ
� 	

�C�:

We are now in a condition to state the result on the existence and uniqueness of the

solution {Un}1
N to problem ðPh;DtÞ; whose proof is given in BERMEJO et al. (2007).

Lemma 8. For all n = 1,..., N, there exists a solution Un[Vh to problem ðPh;Dt Þ which is

unique in the class of strong (resp. weak) non-degenerate functions.

An important issue when calculating a numerical solution to a model is to estimate the

rate of convergence of the approximate solution to the exact one. Again, appealing to the

numerical analysis employed in BERMEJO et al. (2007) to prove its Theorem 3, we can

establish the rate of convergence of Un to u(tn,x) for all n.

Theorem 9. Let u(t,x) be the unique non-degenerate bounded weak solution to problem

(P), with u 2 L2ð0; T ; H2ðMÞÞ: Let fUngN
n¼1 be the unique solution to problem ðPh; DtÞ

such that for n = 1, 2,..., N and t [ (tn-1, tn] we define

UðtÞ ¼ t � tn�1

Dt
Un � tn � t

Dt
Un�1:

Then, for Dt and h depending on [ being sufficiently small, there exists a constant C > 0

independent of Dt and h such that

ku� Uk2
L1ð0;T ;L2ðMÞÞ �Cð�þ Dt2 þ h2Þ ð8Þ

4.2. The Finite element Solution

To calculate the numerical solution we recast problem ðPh;DtÞ as follows:

Given the initial condition U0[Vh, for n = 1,..., N, find Un[Vh such that for vh [ VhR
M cUnvhdAþ Dt

R
M krMUn;rMvhh idAþ Dt

R
MðBUn þ CÞvhdA ¼R

M cUn�1vhdAþ Dt
R
MQSnZnvhdAþ Dt

R
M f nvhdA;

(
ð9Þ

where Zn 2 L1ðMÞ
T

Vh; Z
n 2 bðx;UnÞ: Since Un is unknown so is Zn, which has to be

calculated in the process of determining the solution Un. To do so we use the following

iterative procedure:

Let Tol 2 Rþ; 0\Tol� 1; for all n ¼ 1; . . .;N; set W0 ¼ Un�1 and do:

for k = 1, 2,...

pick up Zn;k�1 2 bðx;Wk�1Þ; Zn;k�1 2 Vh and solve
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R
M cWkvhdAþ Dt

R
M krMWk;rMvh


 �
dAþ Dt

R
MðBWk þ CÞvhdA ¼R

M cUn�1vhdAþ Dt
R
MQSnZn;k�1vhdAþ Dt

R
M f nvhdA; 8vh 2 Vh:

(
ð10Þ

Stop when

Wk �Wk�1
�� ��

L2ðMÞ
W0k kL2ðMÞ

� Tol

and then set

UnðxÞ ¼ WkðxÞ:

By applying the same ideas of the proof of Theorem 1 of CARL (1992) one can prove that

this iterative procedure converges to Un when k??.

To find out the numerical solution Wk, and therefore Un, we approximate the

triangulated 2-sphere M by the polyhedron Mh and setting, bcðbxÞ ¼ c � /ðbxÞ;bkðbxÞ ¼ k � /ðbxÞ and bf nðbxÞ ¼ f n � /ðbxÞ; solve instead of (10) the following problem

defined on Mh :

For n = 1, 2,.., N do:bW 0ðbxÞ ¼ bUn�1ðbxÞ
for k = 1,2,...

pick up bZ n;k�1 2 bðbx; bW k�1Þ; bZ n;k�1 2 bVh and find bW k 2 bVh; such that for bvh 2 bVh

R
Mh
bc bW kbvhdAh þ Dt

R
Mh

bkrMh
bW k � rMh

bvhdAh þ Dt
R
Mh
ðB bW k þ CÞbvhdAh ¼R

Mh
bc bUn�1bvhdAh þ Dt

R
Mh

QbSn bZ n;k�1bvhdAh þ Dt
R
Mh

bf nbvhdAh:

8<
:

ð11aÞ

Stop when

bW k � bW k�1
��� ���

L2ðMhÞ

bW 0
��� ���

L2ðMhÞ

� Tol

and set

bUnðbxÞ ¼ bW kðbxÞ; ð11bÞ

and for x 2 M and bx 2 Mh; such that x ¼ /ðbxÞ;
UnðxÞ ¼ bUnðbxÞ: ð11cÞ

Next, we shall describe the method to implement rMh
buhðbxÞ for any buhðbxÞ 2 bVh:

Following DZIUK (1988) we write the tangent gradient rMu 2 L2ðTMÞ when

u 2 H1ðMÞ as
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rMu ¼ ru� ð n!M � ruÞ n!M;

where n!M is the unit outward normal vector onM and ru ¼ ou=oxið Þi¼1;2;3 denotes the

gradient of u considered as a function of the Cartesian coordinates (x1, x2, x3) referred to

the Cartesian coordinate system, the origin of which is at the center of the sphere.

Recalling that for bx 2 Mh; buðbxÞ is a lifting of u(x), i.e., x 2 M is such that x ¼ /ðbxÞ and

buðbxÞ ¼ u � /ðbxÞ; then rMu will be numerically approximated by the approximation to

rMh
buðbxÞ 2 L2ðTMhÞ; the expression of which is

rMh
buðbxÞ ¼ rbuðbxÞ � ð n!Mh

� rbuðxÞÞ n!Mh
for any bx 2Mh;

where n!Mh
denotes the unit outward normal vector onMh; which is a constant vector on

each triangular face Xj ofMh; defining thus a piecewise constant approximation to n!M:buðbxÞ is approximated by buhðbxÞ 2 bVh satisfying buhðPÞ jXj
2 P1ðXjÞ; that is

buhðbxÞ jXj
¼
X3

m¼1

bUmkmðbxÞ;
where bUm ¼ buhðbxmÞ; and the local basis functions fkmðbxÞg3

m¼1 are the so-called

barycentric coordinates defined by the relations

P3
m¼1 bxmikm ¼ bxi; for i ¼ 1; 2; 3;P3

m¼1 km ¼ 1 8P 2 Xj;

here bxi are the coordinates of any point bx 2 Xj and bxmi are the coordinates of the vertices

of Xj. Then, denoting by n!j the unit normal vector on Xj we have that for any bx 2 Xj

rMh
buhðbxÞ ¼X

3

m¼1

bUmrkm �
X3

l¼1

njl

X3

m¼1

bUm
okm

obxl

 !
n!j:

We notice that by construction of the family of finite element spaces Vh; bUm are also the

values uh(xm), with xm ¼ /ðbxmÞ being the vertices of the spherical triangles. Moreover,

via the local basis functions fkmðbxÞg of the elements Xj we can define a set of global

basis functions falðbxÞgM
l¼1 for the finite element space bVh that is characterized by the

following properties: (1) For each l; alðbxÞ 2 bVh; (2) for 1� i; l�M; alðbxiÞ ¼ dil; (3) for

1 B j B Nk, 1 B l B M and 1 B m B 3, the restriction of alðbxÞ on the element Xj, i.e.,

alðbxÞ jXj
¼ kmðbxÞ if the mesh node bxl coincides with the m-th vertex of the Xj. By

properties (1) and (2) the global basis functions alðbxÞ are piecewise linear polynomials of

compact support and each element buhðbxÞ 2 bVh is expressed as

buhðbxÞ ¼X
M

l¼1

bUlalðbxÞ:
By property (3) we can evaluate the domain integrals in (11a) as the sum of element

integrals using the local basis functions {km}.
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Now, we calculate the integral
R
Mh

bkrMh
bun

h � rMh
bvhdAh as

Z
Mh

bkrMh
bun

h � rMh
bvhdAh ¼

XNk

j¼1

Z
Xj

bkrMh
buh � rMh

bvhdAh; ð12aÞ

where the element integralZ
Xj

bkrMh
buh � rMh

bvhdAh ¼ bV Sj
bUT ;

with bV ¼ ð bV1; bV2; bV3Þ; bU ¼ ð bU1; bU2; bU3Þ; bVk and bUk being the values of bVh and buh at

the vertices of Xj respectively, and Sj is the Xj-element symmetric matrix the entries of

which are

sik ¼
Z

Xj

bkrWi � rkkdAh ¼
Z

Xj

bkðrki � ð n!j � rkiÞ n!jÞ � rkkdAh; 1� i; k� 3: ð12bÞ

Note that sik are the entries of the stiffness matrix corresponding to the two-dimensional

Laplace operator minus
R

Xj
ð n!j � rkiÞð n!j � rkkÞdAh: We are now in a condition to

describe how the evaluation of integrals of (11a) yields an algebraic system of equations

the solution of which is formed by the values of bW k at the vertices of the spherical

triangles.

Z
Mh

bkrMh
bW k � rMh

bvhdAh ¼
XNk

j¼1

Z
Xj

bkrMh
bW k � rMh

bvhdAh ¼ bVT ScWk;

Z
Mh

ðbc bW k þ DtB bW kÞbvhdAh ¼
XNk

j¼1

Z
Xj

ðbc bW k þ DtB bW kÞbvh ¼ bVTðM1 þ DtBM2ÞcWk;

DtC

Z
Mh

bvhdAh ¼ DtC
XNk

j¼1

Z
Xj

bvhdAh ¼ DtCbVT L;

Z
Mh

bc bU n�1bvhdAh ¼
XNk

j¼1

Z
Xj

bc bUn�1bvhdAh ¼ bVT M1
bUn�1;

DtQ

Z
Mh

bSn bZ n;k�1bvhdAh ¼ DtQ
XNk

j¼1

Z
Xj

bSn bZ n;k�1bvhdAh ¼ DtQbVT � bZn;k�1;

Dt

Z
Mh

bf nbvhdAh ¼ Dt
XNk

j¼1

Z
Xj

bf nbvhdAh ¼ DtbVT � Fn:

In these formulas the M-dimensional vector bVT :¼ ð bV1; . . . bVMÞ; bVi being the value ofbV 2 bVh at the mesh point xi. Similarly,cWk :¼ ð bW k
1 ; . . . bW k

MÞ
T ;cWk�1 :¼ ð bW k�1

1 ; . . . bW k�1
M ÞT

and bUn�1 :¼ ð bUn�1
1 ; . . . bUn�1

M ÞT : S, M1 and M2 are sparse symmetric M 9 M matrices

obtained by assembling the corresponding element matrices. Thus,
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S ¼
[Nk

j¼1

Sj

where Sj is the element matrix whose entries are given by (12b).

M1 ¼
[Nk

j¼1

M1j;M2 ¼
[Nk

j¼1

M2j and L ¼
[Nk

j¼1

Lj

where M1j, M2j and Lj are element matrices with entries

m1ik ¼
R

Xj
bckikkdAh;

m2ik ¼
R

Xj
kikkdAh; ð1� i; k� 3Þ:

lii ¼
R

Xj
kidAh; lij ¼ 0 when i 6¼ j

8><
>:

The M-dimensional vector bZn;k�1 ¼ ð bZ n;k�1
1 ; . . .; bZ n;k�1

M ÞT is obtained by assembling the

element vectors bZn;k�1
j :

bZn;k�1 ¼
[Nk

j¼1

bZn;k�1
j ;

the entries of bZn;k�1
j being given by

bzn;k�1
l ¼

Z
Xj

bSn bZ n;k�1kldAh; 1� l� 3:

Likewise, the vector Fn ¼ ðFn
1 ; . . .;Fn

MÞ
T

is obtained by assembling of the element

vectors Fj
n the entries of which are the values of the integralsZ

Xj

bf nkkdAh; 1� k� 3:

We use the 7 points Hammer quadrature rule for triangles, which is exact for

polynomials of degree 5, to calculate the integrals because the expressions for

Sðt; xÞ; bZ n;k�1 and bkðbxÞ give integrands that are polynomials of degree 4.

Important features that make this formulation attractive for computations are the

absence of the so-called ‘‘pole problem’’ and the discretization of the Laplace-Beltrami

operator (i.e., the Laplace operator defined on an (d - 1)-dimensional manifold in R
d)

can be managed with the computer codes developed for the Laplace operator in a

Cartesian coordinate system.

The algebraic version of the iteration algorithm is then:

Iteration algorithm (algebraic version)

For n = 1, 2,..., N do:cW0 ¼ bUn�1

for k = 1, 2,... do:
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calculate bZ n; k�1 2 bðbx; bW k�1Þ; bZ n;k�1 2 bVh

and

bZn;k�1 ¼
Z
Mh

bSn bZ n;k�1bvhdAh 8bvh 2 bVh;

then solve

cWk ¼M1
bUn�1 þ DtðQbZn;k�1 þ FnÞ � DtCL: ð13Þ

Stop when

cWk �cWk�1
��� ���

l2cW0
��� ���

l2

� Tol

and set

bW kðbxÞ ¼PM
l¼1

bW k
l alðbxÞbUn ¼ cWk

(
ð14Þ

5. Numerical Experiments

Starting with an initial condition that we may consider representative of the present

climate temperature, we shall run our model to predict the seasonal evolution of the

surface temperature as well as the influence of the concentration of CO2 on the increase

of such a temperature. All the numerical experiments are performed under the

hypothesis of average sky and with the co-albedo coefficients a0, a1 and a2 being

piecewise monthly constants; the values of which are borrowed from Table 1 of

GRAVES et al. (1993) .

The initial condition is obtained by averaging for every month of the year the surface

temperature data given by the general circulation model HIRLAM from the year 1950 up

to the year 2000. Figure 2 represents the distribution of the initial temperature which

corresponds to December. The computational mesh consists of 20480 triangles and 10242

mesh points, which means an average h = 0.0431 rads ^260 Kms. We calculate the

numerical solution taking a time step length Dt = 0.01 = 3.6 days, and solving (13) with

a tolerance of 0.001. Since S(t, x) depends periodically on time with a period of one year,

then after an initial transient state the solution of the model will also be periodic because

the coefficients of our model do not depend on time (e.g., BADII and DIAZ 1999). This can

be seen in Figure 7 where we represent the evolution of the temperature at a point near

Madrid (Spain) under different concentrations of CO2 in the atmosphere, see equation

(15) below.
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We have noted that the transient period of the model, also known as the spin-up

period, is about 9 years. After this, the solution becomes periodic with a period of about

1 year as long time numerical experiments (40 years) have shown. It seems that this

periodic state is stable for the parameters used in our calculations. This is the reason we

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

−10
−20 −20 −10

0
0

10 10

20 20

25

2520

10

0
−10 −20

−30
−40

−30
−20

−10
0

10

20

25
25

−40

Figure 2

Distribution of temperature at time t = 0.
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Distribution of January average temperature.
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have presented the results for 10 years of simulations. Figure 3 shows the distribution of

January temperature in the stationary periodic regime. Figure 4 displays the -2�C snow

lines for the Northern and Southern Hemispheres in January.

Figures 5 shows the distribution of temperature for the month of July, whereas the

snow line for this month in both hemispheres is represented in Figure 6.
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Distribution of average temperature for July.

Figure 4

- 2�C January snow line. Left: Northern Hemisphere; right: Southern Hemisphere.
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One can also simulate with our simple EBM the influence of CO2 on the increase of

temperature. We do so by considering that the concentration of CO2 plays the role of an a

additional forcing term f(t,x) in the governing equation. Following MYHRE et al. (1998)

we model such a forcing as

f ðt; xÞ ¼ 5:35ln
C

C0

� �
bðx; uÞ; ð15Þ

where C0 = 300 ppm represents the concentration of CO2 of preindustrial times and C is

the value of concentration of CO2 different of 300. Figure 7 displays the influence of the

concentration of CO2 on the temperature at a point near Madrid (Spain). We note that

doubling the levels of CO2 will produce an increase in the July and January average

temperatures larger than 1.5�C.

Figure 6

- 2�C July snow line. Left: Northern Hemisphere; right: Southern Hemisphere.
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CO2 influence on temperature at a point near Madrid. The box, showns the temperature corresponding to the

month of July.
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