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a b s t r a c t

The purpose of this paper is to carry out the mathematical and numerical analysis of a
two-dimensional nonlinear parabolic problem on a compact Riemannianmanifoldwithout
boundary, which arises in the energy balance for the averaged surface temperature.We use
a possibly quasi-linear diffusion operator suggested by P.H. Stone in 1972. The modelling
of the Budyko discontinuous coalbedo is formulated in terms of a bounded maximal
monotone graph of R2. The existence of global solutions is proved by applying a fixed
point argument. Since the uniqueness of solutions may fail for the case of discontinuous
coalbedo, we introduce the notion of non-degenerate solutions and show that the problem
has at most one solution in this class of functions. The numerical analysis is carried out
for the special case of a spherical Earth and uses quasi-uniform spherical triangles as finite
elements. We study the existence, uniqueness and stability of the approximate solutions.
We also show results of some long-term numerical experiments.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

We present the mathematical and numerical analysis of a climate diagnostic model that takes as climate indicator the
atmospheric sea-level temperature. Such a model belongs to the category of global energy balance models introduced
independently by Budyko [7] and Sellers [27] in 1969 to study the influence of certain geophysical mechanisms on the
Earth climate. A detailed derivation of the averaged balance equation, involving possibly memory terms, can be found, for
instance, in Díaz and Hetzer [15]. Nevertheless, in the present paper we shall deal with a simplified model avoiding such
nonlocal terms. Due to that, the nonlinear partial differential equation of ourmodel can be presented bymeans of a simplified
modelling argument. Roughly speaking, the energy balance on the Earth surface is established according to the following
law

Variation of internal energy = Ra − Re + D, (1)

where Ra denotes the amount of solar energy absorbed by the Earth, Re is the amount of energy radiated to the space and D
is a term which represents the diffusion of heat energy by atmospheric turbulence. Let u(t, x) be the atmospheric sea-level
temperature in Kelvin degrees, i.e.u(t, x) is defined on [0, T ) ×M, whereM is a compact Riemannian manifold without
boundary approximating the Earth surface. Under suitable conditions, the variation of internal energy can be expressed as
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c(x) ∂u
∂t , where c(x) is the heat capacity (we neglect the possible time dependence of c). The constitutive assumptions for the

terms on the right-hand side of (1) are the following:

Ra = QS(t, x)β(x, u), (2)

where Q is the so-called solar constant which is the average (over a year and over the surface of the Earth) value of the
incoming solar radiative flux, Q is currently believed to be Q = 1

4 (1370Wm
−2
± 2Wm−2), the function S(t, x) is known as

the insolation function given by the distribution of incident solar radiation at the top of the atmosphere.When the averaging
time is of the order of one year or longer, there exists a constant S0 > 0 such that for all t and x, S(t, x) ≥ S0. The term β(x, u)
is the so-called coalbedo function that takes values between 0 and 1. β(x, u) represents the ratio between the absorbed solar
energy and the incident solar energy at the point x on the Earth surface. Obviously,β(x, u) depends on the nature of the Earth
surface. For instance, it is well known that on ice sheets β(x, u) is much smaller than that on the ocean surface because the
white color of the ice sheets reflects a large portion of the incident solar energy, whereas the ocean, due to its dark color
and high heat capacity, is able to absorb a larger amount of the incident solar energy. In our model, β(x, u) is given by a
nonlinear discontinuous function as proposed by Budyko [7],

β(x, u) =
{
βi for u < us,
βw for u > us.

(3)

Here us denotes the assumed ‘‘ice margin’’ temperature, βi is the coalbedo value for ice regions, and βw is the value for the
rest of ice free surfaces. We point out that Sellers proposed in [27] the modelling of the coalbedo function as a continuous
function (even piecewise differentiable with respect to u) reaching the above values when u < us − ε and u > us + ε,
respectively, for some small ε > 0.
The term Re(u)was modelled by Budyko by performing a linear regression fitting to empirical data as

Re(u) = Bu+ C, (4)

where B and C are given constants. On the contrary, Sellers suggested in [27] that Re must be expressed according to the
Stefan–Boltzmann law Re = σu4, where σ is called emissivity constant.
As for the diffusion term D, independently of linear diffusion operators (see, e.g., [19]), P.H. Stone proposed in [28] that a

better way to account for the effect of large scale atmospheric circulation is an eddy diffusive approximation such as

D(u) = div(k(x, u,∇u)∇u),

where k(x, u,∇u) is a non linear eddy diffusion coefficient. In particular, he proposed the expression k = b(x)|∇u|. In our
model, we generalize Stone’s approach to represent the eddy diffusive terms by setting k(x, u,∇u) = k(x)|∇u|p−2, with
p ≥ 2 and k(x) > k0 > 0. This allows us to unifying the results concerning both the linear diffusion case (p = 2), proposed
by Budyko and Sellers, and the nonlinear diffusion (p = 3) proposed by Stone.
By substituting the above expressions into (1) we obtain the following energy balance model:

(P)
{
c(x)ut − div(k(x)|∇u|p−2∇u)+ G(x, u) ∈ QS(t, x)β(x, u)+ f (t, x) in (0, T )×M
u(0, x) = u0(x) onM,

where the initial datum u0 will be always assumed to be bounded. Here, we have taken Re(u) = G(x, u) − f (t, x), where
G(x, u) is a strictly increasing function (which includes the two alternative choices mentioned above) in u and f (t, x) is a
forcing term.More precise structural assumptions to solve (P) are formulated in Section 2. A special feature of (P) is that the
presence of the coalbedo functionβ(x, u)may be responsible, in the case of a discontinuous function, of both the existence of
a free boundary at the level set u = us andmultiple solutions for certain initial conditions (even if the problem is formulated
in terms of a parabolic type equation).
The progress of themathematical analysis for problem (P)was function of the different assumptionsmade on the spatial

domain and the nonlinear terms involved in the equation. Among the many results that have appeared in the literature we
mention here, specially, the ones concerning with discontinuous coalbedo functions due to Xu [31] and Díaz [12] for the
one-dimensional case. The analysis of Díaz [12] was extended to two dimensions, but with c(x) ≡ 1, in Dí az and Tello [18].
Hetzer [20] considered a two-dimensional Sellers model that corresponds to a formulation of (P) in which p = 2, β(x, u) is
locally Lipschitz and the radiation term Re is expressed by the Stefan–Boltzmann law. Many other references can be found
in Díaz [13]. More recently, Díaz, Hetzer and Tello [16] have considered an energy balance model with hysteresis.
As for works on the numerical approximation of (P)wemention the contributions of North and Coakley [24] and Hetzer,

Jarausch andMackens [21],where somenumerical experienceswere carried out. Here,wemake amore theoretical approach
trying to obtain some optimal error estimates. In doing so, we point out that some important difficulties are posed by the
presence of the nonlinear terms div(k|∇u|p−2∇u) and β(x, u) on the left- and right-hand sides of (P), respectively. When
p > 2, it is well known that, in general, the possible solution does not belong toW 2,p(Ω) (see [8] for an illustrative example).
So that, this is a barrier to achieve optimality in the space error estimate when one uses linear finite elements. However,
inspired by the techniques of Rulla [25] (see also Savaré [26] and Lippold [23] for related analysis to compute optimal error
estimates in time in evolution inequalities), we have been able to obtain an optimal time error estimate undermild regularity
assumptions. Our estimate improves previous time estimates for the parabolic p-Laplacian for p > 2 obtained by Barret and
Liu [2] and Wei [30].
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The layout of the paper is as follows. For the sake of completeness, we introduce in Section 2 some notations and
preliminaries of the analysis on manifolds and state the theorems on the existence and uniqueness of weak solutions of
the model. The numerical formulation of (P) is carried out for the special case of a spherical Earth and uses quasi-uniform
spherical triangles as finite elements. The study of the existence, uniqueness and stability of the approximate solutions is
presented in Sections 3–5 respectively. Wemention that the results obtained in these sections seem to be new even for the
linear diffusion case p = 2. The detailed proof of the results stated in Section 2 is given in Section 6. This extends, in different
ways, the previous results of [18]. Finally, Section 7 contains some numerical experiences.

2. On the existence and uniqueness of solutions

We recall the expression of the diffusion operator D(u) in M. To do so we recall some basic concepts of Differential
Geometry following the monograph of Aubin [1]. Given an index setΛ and λ ∈ Λ, letWλ be an open subset ofM such that
{Wλ}λ∈Λ is an open covering ofM andwλ : Wλ → wλ(Wλ) ⊂ R2 a homeomorphism. For λ ∈ Λ, the pair {Wλ, wλ} is called
a chart ofM and the family of charts {Wλ, wλ}λ∈Λ is called an atlas ofM.
Given a point P ∈ Wλ ⊂M, we setwλ(P) = (w1λ(P), w

2
λ(P)) = (θλ, ϕλ) ∈ R2. The tangent space at P is denoted by TPM.

TPM is a vector space of dimension 2 with a basis formed by the vectors e1 := ∂
∂θλ
, e2 := ∂

∂ϕλ
. The tangent bundle TM is

defined by TM := ∪p∈M TPM. A Riemannianmetric g onM is defined from a family of scalar products gP : TPM×TPM→ R.
Let (θλ, ϕλ) be the coordinate framework inwλ(Wλ) ⊂ R2 and let αλ be a partition of unity subordinate to the covering

Wλ. Then, we assume that g =
∑
αλgλ is a Riemannian metric on M with gλ defined over each local chart. Given

p ∈ Wλ ⊂ M, the set {e1 := ∂
∂θλ

, e2 := ∂
∂ϕλ
} is a basis for the tangent space TpM. For a differentiable function u : M→ R

we define gradMu ∈ TpM by

gradMu = g
ij ∂u
∂yj

ei,

where g ij are the elements of the inversematrix of (gij), y1 = θ and y2 = ϕ. Let X :M→ TM, the divergence of X is defined
as

divMX =
1

√
det g

∂

∂yi

(
X i
√
det g

)
.

Finally, given a bounded and strictly positive function k(x) and u :M→ R, the diffusion operator D(u) is defined by

D(u) = div(k(x)|∇u|p−2∇u) =
1

√
det g

∂

∂yi

(√
det gk

∣∣∣∣gkl ∂u∂yl ek
∣∣∣∣p−2 g ij ∂u∂yj

)
,

here y1 = θλ, y2 = ϕλ, | · | = g(·, ·)
1
2 , and g ij are the coefficients of the inverse matrix of gλ = (gij). For p = 2 and k(x) ≡ 1

the above expression coincides with the Laplace–Beltrami operator,

1u =
1

√
det g

∂

∂yi

(
g ij
√
det g

∂u
∂yj

)
.

As usual (see e.g. Aubin [1] and Chavel [9]), given p > 1 we denote by Lp(M) the set {u :M→ Rmeasurable :
∫

M
|u|pdA <

∞}where dA =
∑

λ∈Λ αλ
√
det gλdθλdϕλ. This set is a Banach space with the norm(∫

M

|u|pdA
) 1
p

=

(∑
λ∈Λ

∫
wλ(Wλ)

αλ|u(w−1λ (θλ, ϕλ))|
p
√
det gλdθλdϕλ

) 1
p

.

Analogously,

Lp(TM) =

{
X :M→ TM measurable :

∫
M

< X, X >
p
2 dA <∞

}
,

where<,> denotes the inner product in the tangent space. We introduce the functional space

V = {u ∈ L2(M) : ∇u ∈ Lp(TM)}, p ≥ 2,

which is a Banach space with the usual norm.
Given a bounded and strictly positive function c(x), p ≥ 2 and Q > 0, we consider the problem

(P)
{
c(x)ut − div(k(x)|∇u|p−2∇u)+ G(x, u) ∈ QS(t, x)β(x, u)+ f (t, x) in (0, T )×M,
u(0, x) = u0(x) onM,

under the following assumptions:
(HG) G : M × R → R is a continuous function and strictly increasing for the argument s ∈ R, such that |G(x, s)| ≥ C |s|r

for some r ≥ 1 and constant C > 0,
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(Hβ) β(x, ·) is a bounded maximal monotone graph of R2,
(Hf ) f ∈ L∞((0, T )×M),
(HM) M is a C∞ 2-D connected compact oriented Riemannian manifold without boundary. The gradient and divergence

operators defined onM are to be understood in the sense of the Riemannian metric overM,
(HS) S : [0, T ] ×M→ R, S ∈ C1([0, T ] ×M), 0 < S0 ≤ S(t, x) ≤ S1 a.e. x ∈M, for any t ∈ [0, T ],
(Hc) c ∈ L∞(M), c(x) ≥ c0 > 0,
(Hk) k ∈ C(M), k(x) ≥ k0 > 0,
(H0) u0 ∈ L∞(M).

Note that G(s) = Cs corresponds to Budyko model [7], whereas G(s) = C |s|3s corresponds to Sellers model [27].
We do not expect the existence of classical solutions to (P) due to the possible discontinuity of the coalbedo function

and the degeneracy of the diffusion operator. For this reason, we need the notion of weak solution to (P).

Definition 1. A function u ∈ C([0, T ]; L2(M)) ∩ L∞((0, T )× (M)) ∩ Lp(0, T ; V ) is termed a bounded weak solution of (P)
if there exists z ∈ L∞((0, T )×M), z(t, x) ∈ β(x, u(t, x)) a.e. (t, x) ∈ (0, T )×M such that∫

M

c(x)u(T , x)v(T , x)dA−
∫ T

0

∫
M

c(x)vt(t, x)u(t, x)dAdt +
∫ T

0

∫
M

〈k(x)|∇u|p−2∇u,∇v〉dAdt

+

∫ T

0

∫
M

G(u)vdAdt =
∫ T

0

∫
M

QS(t, x)z(t, x)vdAdt +
∫ T

0

∫
M

f vdAdt +
∫

M

c(x)u0(x)v(0, x)dA, (5)

∀v ∈ Lp(0, T ; V ) such that vt ∈ Lp
′

(0, T ; V ′).

Themain results on the existence and uniqueness of boundedweak solutions to problem (P) are collected in Theorems 1
and 2, the proofs of which are presented in Section 6.

Theorem 1. Under the above assumptions there exists at least one bounded weak solution of (P). Moreover, if u0 ∈ V then
ut ∈ L2(0, T ; L2(M)) and div(k(x)|∇u|p−2∇u) ∈ L2(0, T ; L2(M)). �

Remark 1. We point out that from the last assertion of Theorem 1 we can conclude that u ∈ L2(0, T ;W 1+s,p(M)) for some
real s, 0 < s < 1 (see the references in chapter 4 of the monograph Díaz [11]).

Since β(x, u) is considered to be a multi-valued graph, then there are cases for which problem (P), although parabolic,
has not a unique solution. Nevertheless, we shall prove the uniqueness of the bounded weak solution to (P) in the class of
non-degenerate functions which is introduced next.

Definition 2. Let u ∈ L∞(M). Given ε0, 0 < ε0 < 1, for ε ∈ (0, ε0) let

Bs(u, us; ε) = {x ∈M : |u− us| < ε}

and

Bw(u, us; ε) = {x ∈M : 0 < |u− us| < ε}.

It is said that u is a non-degenerate function in a strong (resp. weak) sense if it satisfies the following strong (resp. weak)
non-degeneracy property: there exists a constant C > 0 such that for any ε ∈ (0, ε0)

meas(Bs(u, us; ε)) ≤ Cε (resp. meas(Bw(u, us; ε)) ≤ Cε).

In Section 6 we shall prove the following result concerning the uniqueness of non-degenerate solutions:

Theorem 2. Let u0 ∈ L∞(M). Then:

(i) If a bounded weak solution u(t) to (P) is a strong non-degenerate function for all t ∈ [0, T ], then u is the unique bounded
weak solution to (P).

(ii) For any t ∈ (0, T ] there is at most one bounded weak solution u(t) to (P) in the class of weak non-degenerate functions.

3. On the numerical approximation: Preliminaries

We now proceed to formulate and analyze a numerical method to compute the bounded weak solution to problem
(P). This method consists of a combination of C0− finite elements for space discretization with a first-order Euler implicit
scheme to discretize in time. Hereafter we shall assume thatM is the 2-sphere of radius a = 1 that is partitioned into quasi-



Author's personal copy

1184 R. Bermejo et al. / Mathematical and Computer Modelling 49 (2009) 1180–1210

uniform spherical triangles. A simple method to construct this partition, introduced by Baumgardner et al. [3], consists of
taking as the initial partition D0 the spherical icosahedron and then to generate a sequence of partitions Dk, k = 1, 2, . . . ,
by joining themidpoints on the sides of the triangles of the partitionDk−1. This procedure yields triangles with the following
properties [4]: Let Nk be the number of triangles in the partition Dk, then (a)M = ∪

Nk
j=1 Tj, Tj ⊂ M; (b) for i 6= j, Ti ∩ Ti is

either empty or has one vertex xp, or Ti and Tj share a common edge γij; (c) there exist positive constants ν and µ such that
for all Tj, hhj ≤ ν and

hj
ρj
< µ, where hj denotes the diameter of Tj and ρj is the diameter of the largest circle inscribed in Tj

given in radians, and h = max(hj).
Following the approach of [17] to solve by finite elements the Poisson equation on manifolds, it is convenient to view

the spherical triangles of the partition Dk ofM as the radial projection ontoM of 2-simplicesΩj ⊂ R3, such that if Tj is the
image ofΩj, then for all j, Tj ∩ Ωj = {x1j, x2j, x3j}, where xij, i = 1, 2, 3, are the vertices of both Tj andΩj. By analogy with
the elements Tj, the simplicesΩj form a partition Dhk of a polyhedronMh such that

Mh := ∪jΩj, Ωj ∈ Dhk.

The radial projection is defined as

φ :Mh →M

x′1x′2
x′3

→


ax′1√
(x′1)2 + (x

′

2)
2 + (z ′3)2

ax′2√
(x′1)2 + (x

′

2)
2 + (x′3)2

ax′3√
(x′1)2 + (x

′

2)
2 + (x′3)2

.


So that, we write

M = ∪j φ(Ωj)

and denote the restriction of φ on the elementΩj by φj. Note that φ is a Cm diffeomorphism, m ≥ 1. We define the family
of finite element spaces associated to the partitions Dhk.

V̂h = {̂vh ∈ C0(Mh) : v̂h|Ωj ∈ P1(Ωj), 1 ≤ j ≤ Nk},

where P1(Ωj) is the set of polynomials of degree≤ 1 defined onΩj. LetM be the global number of vertices in the partition
Dk, and let {αl}Ml=1 be the set of global basis functions for V̂h, such that αl ∈ V̂h and at the vertex xj αl(xj) = δjl; any v̂ ∈ V̂h
can be expressed as

v̂h(x) =
M∑
l=1

v̂h(xl)αl(x).

We define a finite element space Vh ⊂ W 1,p(M) associated to the partition Dk via the radial φ−lifting as follows:

Vh = {vh ∈ C0(M) : vh|Tj = v̂h ◦ φ
−1
j with v̂h ∈ V̂h}.

The approximation spaces Vh and V̂h satisfy:

Property 1. For all u ∈ L∞((0, T )×M)
⋂
Lp(0, T ; V ), ut ∈ L2((0, T )×M)

lim
h→0

inf
uh∈Vh
‖u− uh‖L∞((0,T )×M) = 0.

Moreover, from computational and numerical analysis points of view (see Section 7 for further details) it is convenient
to define the spacesW l,p(Mh), l ≥ 0 and 1 ≤ p ≤ ∞ (with the convention that for l = 0, W l,p(Mh) ≡ Lp(Mh)) as

W l,p(Mh) = {̂v :Mh → R : for a.e. x ∈M and v ∈ W l,p(M), v̂ ◦ φ−1(x) = v(x)}.

In relation with the radial projection φ defined onMh we have the following result.

Proposition 1. Let Jφj and Jφ−1j denote the absolute values of the Jacobian determinants of the mappings φj and φ
−1
j respectively.

Then, for h sufficiently small there exist constants C1 and C2 independent of h such that

max
j
‖Jφj − 1‖L∞(Ωj) ≤ C1h

2 and max
j
‖Jφj−1 − 1‖L∞(Tj) ≤ C2h

2.
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Proof. Let Tj ⊂ M = φj(Ωj), Ωj ⊂ Mh, and let P∗ ∈ Tj = φj(P), P ∈ Ωj. It follows from elemental geometrical
considerations that dAh = JφjdA = cos δdA, where δ is the angle between the vector radiusOP

∗ and the unit outward normal
vector −→n jh to Ωj at P . Furthermore, δ ≤ diam(Tj) ≤ h, so that ‖Jφj − 1‖L∞(Ωj) ≤ max | cos δ − 1| ≤ C1h

2. Analogously,
dA = Jφj−1 dAh =

dAh
cos δ . Therefore, ‖Jφ−1j

− 1‖L∞(Tj) ≤ C2h
2. �

Using this result and the arguments of the proof of Lemma 3 of [17] it is easy to show the following inequalities.

Proposition 2. For 1 ≤ p ≤ ∞ there exist constants c1 and c2 independent of h such that

c1 ‖̂v‖Lp(Mh) ≤ ‖v‖Lp(M) ≤ c2 ‖̂v‖Lp(Mh) ,
c1 ‖̂v‖W1,p(Mh) ≤ ‖v‖W1p(M) ≤ c2 ‖̂v‖W1,p(Mh) ,

|̂v|W2,p(Mh) ≤ c2
(
|v|W2,p(M) + h |v|W1,p(M)

)
.

The relevance of these results, in particular Proposition 2, lies in the fact that by virtue of it the approximation error in
the family of finite element spaces V̂h is of the same order as the error in the family of spaces Vh associated to the partition
Dk of spherical triangles. In terms of the numerical calculations this means that one can substitute the spherical triangles
(curved triangles) by plane triangles in R3; and, therefore, make use of the finite element technology for plane triangles.
To estimate the error of the numerical solution we shall use the linear interpolation operators Îh : W 1+s,p(Mh) → V̂h and
Ih : W 1+s,p(M) → Vh, which by virtue of the compact imbeddings W 1+s,p(Mh) ↪→ C0(Mh) and W 1+s,p(M) ↪→ C0(M),
respectively, for p ≥ 2, are well defined by Îhu(xi) = Ihu(xi) = u(xi), xi being a mesh point of M and Mh. Next, let
u ∈ W 1+s,p(M), and consequently û ∈ W 1+s,p(Mh), on the account thatW 1+s,p(M) =

[
W 1,p(M),W 2,p(M)

]
s,p, respectively

W 1+s,p(Mh) =
[
W 1,p(Mh),W 2,p(Mh)

]
s,p, the interpolation theory in Sobolev spaces of integer order [8] together with the

results of linear operator interpolation theory in Banach spaces [5] yields

‖̂u− Iĥu‖Lq(Mh) ≤ Ch
d( 1q−

1
p )+1+s |̂u|W1+s,p(Mh) ,

where d denotes the dimension of the space (here d = 2) and | · |W1+s,p(Mh) is the seminorm in W
1+s,p(Mh) [8]. Then, by

virtue of Proposition 2 it follows that

‖u− Ihu‖Lq(M) ≤ Ch
d( 1q−

1
p )+1+s |u|W1+s,p(M) . (6)

Since the numerical solution to problem (P) is computed at a discrete set of time instants tn, with n = 0, 1, . . . ,N , we
choose a fixed time step1t , such that for all n, tn+1 = tn +1t , and consider the discrete set IN = {0, t1, t2, . . . , tN = T }. A
map U : IN → Vh is the numerical solution to (P) if there exists Zn ∈ L∞(M), Zn ∈ β(x,Un), such that that for any vh ∈ Vh

(Ph,1t)


∫

M

c
Un − Un−1

1t
vhdA+

∫
M

〈
k
∣∣∇Un∣∣p−2 ∇Un,∇vh〉 dA

+

∫
M

G(x,Un)vhdA =
∫

M

QSnZnvhdA+
∫

M

f nvhdA,

wherethe notation b(x, tn) = bn is used unless otherwise stated. For numerical analysis purposes it is also convenient to
introduce the semidiscrete bounded weak solution to (P) as a map uh : [0, T ] → Vh, uh ∈ Lp(0, T ; Vh)∩ C([0, T ]; L2(M))∩
L∞((0, T )×M) such that there exists zh ∈ L∞((0, T )×M) , zh ∈ β(x, uh), verifying that for all vh ∈ Vh

(Ph)


∫

M

cuhtvhdA+
∫

M

〈
k |∇uh|p−2 ∇uh,∇vh

〉
dA+

∫
M

G(x, uh)vhdA =
∫

M

QSzhvhdA+
∫

M

f vhdA a.e.t ∈ (0, T ],

uh(0) = u0h
where u0h is the approximation to u0 in Vh.
Inspired by the methodology employed in the analysis of the continuous problem (P) we study the existence and

uniqueness of the solutions to problems (Ph) and (Ph,1t ) respectively. Therefore, we proceedwith the analysis of stability and
convergence of the semidiscrete and fully discrete solutions. However, before doing so we need some preliminary results
which are stated now. First, adapting the arguments of Lemma 2.2 and Lemma 2.3 of Barrett and Liu [2] to our problem we
have the following result.

Lemma 1. (A) For all p ∈ [2,∞) and δ ≥ 0, there exist positive constants M1 and M2 such that for all ψ , µ ∈ TPM or M∣∣|ψ |p−2 ψ − |µ|p−2 µ∣∣ ≤ M1 |ψ − µ|1−δ (|ψ | + |µ|)p−2+δ , (7)

gP
(
|ψ |p−2 ψ − |µ|p−2 µ,ψ − µ

)
≥ M2 |ψ − µ|2+δ (|ψ | + |µ|)p−2−δ (8)

and

|ψ |p + pgP
(
|ψ |p−2 ψ,µ− ψ

)
≤ |µ|p , (9)

where |·| =
√
gP(·, ·).
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(B) For all p ∈ (1,∞) there exists a constant k0 such that for all a, σ1, σ2 ≥ 0 and for all k ∈ (0, k0)

(a+ σ1)p−2 σ1σ2 ≤ k (a+ σ1)p−2 σ 21 + K(k
−1) (a+ σ2)p−2 σ 22 . (10)

Second, let the operatorA : V → V ′ be defined as

〈Au, v〉V ′×V =
∫

M

〈
k |∇u|p−2 ∇u,∇v

〉
dA,

the continuity and monotonicity bounds of this operator for p ≥ 2 are (see for instance Díaz [11] and Chow [10]):

‖Au−Av‖V ′ ≤ M1 ‖u− v‖V (‖u‖ + ‖u‖)
p−2

and

〈Au−Au, u− v〉V ′×V ≥ M2 ‖∇(u− v)‖
p
Lp(M) .

For a.e. t in [0, T ], let w(t, x) ∈ L∞(M) and let wh be an approximation to w, for instance, the finite element
approximation in Vh. If w belongs to the class of non-degenerate functions, either strong or weak, then, for h sufficiently
small, its approximation wh ∈ Vh also belongs to this class. Specifically, we have the following results. Let Bs(w, us; ε) and
Bw(w, us; ε) be the sets introduced in Section 2, and we consider the level sets

A = {x ∈M : w(t, x) = us}, Ah = {x ∈M : wh(t, x) = us},
M± = {x ∈M : w(t, x) ≷ us} and M±h = {x ∈M : wh(t, x) ≷ us}.

We note thatM = A∪M+ ∪M− = Ah ∪M+h ∪M
−

h . It is a simple matter to ascertain that for z ∈ β(x, w) and zh ∈ β(x, wh)
it holds{

|z − zh| ≤ |βw − βi| if x ∈ A ∪ Ah ∪ (M+ ∩M−h ) ∪ (M
−
∩M+h ),

|z − zh| = 0 if x ∈ (M+ ∩M+h ) ∪ (M
−
∩M−h ).

The following lemma states that the non-degeneracy property is also satisfied by the finite element approximation.

Lemma 2. Given a strong non-degenerate function v ∈ L∞((0, T )× M) ∩ Lp(0, T ; V ), p ≥ 2, and its approximation vh ∈ Vh,
for h depending on ε sufficiently small the relation

A ∪ Ah ∪ (M+ ∩M−h ) ∪ (M
−
∩M+h ) ⊂ Bs(v, us; ε)

holds. Consequently, there exists a constant C > 0 such that

meas
(
A ∪ Ah ∪ (M+ ∩M−h ) ∪ (M

−
∩M+h )

)
≤ Cε.

Proof. It is clear that A ⊂ Bs(v, us; ε). From the inequalities

vh − |vh − v| ≤ v ≤ vh + |vh − v| for a.e. x ∈M

it follows by virtue of Property 1 that Ah ⊂ Bs(v, us; ε) for h depending on ε sufficiently small. Next, we have to prove that
if x ∈ M+ ∩M−h then x ∈ Bs(v, us; ε). It is easy to see by using Property 1 that for any x ∈ M

+
∩M−h the inequalities

us < v < ε + vh < us + ε

hold; hence x is in Bs(v, us; ε) and thismeans thatM+∩M−h ⊂ Bs(v, us; ε). Likewise, it is easy to ascertain that if x ∈ M
−
∩M+h

then vh > v; consequently, the inequalities

us − ε < v < us

hold; this implies that x is also in Bs(v, us; ε) and, thereforeM−∩M+h ⊂ Bs(v, us; ε). Similar results hold for Bw(v, us; ε). �

4. Existence and uniqueness of the approximate solutions

We now turn our attention to establish the existence and uniqueness of the solutions to problems (Ph) and (Ph,1t ) with
the hypothesis (HG) of Section 2 restricted to the cases G(s) = Cs (Budyko model) and G(s) = C |s|3 s (Sellers model),
because these are the cases of interest to climatologists.
First, we note that since Vh is both a subset of V and of L∞(M), then we can argue as in Section 6 to establish the

existence of at least one uh ∈ Lp(0, T ; Vh) ∩ C([0, T ]; L2(M)) ∩ L∞((0, T ) ×M) as solution of (Ph). As for the uniqueness
of the semidiscrete bounded weak solution, we note that since Vh ⊂ L∞(M) the technique used in Section 6 to prove the
uniqueness of the continuous solution is also valid for the semidiscrete case. We have thus the following result
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Lemma 3. For any uh0 ∈ Vh and ∀T > 0, there exists at least one uh ∈ L2(0, T ; Vh) which is a semidiscrete bounded weak
solution of (Ph). Furthermore, for h depending on ε sufficiently small, uh is unique.

In fact, the same kind of argument shall be used to prove the uniqueness of the solution to (Ph,1t), see Lemma 5. Next,
we prove some a priori bounds which are needed for the error estimates of the approximate solutions.

Lemma 4. The unique semidiscrete bounded weak solution uh ∈ Lp(0, T ; Vh)∩C([0, T ]; L2(M))∩ L∞((0, T )×M) satisfies the
following a priori bounds:
(i) There exists a positive constant K0 such that for a.e. t ∈ (0, T ],

‖uh(t)‖L2(M) ≤ K0. (11)

(ii) There exist positive constants K1 and K2 such that

‖uht‖2L2(0,T ;L2(M))
+ K1(‖∇uh(T )‖

p
Lp(M) +

∫
M

G(x, uh(T ))dA)

≤ K2‖S‖2L2(0,T ;L2(M))
+
1
c20
‖f ‖2L2(0,T ;L2(M))

+
2k0
c0p
‖∇uh(0)‖

p
Lp(M) +

1
c0

∫
M

G(x, uh(0))dA, (12)

where

G(x, v) :=
∫ v

0
G(x, s)ds,

K1 = 2
c0
min( k0p , 1) and K2 = (

βwQ
c0
)2.

Proof. To prove the uniform stability estimate (11), we take vh = uh in problem (Ph) and use assumptions (HG), (Hf ), (HS)
and (Hc) to get

c0
d
dt
‖uh(t)‖2L2(M)

+ k0‖∇uh(t)‖
p
Lp(M) + C‖uh(t)‖

r
Lr (M)

≤ Q |M|
1
2 ‖S‖L∞((0,T )×M)‖zh‖L∞((0,T )×M)‖uh(t)‖L2(M) + ‖f ‖L∞((0,T )×M)‖uh(t, ·)‖L2(M),

where r = 2 (Budyko model) or r = 5 (Sellers model). By the imbedding Lr(M) ⊂ L2(M) for r ≥ 2 it follows that there
exist positive constants γ and K such that

d
dt
‖uh(t)‖L2(M) + γ ‖uh(t)‖

r−1
L2(M)
≤ K ,

where K = c−10 Q |M|
1
2 ‖S‖L∞((0,T )×M)‖zh‖L∞((0,T )×M)+ c−10 ‖f ‖L∞((0,T )×M) and γ = 2Cc−10 . Next, by virtue of a version of the

Gronwall inequality (Ju [22]) it follows the result with the constant K0 given by

K0 = max

(
‖u0h‖L2(M),

(
K
γ

) 1
r−1
)
.

To prove the second estimate we take vh as uht(t, ·) in (Ph) and integrate in time to obtain∫ T

0

∫
M

c|uht(t)|2dAdt +
1
p

∫ T

0

d
dt

∫
M

k|∇uh(t)|pdAdt +
∫ T

0

d
dt

∫
M

G(x, uh(t))dAdt

=

∫ T

0

∫
M

QS(t, x)zh(t)uht(t)dAdt +
∫ T

0

∫
M

f (t, x)uht(t)dAdt.

Then, the estimate follows by virtue of assumptions (HG)–(Hk) and applying the Young inequality to the last term on the
right-hand side. �

Remark 2. When p > 3, it is possible to improve (11) by applying Lemma 2.6 of Ju [22], but for our purposes the bound
(11) is sufficient.

Lemma 5. For all n = 1, . . . ,N, there exists a solution Un ∈ Vh to problem (Ph,1t ) which is unique in the class of strong (resp.
weak) non-degenerate functions defined in Section 2.
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Proof. We note that from (Ph,1t ) it follows that∫
M

cUnvhdA+1t
(∫

M

〈
k|∇Un|p−2∇Un,∇vh

〉
dA+

∫
M

G(x,Un)vhdA
)

=

∫
M

cUn−1vhdA+1t
(∫

M

QS(x, t)ZnvhdA+
∫

M

f nvhdA
)
. (13)

The existence of Un can be obtained by different methods (minima of functional, super and subsolutions, etc) as indicated in
Theorem 2 of [14]. To prove the uniqueness in the class of non-degenerate functions we follow the arguments of Section 6,
but in order to do so we need to introduce piecewise lineal functions in t , which are constructed with the help of the fully
discrete solution {Un}. Thus, let us assume that the approximate initial condition U0 satisfies the strong non-degeneracy
condition (similarly, we can also assume that U0 satisfies the weak non-degeneracy condition) and consider that at time t1
there exist U1 ∈ Vh and V 1 ∈ Vh, both being solutions to (Ph,1t ) corresponding to Z1 ∈ β(U1) and Z

1
∈ β(V 1) respectively.

For t ∈ (t0, t1]we define

U(t) =
t − t0
1t

U1 +
t1 − t
1t

U0, U(t) ∈ Vh, (14)

and

V (t) =
t − t0
1t

V 1 +
t1 − t
1t

U0, V (t) ∈ Vh, (15)

so that the following relations hold

U(t)− V (t) =
t − t0
1t

(
U1 − V 1

)
,

dU
dt
=
U1 − U0

1t
and

dV
dt
=
V 1 − U0

1t
.

(16)

Then, (Ph,1t) yields∫
M

c
d
dt
(U − V )vhdA+

∫
M

〈
k
(
|∇U1|p−2∇U1 − |∇V 1|p−2∇V 1

)
,∇vh

〉
dA

+

∫
M

(
G(x,U1)− G(x, V 1)

)
vhdA =

∫
M

QS(t, x)(Z1 − Z
1
)vhdA. (17)

Setting vh = U(t) − V (t) and arguing as in the proof of Theorem 2 in Section 6 it follows that for p ≥ 2 there exist C∗δ and
C0 such that

d
dt
‖U(t)− V (t)‖2L2(Mδ)

≤ C∗δ ‖U(t)− V (t)‖
p
L∞(Mδ)

+ C0‖U(t)− V (t)‖2L2(Mδ)
,

where we take the scaling parameter δ sufficiently small to make C∗δ ≤ 0. So that, by the Gronwall inequality it follows that
U1 = V 1. Arguing by induction, we extend this reasoning to any t ∈ (tn−1, tn], n = 2, . . . ,N , and prove that Un = V n.
Hence, it follows the uniqueness of the fully discrete solution {Un}Nn=1 to problem (Ph,1t ) for p > 2. The case p = 2 can be
treated similarly using the arguments of Section 6. �

Next, we proceed to prove a priori bounds for the fully discrete solution {Un]Nn=1.

Lemma 6. The unique solution {Un}Nn=1 to problem (Ph,1t) satisfies the following a priori bounds:

(i) There exists a positive constant K0 such that for n = 1, . . . ,N,

‖Un‖L2(M) ≤ K0. (18)

(ii) For n = 1, . . . ,N it holds

1t
N∑
n=1

∥∥∥∥Un − Un−11t

∥∥∥∥2
L2(M)

+
2
pc0

∥∥∇UN∥∥pLp(M)
+
2
c0

∫
M

G(x,UN)dA

≤
K11t
2c20

N∑
n=1

∥∥Sn∥∥2L2(M)
+
21t
c20

N∑
n=1

∥∥f n∥∥2L2(M)
+
2
pc0

∥∥∇U0∥∥pLp(M)
+
2
c0

∫
M

G(x,U0)dA. (19)
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(iii) There exists a positive constant C independent of h and1t such that
N∑
n=1

∫
M

〈
k
(∣∣∇Un∣∣p−2 ∇Un − ∣∣∇Un−1∣∣p−2 ∇Un−1) ,∇ (Un − Un−1

1t

)〉
dA

+

N∑
n=1

∫
M

(
G(x,Un)− G(x,Un−1)

) Un − Un−1
1t

dA+ max
n=1,...N

∥∥∥∥Un − Un−11t

∥∥∥∥2
L2(M)

≤ C (20)

Proof. (i) To prove (18) we take vh = Un in (Ph,1t ) and obtain∫
M

c|Un|2dA+1t
∫

M

k|∇Un|pdA+1t
∫

M

G(x,Un)UndA

≤ |M|
1
21tQ‖S‖L∞((0,T )×M)‖

√

c−1Zn‖L∞((0,T )×M)‖
√
cUn‖L2(M)

+ |M|
1
21t‖
√

c−1f n‖L∞((0,T )×M)‖
√
cUn‖L2(M) +

∫
M

cUnUn−1dA.

By virtue of assumptions (HG), (Hf ), (HS) and (Hc), neglecting the second term on the left-hand side, which is positive, using
the imbedding of Lr(M) ⊂ L2(M) for r ≥ 2 and applying the Cauchy inequality to the last term on the right-hand side it
follows that

‖
√
cUn‖L2(M) − ‖

√
cUn−1‖L2(M)

1t
+ γ ‖
√
cUn‖r−1L2(M)

≤ K ,

where

K = |M|
1
2 {Q‖S‖L∞((0,T )×M)‖

√

c−1Zn‖L∞((0,T )×M) + ‖

√

c−1f n‖L∞((0,T )×M)}.

Applying the discrete version of the Gronwall inequality used in the proof of Lemma 4 (Ju [22]) yields the bound (18).

(ii) To obtain the bound (19) we set, for n = 1, . . . ,N, vh = Un−Un−1
1t in (Ph,1t ) and take into account the following

inequalities:
(I1) By virtue of (9)∫

M

〈
k|∇Un|p−2∇Un,∇(

Un − Un−1

1t
)

〉
dA ≥

1
p1t

∫
M

k(|∇Un|p − |∇Un−1|p)dA. (21)

(I2) By virtue of assumption (HG)∫
M

G(x,Un)
Un − Un−1

1t
dA ≥

1
1t

∫
M

∫ Un

Un−1
G(x, s)dsdA

=
1
1t

∫
M

(G(x,Un)− G(x,Un−1))dA. (22)

(I3) By the Cauchy inequality,∣∣∣∣∫
M

QSnZn
Un − Un−1

1t
dA
∣∣∣∣ ≤ c04

∣∣∣∣∣∣∣∣Un − Un−11t

∣∣∣∣∣∣∣∣2
L2(M)

+
K1
c0

∣∣∣∣Sn∣∣∣∣2L2(M)
(23)

where K1 = (β2wQ
2).

(I4) Finally, applying once more the Cauchy inequality it follows that∣∣∣∣∫
M

f n
Un − Un−1

1t
dA
∣∣∣∣ ≤ c04

∣∣∣∣∣∣∣∣Un − Un−11t

∣∣∣∣∣∣∣∣2
L2(M)

+
1
c0

∣∣∣∣f n∣∣∣∣2L2(M)
. (24)

Substituting (21)–(24) in (Ph,1t ) we obtain:

c0
2

∣∣∣∣∣∣∣∣Un − Un−11t

∣∣∣∣∣∣∣∣2
L2(M)

+
1
p1t

∫
M

k(|∇Un|p − |∇Un−1|p)dA

+
1
1t

∫
M

(G(Un)− G(Un−1))dA ≤
K1
c0

∣∣∣∣Sn∣∣∣∣2L2(M)
+
1
c0

∣∣∣∣f n∣∣∣∣2L2(M)
.

Multiplying by1t on both sides of this inequality and summing up for n = 1, . . . ,N yields the inequality (19).
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(iii) From (Ph,1t) it follows that∫
M

c
(
Un − Un−1

1t
−
Un−1 − Un−2

1t

)
Un − Un−1

1t
dA

+

∫
M

〈
k
(∣∣∇Un∣∣p−2 ∇Un − ∣∣∇Un−1∣∣p−2 ∇Un−1) ,∇ (Un − Un−1

1t

)〉
dA

+

∫
M

(
G(x,Un)− G(x,Un−1)

) Un − Un−1
1t

dA

=

∫
M

Q
(
SnZn − Sn−1Zn−1

) Un − Un−1
1t

dA+
∫

M

(
f n − f n−1

) Un − Un−1
1t

dA.

To obtain (20) we sum this expression from n = 2, . . . ,N and use: (1) the relation (a−b)a = 1
2

(
a2 − b2 + (a− b)2

)
aswell

as the Cauchy and the Young inequalities, (2) the result (19), (3) the fact that Zn is bounded for all n, and (4) the assumptions
(Hf ) and (HS). �

5. Error analysis

Our next concern is to estimate the rate of convergence of the fully discrete solution. We do this by splitting the proof
into two stages. In the first one, we estimate the rate of convergence of the semidiscrete solution uh to u, and devote the
second stage to estimate the rate of convergence of the fully discrete solution Un to uh(tn). In the development of the proofs
of theorems and lemmata that follow in this section, we shall use, unless otherwise stated, the letter C to denote generic
positive constants which are independent of h and1t; in general, the values of such constants are different at the different
places of appearance.

Theorem 3. Let u(t, x) and uh(t, x) be the unique non-degenerate boundedweak solutions to problems (P) and (Ph) respectively,
with u ∈ L2(0, T ;W 1+s,p(M)). Let {Un}Nn=1 be the unique solution to problem (Ph,1t ) such that for n = 1, 2, . . . ,N and
t ∈ (tn−1, tn] we define

U(t) =
t − tn−1
1t

Un −
tn − t
1t

Un−1.

Then, for 1t and h depending on ε sufficiently small, there exists a constant C > 0 independent of 1t and h such that

‖u− U‖2L∞(0,T ;L2(M))
≤ C(εq1 +1t2 + h

2q
r ) (25)

where q1 = min(1, 2/r) and q = min
(
2s,
(
p−2
p

)
+ 1+ s

)
with r = 2 or 5.

Proof. We set u(t, x)− U(t, x) = (u(t, x)− uh(t, x))+ (uh(t, x)− U(t, x)). By the triangle inequality it follows that

‖u− U‖L∞(0,T ;L2(M)) ≤ ‖u− uh‖L∞(0,T ;L2(M)) + ‖uh − U‖L∞(0,T ;L2(M)).

The terms on the right-hand side of this inequality are bounded by Theorems 4 and 5 below as

‖u− uh‖2L∞(0,T ;L2(M))
≤ C(ε + hq)

2
r (26)

and

‖uh − U‖2L∞(0,T ;L2(M))
≤ C(1t2 + ε), (27)

respectively. So that it remains to prove the bounds (26) and (27). This is done in what follows. �

5.1. Rate of convergence of uh(t, x) to u(t, x)

Theorem 4. As in Theorem 3, let u(t, x) and uh(t, x) be the unique non-degenerate bounded weak solutions to problems (P) and
(Ph) respectively. Then, for a.e. t ∈ (0, T ] there exist positive constants M∗1 , M

∗

2 and K such that

‖u(t)− uh(t)‖2L2(M)
+M∗1

∫
M

k (|∇u(t)| + |∇u((t)− uh(t))|)p−2 |∇(u(t)− uh(t))|2 dA

+M∗2

∫
M

k (|u(t)| + |u(t)− uh(t)|)r−2 |u(t)− uh(t)|2 dA ≤ max(‖u(0)− uh(0)‖2L2(M)
, K(ε + hq)2/r), (28)
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where q = min
(
2s,
(
p−2
p

)
+ 1+ s

)
(recall that r = 2 or 5, and p ≥ 2) and by approximation theory with uh(0) = Ihu(0)

‖u(0)− uh(0)‖2L2(M)
≤ Ch4(

1
2−

1
p )+2s+2|u(0)|W1+s,p(M).

Proof. Subtracting (Ph) from the expression that follows after multiplying (P) by vh ∈ Vh and integrating by parts, and
decomposing∫

M

(G(x, u)− G(x, uh)) vhdA = α1

∫
M

(G(x, u)− G(x, uh)) vhdA+ α2

∫
M

(G(x, u)− G(x, uh)) vhdA,

with 0 ≤ α1, α2 ≤ 1 and α1 + α2 = 1,

one obtains that∫
M

c
d
dt
(u− uh)vhdA+

∫
M

〈
k
(
|∇u|p−2 ∇u− |∇uh|p−2 ∇uh

)
,∇vh

〉
dA

+α1

∫
M

(G(x, u)− G(x, uh)) vhdA+ α2

∫
M

(G(x, u)− G(x, uh)) vhdA =
∫

M

QS(t, x)(z − zh)vhdA.

Next, we choose vh(t) = (wh(t) − u(t)) + (u(t) − uh(t)), with wh(t) ∈ Vh, and apply inequality (8) of Lemma 1-(A), with
δ = 0 for the second and third terms and δ = r − 2 for the fourth term on the left-hand side respectively, together with the
elementary inequality 12 (|a| + |b|) < |a− b| + |b| < 2 (|a| + |b|), a, b real numbers. The result that follows is that there
are constantsM , C1 and C2 independent of h and1t such that

c0
2
d
dt
‖u− uh‖2L2(M)

+M
∫

M

k (|∇u| + |∇(u− uh)|)p−2 |∇(u− uh)|2 dA

+ C1

∫
M

(|u| + |u− uh|)r−2 |u− uh|2 dA+ C2 ‖u− uh‖rLr (M) ≤

4∑
1=1

|R1(t)| , (29)

where

R1(t) =
∫

M

QS(t, x)(z − zh)(u− uh)dA,

R2(t) =
∫

M

〈
k
(
|∇u|p−2 ∇u− |∇uh|p−2 ∇uh

)
,∇(wh − u)

〉
dA+ (α1 + α2)

∫
M

(G(x, u)− G(x, uh)) (wh − u)dA,

R3(t) =
∫

M

QS(t, x)(z − zh)(wh − u)dA,

R4(t) =
∫

M

c
d
dt
(u− uh)(wh − u)dA.

To estimate R1(t)we make use of the Young inequality and hypothesis (HS) to get

|R1(t)| ≤ ε2Q r
′

∫
M

|S(t, x)|r
′

|(z − zh)|r
′

dA+ ε1 ‖u− uh‖rLr (M) ,

where ε1 =
C2
2 , ε2 =

1
r ′

(
rC2
2

) 1
1−r
and r ′ = r

r−1 . By virtue of Lemma 2 and hypothesis (HS) it follows that there exists a
constant C such that∫

M

|S(t, x)|r
′

|(z − zh)|r
′

dA ≤ C(βw − βi)r
′

ε ‖S‖r
′

L∞((0,T )×M) .

Hence

|R1(t)| ≤ ε2CQ r
′

(βw − βi)
r ′ε ‖S‖r

′

L∞((0,T )×M) +
C2
2
‖u− uh‖rLr (M) .

As for the term R2(t)we have that

|R2(t)| ≤
∣∣∣∣∫

M

〈
k
(
|∇u|p−2 ∇u− |∇uh|p−2 ∇uh

)
,∇(wh − u)

〉
dA
∣∣∣∣+ ∣∣∣∣∫

M

(G(x, u)− G(x, uh))(wh − u)dA
∣∣∣∣ .

We bound the first term on the right hand side using inequality (7) of Lemma 1-(A) with δ = 0 and obtain∣∣∣∣∫
M

〈
k
(
|∇u|p−2 ∇u− |∇uh|p−2 ∇uh

)
,∇(wh − u)

〉∣∣∣∣ dA ≤ K2 ∫
M

k (|∇u| + |∇uh|)p−2 |∇(u− uh)| |∇(u− wh)| dA.
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Next, using again the inequality 12 (|a| + |b|) ≤ |a− b| + |b|, a and b real numbers, and the inequality (10) of Lemma 1-(B),
it follows that there exist positive constants c1 and C(c−11 ) independent of h and1t such that∫

M

(k (|∇u| + |∇uh|))p−2 |∇(u− uh)| |∇(u− wh)| dA ≤ c1

∫
M

k (|∇u| + |∇(u− uh)|)p−2 |∇(u− uh)|2 dA

+ C(c−11 )
∫

M

k (|∇u| + |∇(u− wh)|)p−2 |∇(u− wh)|2 dA.

In this inequality we choose c1 such that c1K2 < M , M being the constant multiplying the second term on the right-hand
side of (29). To bound the second term of R2(t)we follow the same approach. Thus, by virtue of Lemma 1-A with δ = 0∫

M

|(G(x, u)− G(x, uh))(wh − u)| dA ≤ K3

∫
M

(|u| + |uh|)r−2 |u− uh| |wh − u| dA.

But as above there exist c2 and C(c−12 ) such that∫
M

(|u| + |uh|)r−2 |u− uh| |wh − u| dA ≤ c2

∫
M

(|u| + |u− uh|)r−2 |u− uh|2 dA

+ C(c−12 )
∫

M

(|u| + |u− wh|)r−2 |u− wh|2 dA.

Similarly, in this inequality c2 has been chosen such that c2K3 < C1, C1 being the constant multiplying the third term on the
right-hand side of (29). Putting all pieces together, we bound R2(t) as

|R2(t)| ≤ c1K2

∫
M

k (|∇u| + |∇(u− uh)|)p−2 |∇(u− uh)|2 dA+ c2K3

∫
M

(|u| + |u− uh|)r−2 |u− uh|2 dA

+ C(c−11 )
∫

M

k (|∇u| + |∇(u− wh)|)p−2 |∇(u− wh)|2 dA+ C(c−12 )
∫

M

(|u| + |u− wh|)r−2|u− wh|2dA.

To estimate R3(t)we apply the same technique as we did for R1(t); so that, there exist constants C such that

|R3| ≤ Q 2C(βw − βi)2ε ‖S‖2L∞((0,T )×M) + C ‖u− wh‖
2
L2(M)

.

The term R4(t) is bounded by virtue of Lemma 6, ut ∈ L2(0, T ; L2(M)) and the Cauchy–Schwarz inequality. Thus, there exists
a constant C such that

|R4(t)| ≤ C ‖u− wh‖L2(M) .

Collecting the estimates for R1(t), R2(t), R3(t) and R4(t) and applying Hölder inequality to the terms of the bound of |R2(t)|
multiplied by C(c−11 ) and C(c

−1
2 ) yields

d
dt
‖u− uh‖2L2(M)

+M∗1

∫
M

k (|∇u| + |∇(u− uh)|)p−2 |∇(u− uh)|2 dA

+M∗2

∫
M

(|u| + |u− uh|)r−2 |u− uh|2 dA+ c−10 C2 ‖u− uh‖
r
Lr (M)

≤ C
(
‖u− wh‖L2(M) + ‖u− wh‖

2
L2(M)

)
+ εK4

(
‖S‖2L∞((0,T )×M) + ‖S‖

r ′
L∞((0,T )×M)

)
+ K6 ‖u− wh‖2Lr (M) + K5 ‖u− wh‖

2
W1,p(M)

.

Next, assuming that u(t) ∈ W 1+s,p(M) for a.e. t, we take wh(t) = Ihu(t) and uh0 = Ihu0, so that the error estimate (6) and
the Gronwall inequality (as in Lemma 4-(i)) yield the result. �

5.2. Rate of convergence of Un(x) to uh(tn, x)

To estimate the rate of convergence of Un(x) to uh(tn, x)we shall assume some extra regularity on f and S; specifically,

(H∗f ) f ∈ C
0,1([0, T ]; L2(M)),

(H∗S ) Stt ∈ L
2(0, T ; L2(M)).

Then following Rulla’s approach [25] we are able to achieve an optimal order of convergence in time for the regularity
conditions of u and ut assumed in Theorem 1. Now, in order to simplify some expressions which appear in the development
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of our arguments, we introduce a new notation. Thus, for t ∈ (tn−1, tn], n = 1, . . . ,N , we set
U(t) :=

t − tn−1
1t

Un +
tn − t
1t

Un−1, Û(t) := Un, f̂ (t) := f (tn), Ŝ(t) := S(tn),

E(t) := uh(t)− U(t), Ê(t) := uh(t)− Û(t), Ẑ(t) := Zn,

p1t(t) :=
tn − t
1t

.

In preparation for the proof of Theorem 5 we state some auxiliary lemmata.

Lemma 7. (i) There exists a positive constant C independent of 1t such that∫ tn

0
‖Ut(t)‖2L2(M)

dt ≤ C . (30)

(ii)

uht ∈ L∞(0, T ; L2(M)). (31)

Proof. (i) By virtue of Lemma 6-(ii) we have that∫ tn

0
‖Ut(t)‖2L2(M)

dt =
n∑
j=1

∫ tj

tj−1

∥∥∥∥U j − U j−11t

∥∥∥∥2
L2(M)

=

[
1t

j=n∑
j=1

∥∥∥∥U j − U j−11t

∥∥∥∥2
L2(M)

]
≤ C

(ii) From Lemma 6 it follows that Û(t) and Ut(t) are in L∞(0, T ; L2 (M)), and U(t) ∈ C
(
[0, T ], L2 (M)

)
. Furthermore,∥∥U(t)− Û(t)∥∥2L∞(0,T ;L2(M))

≤ 1t2 ‖Ut‖2L∞(0,T ;L2(M))
≤ C1t2. (32)

Next, we wish to prove that when N → ∞, U(t) → uh(t) and Ut(t) → uht(t) for a.e.t ∈ (0, T ). To do so we define two
uniform partitions {tn}Nn=0 and {tj}

J
j=0 in [0, T ] such that1tN =

T
N ,1tJ =

T
J , and set as above

ÛN(t) = Un for t ∈ (tn−1, tn],

UN(t) =
tn − t
1tN

Un−1 +
t − tn−1
1tN

Un−1 for t ∈ (tn−1, tn], n = 1, 2, . . .N

and

ÛJ(t) = U j for t ∈ (tj−1, tj],

UJ(t) =
tj − t
1tJ

U j−1 +
t − tj−1
1tJ

U j−1 for t ∈ (tj−1, tj], j = 1, 2, . . . , J.

From (Ph,1t) it follows that for all t ∈ (tn−1, tn] ∩ (tj−1, tj], 0 ≤ n ≤ N and 0 ≤ j ≤ J ,∫
M

c
(
UN(t)− UJ(t)

)
t vhdA+

∫
M

〈
k
(∣∣∇ÛN ∣∣p−2 ÛN − ∣∣∇ÛJ ∣∣p−2 ÛJ) ,∇vh〉 dA

+

∫
M

(
G(x,Un)− G(x,U j)

)
vhdA =

∫
M

Q
(
SnZn − S jZ j

)
vhdA+

∫
M

(
f n − f j

)
vhdA. (33)

Setting vh = UN(t) − UJ(t) =
(
UN(t)− ÛN(t)

)
−
(
UJ(t)− ÛJ(t)

)
+
(
ÛN(t)− ÛJ(t)

)
and taking into account that

Vh ⊂ W 1,p(M), we have by virtue of the monotonicity bound that

c0
d
dt

∥∥UN(t)− UJ(t)∥∥2 +M2 ∥∥∇ (ÛN − ÛJ)∥∥pLp(M)
+M2

∥∥ÛN − ÛJ∥∥rL2(M)
≤

5∑
k=1

|Rhk(t)| (34)

where

Rh1(t) =
∫

M

〈
k
(∣∣∇ÛN ∣∣p−2 ÛN − ∣∣∇ÛJ ∣∣p−2 ÛJ) ,∇ (UN − ÛN)−∇ (UJ − ÛJ)〉 dA,

Rh2(t) =
∫

M

(
G(x, ÛN)− G(x, ÛJ)

) (
(UN − ÛN)− (UJ − ÛJ)

)
dA,

Rh3(t) =
∫

M

Q (Sn − S j)Zn(UN − UJ)dA,

Rh4(t) =
∫

M

QS j(Zn − Z j)(UN − UJ)dA,
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and

Rh5(t) =
∫

M

(
f n − f j

)
(UN − UJ)dA.

To bound Rh1(t)we shall introduce the discrete operatorAh : Vh → Vh, which is defined as

(Ahvh, wh) = 〈Avh, wh〉V ′×V =

∫
M

k
〈
|∇vh|

p−2
∇vh,∇wh

〉
dA ∀wh ∈ Vh. (35)

From (Ph,1t)we have that for n = 1, 2, . . . ,N(
AhÛN , wh

)
= −

∫
M

Un − Un−1

1t
whdA−

∫
M

G(x, ÛN)whdA+
∫

M

QSnZnwhdA+
∫

M

f nwhdA,

then, withwh = AhÛN , it follows by virtue of Lemma 6 that there is a constant C such that∥∥AhÛN∥∥L2(M)
≤ C . (36)

We are now in a position to estimate Rh1(t) as t ∈ (tn−1, tn] ∩ (tj−1, tj]. Noting that

Rh1(t) =
(
AhÛN −AhÛJ ,

(
UN − ÛN

)
−
(
UJ − ÛJ

))
we have by virtue of (32) and (36) that

|Rh1(t)| ≤ TC
(
1
N
+
1
J

)
. (37)

To estimate the term Rh2(t) we have that

|Rh2(t)| ≤ C
∫

M

(∣∣ÛN ∣∣r−1 + ∣∣ÛJ ∣∣r−1) (∣∣UN − ÛN ∣∣+ ∣∣UJ − ÛJ ∣∣) dA,
then by Hölder inequality it follows that

|Rh2(t)| ≤ C
(∥∥ÛN(t)∥∥r−1Lr (M)

+
∥∥ÛJ(t)∥∥r−1Lr (M)

) (∥∥UN(t)− ÛN(t)∥∥Lr (M)
+
∥∥UJ(t)− ÛJ(t)∥∥Lr (M)

)
.

Using an inverse estimate for functions of the finite element space Vh between the norms Lr(M) and L2(M) (see [8]),
Lemma 6-(i) and (32) it follows that for fixed h

|Rh2(t)| ≤ TCh−(1−1/r)
(
1
N
+
1
J

)
. (38)

The assumption (HS) and Lemma 6-(i) lead to

|Rh3(t)| ≤
∣∣∣∣∫

M

Q (Sn − S j)Zn(UN − UJ)dA
∣∣∣∣ ≤ C1LS |tn − tj| ∥∥UN(t)− UJ(t)∥∥L2(M)

≤ TC
(
1
N
+
1
J

)
. (39)

To estimate Rh4(t)we set

Rh4(t) =
∫

M

QS j(Zn − Z j)
[
(UN − ÛN)− (UJ − ÛJ)+ (ÛN − ÛJ)

]
dA.

Then by virtue of (32) it follows that

|Rh4(t)| ≤ TC
(
1
N
+
1
J

)
+

∫
M

∣∣QS j(Zn − Z j)∣∣ ∣∣ÛN − ÛJ ∣∣ dA.
Using Lemma 11 and an inverse estimate for the elements of Vh we have that∫

M

∣∣QS j(Zn − Z j)∣∣ ∣∣ÛN − ÛJ ∣∣ dA ≤ C ∥∥ÛN − ÛJ∥∥2L∞(M)
≤ Ch−2

∥∥ÛN − ÛJ∥∥2L2(M)

≤ Ch−2
(∥∥UN − ÛN∥∥2L2(M)

+
∥∥UJ − ÛJ∥∥2L2(M)

+
∥∥UN − UJ∥∥2L2(M)

)
.

Hence for fixed h

|Rh4(t)| ≤ TCh−2
(
1
N
+
1
J

)
+ Ch−2

∥∥UN(t)− UJ(t)∥∥2L2(M)
. (40)
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The Lipschitz continuity of f (t) leads to

|Rh5(t)| ≤
∣∣∣∣∫

M

(
f n − f j

)
(UN − UJ)dA

∣∣∣∣ ≤ CL|tn − tj| ∥∥UN(t)− UJ(t)∥∥L2(M)
≤ TC

(
1
N
+
1
J

)
. (41)

From the estimates (37)–(41) it follows that there exists a positive constant C independent of1tN ,1tK and h such that

c0
d
dt

∥∥UN(t)− UJ(t)∥∥2 ≤ TC(h−2 + h−(1−1/r))( 1N + 1J
)
+ Ch−2

∥∥UN(t)− UJ(t)∥∥2L2(M)

The Gronwall inequality, with UN(0) = UJ(0), yields

c0
∥∥UN(T )− UJ(T )∥∥2 ≤ TCh−2 (eCh−2T − 1)( 1N + 1J

)
.

Hence, {UN(t)} is a Cauchy sequence in L2(M) ∩ Vh that converges to uh ∈ C([0, T ], L2(M)). Furthermore, by virtue of (32)
the sequence {ÛN(t)} converges to uh(t) in the L2(M) norm. In fact, the sequence {ÛN(t)} also converges to uh(t) inW 1,p(M)
because uh(t) ∈ Vh ⊂ W 1,p(M) and by the monotone inequality we have that

M2
∥∥∇ (ÛN(t)− ÛJ(t))∥∥pLp(M)

≤
∣∣(AhÛN(t)−AhÛJ(t), ÛN(t)− ÛJ(t)

)∣∣
≤

(∥∥AhÛN(t)∥∥L2(M)
+
∥∥AhÛN(t)∥∥L2(M)

) ∥∥ÛN(t)− ÛJ(t)∥∥L2(M)
≤ TC

(
1
N
+
1
J

)
.

Next, we prove that

lim
N→∞

(
AhÛN(t), vh

)
= (Ahuh(t), vh) , ∀vh ∈ Vh, (42)

uniformly in (0, T ]. Since both ÛN(t) and uh(t) are in Vh, then by virtue of (36), with vh = ÛN(t)− uh(t), it follows that∣∣(AhÛN(t)−Ahuh(t), ÛN(t)− uh(t)
)∣∣ ≤ C ∥∥ÛN(t)− uh(t)∥∥L2(M)

.

Hence, as N →∞ the result (42) holds. Similarly, arguing as in the proof of the bound (38) it is proven that

lim
N→∞

∫
M

G(x, ÛN(t))vhdA =
∫

M

G(x, uh(t))vhdA ∀vh ∈ Vh. (43)

We also prove that if the sequences {ÛN(t)} and uh(t) satisfy the strong (resp. weak) non-degeneracy property then

lim
N→∞

∫
M

β(x, ÛN(t))vhdA =
∫

M

β(x, uh(t))vhdA ∀vh ∈ Vh. (44)

Setting vh = ÛN(t)− uh(t) and applying Lemma 11 it follows that∣∣∣∣∫
M

(
β(x, ÛN(t))− β(x, uh(t))

) (
ÛN(t)− uh(t)

)
dA
∣∣∣∣ ≤ C ∥∥ÛN(t)− uh(t)∥∥2L∞(M)

.

The result (44) follows by making use of the inverse estimate between the norms L∞(M) and L2(M) for the elements of Vh.
Now, considering problem (Ph.1t) and the assumptions (HS) and (H∗f ), together with (42)–(44), it follows that

lim
N→∞

∫
M

dUN(t)
dt

vhdA+
∫

M

〈
k |∇uh|p−2 ∇uh,∇vh

〉
dA+

∫
M

G(x, uh)vhdA =
∫

M

QSzhvhdA+
∫

M

f vhdA ∀vh ∈ Vh.

The sequence { dUN (t)dt } ∈ Vh is uniformly bounded in L
2(M) according to Lemma 6-(iii), then there is u∗h(t) ∈ Vh such that for

a.e. t ∈ (0, T ], { dUN (t)dt }⇀ u∗h(t). Hence,∫
M

u∗h(t)vhdA+
∫

M

〈
k |∇uh|p−2 ∇uh,∇vh

〉
dA+

∫
M

G(x, uh)vhdA =
∫

M

QSzhvhdA+
∫

M

f vhdA ∀vh ∈ Vh.

And from the uniqueness of the solution of (Ph) in the class of non-degenerate functions we conclude that u∗h(t) = uht(t).
Moreover, since

∥∥u∗h(t)∥∥L∞(0,T ;L2(M))
is bounded so is

∥∥uht (t)∥∥L∞(0,T ;L2(M))
. �

Lemma 8. Let f (t, x) satisfy (H∗f ). Then, for all n = 1, . . . ,N, it holds∫ tn

0
‖f (t)− f̂ (t)‖2L2(M)

dt ≤
1t2

3
tnL, (45)

where L is the Lipschitz constant for f (t, x), t ∈ [0, T ].
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Proof. We have that∫ tn

0
‖f (t)− f̂ (t)‖2L2(M)

dt =
n∑
j=1

∫ tj

tj−1
‖f (t)− f̂ (t)‖2L2(M)

dt

=

n∑
j=1

∫ tj

tj−1
1t2p1t(t)2‖

f (tj −1tp1t(t))− f j

1tp1t(t)
‖
2
L2(M)

dt

≤

n∑
j=1

1t2L2
∫ tj

tj−1

(
tj − t

)2
1t2

dt =
1
3
1t2tnL2. �

Lemma 9. There exist some positive constants C and γ1 independent of 1t and h, such that for all n = 1, . . . ,N,

1t|
∫ tn

0

(
‖uht(t)‖2L2(M)

− ‖Ut(t)‖2L2(M)

)
dt| ≤ C1t2 + C1t

n∑
j=1

∥∥E(tj−1)∥∥2L2(M)
+ 2γ1 ‖E(tn)‖2L2(M)

. (46)

Since the proof of this lemma is long and rather technical, we postpone its presentation to the end of the Section after the
proof of the next theorem.

Theorem 5. There exist some positive constants C and C1 independent of 1t and h such that for the solutions uh(t, x) and
{Un(x)}Nn=1 of (P h) and (Ph,1t ) respectively, the following error estimate holds:

‖uh(tn)− U(tn)‖2L2(M)
+ C

∫ tn

0

∫
M

k
(
|∇uh| +

∣∣∇(uh − Û)∣∣)p−2 ∣∣∇(u− Û)∣∣2 dAdt
+ C

∫ tn

0

∫
M

(
|uh| +

∣∣uh − Û∣∣)r−2 ∣∣uh − Û∣∣2 dAdt + C1t2
∫ tn

0
‖(uh(t)− U(t))t‖2L2(M)

dt ≤ C1(ε +1t2). (47)

Proof. From (Ph) and (Ph,1t), with vh ∈ Vh, it follows that for a.e. t ∈ (0, T ]∫
M

c
d
dt
(uh − U)vhdA+

∫
M

〈
k
(
|∇uh|p−2∇uh − |∇Û|p−2∇Û

)
,∇vh

〉
dA

+

∫
M

(
G(uh)− G(Û)

)
vhdA =

∫
M

QS(zh − Ẑ)vhdA+
∫

M

(f − f̂ )vhdA. (48)

Choosing

vh = uh(t)− Û(t) = (uh(t)− U(t))+ (U(t)− Û(t)) = E(t)− (E(t)− Ê(t))

and performing similar operations as in Section 5.1, we obtain that

c0
2
d
dt
‖E(t)‖2L2(M)

+M
∫

M

k
(
|∇uh| +

∣∣∇(uh − Û)∣∣)p−2 ∣∣∇(u− Û)∣∣2 dA
+ C1

∫
M

(
|uh| +

∣∣uh − Û∣∣)r−2 ∣∣uh − Û∣∣2 dA+ C2 ∥∥Ê(t)∥∥rLr (M)

≤

∫
M

Et(E − Ê)dA+
∫

M

QS(zh − Ẑ)(uh − Û)dA+
∫

M

(
f − f̂

)
ÊdA. (49)

We bound the terms on the right side of this inequality. To do so with the first term we note that

E(t) = Ê(t)+1tp1t(t)Ut(t);

hence, we can set∫
M

Et(E − Ê)dA = 1tp1t(t)
∫

M

(uht − Ut)UtdA

=
1tp1t(t)
2

(
‖uht(t)‖2L2(M)

− ‖Ut(t)‖2L2(M)
− ‖Et(t)‖2L2(M)

)
, (50)

where the relation 2(a− b)b = a2 − b2 − (a− b)2, a and b real numbers, has been used to obtain the right side of (50). To
bound the term∫

M

QS(zh − Ẑ)(uh − Û)dA
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we use the same technique as for the term R1 in the proof of Theorem 4. Thus, applying Lemma 2 with w = uh(t) and
wh = Û(t) and the Young inequality it follows that∣∣∣∣∫

M

QS(zh − Ẑ)(uh − Û)dA
∣∣∣∣ ≤ ε2CQ r ′(βw − βi)r ′ε ‖S(t)‖r ′Lr′ (M)

+
C2
2

∥∥̂E(t)∥∥rLr (M)
. (51)

Finally, applying the Cauchy inequality yields∣∣∣∣∫
M

(
f − f̂

)
ÊdA

∣∣∣∣ ≤ K ′ ∥∥̂E(t)∥∥2L2(M)
+ K

∥∥f (t)− f̂ (t)∥∥2L2(M)
, (52)

where K and K ′ are positive constants independent of1t and h. Using (51) and (52), and on the account of

Ê(t) = E(t)−1tp1t(t)Ut(t),

it follows from (49), with E0 = 0, that

c0
2
‖E(tn)‖2L2(M)

+M
∫ tn

0

∫
M

k
(
|∇uh| +

∣∣∇(uh − Û)∣∣)p−2 ∣∣∇(u− Û)∣∣2 dAdt
+ C1

∫ tn

0

∫
M

(
|uh| +

∣∣uh − Û∣∣)r−2 ∣∣uh − Û∣∣2 dAdt +1t ∫ tn

0
p1t(t) ‖Et(t)‖2L2(M)

dt

≤ C


∫ tn

0
‖E(t)‖2L2(M)

dt + ε
∫ tn

0
‖S(t)‖r

′

Lr′ (M)
dt +1t2

∫ tn

0
‖Ut(t)‖2L2(M)

dt

+

∫ tn

0

∥∥f (t)− f̂ (t)∥∥2L2(M)
dt +1t

∫ tn

0
p1t(t)

(
‖uht(t)‖2L2(M)

− ‖Ut(t)‖2L2(M)

)
dt

 , (53)

where C = max
(
1, K ′, K , K1, ε2CQ r

′

(βw − βi)
r ′
)
. Next, borrowing the arguments of Rulla [25] to our context,

and considering that Ut(t) is constant in each interval (tj−1, tj], so that the last term of (53) is equal to

1t
∫ tn
0

(
p1t(t) ‖uht(t)‖2L2(M)

−
1
2 ‖Ut(t)‖

2
L2(M)

)
dt , we will work out this latter term and 1t

∫ tn
0 p

1t(t) ‖Et(t)‖2L2(M)
dt to

obtain the term

1t
∫ tn

0

(
‖uht(t)‖2L2(M)

− ‖Ut(t)‖2L2(M)

)
dt,

which is bounded by Lemma 9. Thus, since p1t(t) ≥ 1/2 for each interval (tj−1, tj−1/2] it follows that

1t
∫ tn

0
p1t(t) ‖Et(t)‖2L2(M)

≥
1t
2

n∑
j=1

∫ tj−1/2

tj−1

‖Et(t)‖2L2(M)
dt. (54)

On the other hand, changing the variable t → t + 1t
2 and taking into account that Ut is constant in [tj−1, tj] it follows that

1t
2

n∑
j=1

∫ tj

tj−1/2

‖Et(t)‖2L2(M)
dt =

1t
2

n∑
j=1

∫ tj−1/2

tj−1

∥∥∥∥Et (t + 1t
2

)∥∥∥∥2
L2(M)

dt

=
1t
2

n∑
j=1

∫ tj−1/2

tj−1

∥∥∥∥uht (t + 1t
2

)
− Ut

∥∥∥∥2
L2(M)

dt ≤ 1t
∫ tn

0
p1t(t) ‖(uh(t)− U(t))t‖

2
L2(M)

dt, (55)

where uh(t) = uh(t + 1t
2 ). Introducing these changes in (53) one has

c0
2
‖E(tn)‖2L2(M)

+M
∫ tn

0

∫
M

k
(
|∇uh| +

∣∣∇(uh − Û)∣∣)p−2 ∣∣∇(u− Û)∣∣2 dAdt
+ C1

∫ tn

0

∫
M

(
|uh| +

∣∣uh − Û∣∣)r−2 ∣∣uh − Û∣∣2 dAdt + 1t
2

∫ tn

0
‖Et(t)‖2L2(M)

dt

≤ C


1t
∫ tn

0

(
p1t(t) ‖uht(t)‖2L2(M)

+1t ‖Ut(t)‖2L2(M)
−
1
2
‖Ut(t)‖2L2(M)

)
dt

+1t
∫ tn

0
p1t(t) ‖(uh(t)− U(t))t‖

2
L2(M)

dt

+

∫ tn

0

∥∥f (t)− f̂ (t)∥∥2L2(M)
dt + ε

∫ tn

0
‖S(t)‖r

′

Lr′ (M)
dt.


. (56)
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Setting Et(t) = (uh(t)− U(t))t , f (t) = f (t +
1t
2 ), S(t) = S(t +

1t
2 ) and repeating the steps from (48) to (53) it follows

that there exists a positive constant C1, independent of1t and h, such that

1t
∫ tn

0
p1t(t) ‖(uh(t)− U(t))t‖

2
L2(M)

dt

≤ C1


1t
∫ tn

0

(
p1t(t) ‖uht(t)‖2L2(M)

+1t ‖Ut(t)‖2L2(M)
−
1
2
‖Ut(t)‖2L2(M)

)
dt

+

∫ tn

0

∥∥S(t)− Ŝ(t)∥∥2L2(M)
dt +

∫ tn

0

∥∥f (t)− f̂ (t)∥∥2L2(M)
dt + ε

∫ tn

0

∥∥S(t)∥∥r ′Lr′ (M)
dt

 . (57)

Next, noting that for all n∫ tn

0
p1t(t) ‖uht(t)‖2L2(M)

dt =
n∑
j=1

∫ tj

tj−1
p1t(t)

∥∥∥∥uht (t + 1t
2

)∥∥∥∥2
L2(M)

dt =
n∑
j=1

∫ tj+1/2

tj−1/2
p1t

(
t −

1t
2

)
‖uht(t)‖2L2(M)

dt

=

∫ tn

0
p1t

(
t −

1t
2

)
‖uht(t)‖2L2(M)

dt −
∫ 1t/2

0
p1t

(
t −

1t
2

)
‖uht(t)‖2L2(M)

dt

+

∫ tn+1t/2

tn
p1t

(
t −

1t
2

)
‖uht(t)‖2L2(M)

dt,

and taking into account Lemma 7-(ii) and the fact that for t ∈ [tn, tn+ 1t
2 ], p

1t(t − 1t
2 ) =

tn+1t2 −t
1t ≥ 0, it follows that there

exists a positive constant C such that∫ tn

0
p1t(t) ‖uht(t)‖2L2(M)

dt ≤
∫ tn

0
p1t

(
t −

1t
2

)
‖uht(t)‖2L2(M)

dt + C1t. (58)

From this inequality and (57) one gets that the first plus the second terms on the right-hand side of (56) yield the term

1t
∫ tn

0

((
p1t(t)+ p1t

(
t −

1t
2

))
‖uht(t)‖2L2(M)

+ 21t ‖Ut(t)‖2L2(M)
− ‖Ut(t)‖2L2(M)

)
dt + C1t2

Here, to estimate the first term of the integrand we note that for t ∈ (0, T ]

p1t(t)+ p1t
(
t −

1t
2

)
=
1
2
+ p1t/2(t),

so that

1t
∫ tn

0

(
p1t(t)+ p1t

(
t −

1t
2

))
‖uht(t)‖2L2(M)

dt

= 1t
∫ tn

0
‖uht(t)‖2L2(M)

dt +1t
n∑
j=1

∫ tj

tj−1

(
p1t/2(t)−

1
2

)
‖uht(t)‖2L2(M)

dt.

But

1t
n∑
j=1

∫ tj

tj−1

(
p1t/2(t)−

1
2

)
‖uht(t)‖2L2(M)

dt = 1t
n∑
j=1

2
1t

∫ tj−1/4

tj−1

(
tj −

1t
4
− t
)
‖uht(t)‖2L2(M)

dt

−1t
n∑
j=1

2
1t

∫ tj

tj−1/4

(
t +

1t
4
− tj

)
‖uht(t)‖2L2(M)

dt

≤ 1t
n∑
j=1

2
1t

∫ tj−1/4

tj−1

(
tj −

1t
4
− t
)
‖uht(t)‖2L2(M)

dt

because t + 1t
4 − tj ≥ 0 for t ∈ [tj−1/4, tj]. Now, by virtue of Lemma 7-(ii) and noting that∫ tj−1/4

tj−1

(
tj −

1t
4
− t
)
dt =

9
32
1t2,

it follows that there exists a positive constant C such that

1t
n∑
j=1

∫ tj

tj−1

(
p1t/2(t)−

1
2

)
‖uht(t)‖2L2(M)

dt ≤ C1t2.
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Hence, putting all pieces together yields

1t
∫ tn

0

(
p1t(t)+ p1t

(
t −

1t
2

))
‖uht(t)‖2L2(M)

dt ≤ 1t
∫ tn

0
‖uht(t)‖2L2(M)

dt + C1t2.

Finally, to obtain the inequality (47) we collect all these bounds on the right-hand side of (56), and apply the Gronwall
inequality and Lemmata 7, 8 and 9 with γ1 sufficiently small such that 1− 2γ1 > 0. �

5.3. Proof of Lemma 9

To prove Lemma 9 we start estimating ‖uht(t)‖2L2(M)
and ‖Ut(t)‖2L2(M)

. Thus, from (Ph) one obtains that

‖uht(t)‖2L2(M)
= −

1
p
d
dt

∫
M

k|∇uh(t)|pdA−
d
dt

∫
M

G(x, uh(t))dA+
∫

M

QS
dϕ(uh(t))
dt

dA+
∫

M

f (t)uht(t)dA, (59)

where we recall that ϕ(·) is a real convex proper continuous function such that β(x, v) = ∂ϕ(x, v). Analogously, from (P
h,1t ) it follows that for t ∈ (tj−1, tj], j = 1, 2, . . . ,N,

‖Ut(t)‖2L2(M)
= −

∫
M

〈k|∇U j|p−2∇U j,∇
(
U j − U j−1

1t

)
〉dA−

∫
M

G(x,U j)
(
U j − U j−1

1t

)
dA

+

∫
M

Q Ŝ(t)Z j
(
U j − U j−1

1t

)
dA+

∫
M

f̂ (t)
(
U j − U j−1

1t

)
dA.

But making use of the inequalities (21) and (22), we have

‖Ut‖2L2(M)
≤ −

1
p1t

∫
M

k(|∇U j|p − |∇U j−1|p)dA−
1
1t

∫
M

(G(x,U j)− G(x,U j−1))dA

+

∫
M

Q Ŝ(t)Z j
(
U j − U j−1

1t

)
dA+

∫
M

f̂ (t)
(
U j − U j−1

1t

)
dA (60)

So that, (59) and (60) yield

1t
∫ tn

0

(
‖Ut(t)‖2L2(M)

− ‖uht(t)‖2L2(M)

)
dt ≤ −1t

[
n∑
j=1

1
p1t

∫
M

(∫ tj

tj−1
k(|∇U j|p − |∇U j−1|p)dt

)
dA

]

−1t

[
n∑
j=1

1
1t

∫
M

(∫ tj

tj−1
(G(x,U j)− G(x,U j−1))dt

)
dA

]
+
1t
p

∫
M

k
(
|∇unh|

p
− |∇uh0|p

)
dA

+1t
∫

M

(G(x, unh)− G(x, uh0))dA−1t
∫

M

[
Q (Snϕ(unh)− S

0ϕ(uh0))− Q
∫ tn

0
ϕ(uh(t))Stdt

]
dA

+1t
n∑
j=1

∫
M

Q
∫ tj

tj−1
Ŝ(t)Z j

(
U j − U j−1

1t

)
dtdA−1t

[∫
M

∫ tn

0
f (t)uht(t)dtdA−

∫
M

∫ tn

0
f̂ (t)Ut(t)dtdA

]
≡ (T1 + T2 + · · · + T7). (61)

We bound the terms (T1) − (T4). Since ∇U j (resp. ∇U j−1) and G(x,U j) (resp. G(x,U j−1)) are constant with respect to t in
[tj−1, tj], then

n∑
j=1

∫ tj

tj−1
k(|∇U j|p − |∇U j−1|p)dt = 1tk

(
|∇Un|p − |∇U j0|p

)
and

n∑
j=1

∫ tj

tj−1
(G(x,U j)− G(x,U j−1))dt = 1t

(
G(x,Un)− G(x,U0)

)
.

Hence, taking U0 = uh0 it follows that

T1 + T2 + T3 + T4 =
1t
p

∫
M

k(|∇unh|
p
− |∇Un|p)dA+1t

∫
M

(
G(x, unh)− G(x,U

n)
)
dA.

Next, using (9) and (HG) yields

T1 + T2 + T3 + T4 ≤ 1t
∫

M

〈k|∇Un|p−2∇Un,∇(unh − U
n)〉dA+1t

∫
M

G(x,Un)(unh − U
n)dA
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and by virtue of (Ph,1t), with vh = unh − U
n,

T1 + T2 + T3 + T4 ≤ 1t
∫

M

QSnZn(unh − U
n)dA+1t

∫
M

(
f n −

Un − Un−1

1t

)
(unh − U

n)dA.

Applying the Cauchy inequality to bound the first term on the right-hand side of this inequality yields

1t
∣∣∣∣∫

M

QSnZn(unh − U
n)dA

∣∣∣∣ ≤ 1t2

γ1
Qβ2w

∫
M

|Sn|2dA+1tγ1
1
21t
‖unh − U

n
‖
2
L2(M)

,

where γ1 is a constant sufficiently small. Similarly, by virtue of Lemmata 4 and 6 we can bound the second term as

1t
∣∣∣∣∫

M

(
f n −

Un − Un−1

1t

)
(Un − unh)dA

∣∣∣∣ ≤ 1t2

γ1

∥∥∥∥f n − Un − Un−11t

∥∥∥∥2
L2(M)

+1tγ1
1
21t
‖unh − U

n
‖
2
L2(M)

.

Thus, collecting these two bounds, we have that there is a constant C such that

|T1 + T2 + T3 + T4| ≤ C1t2 + γ1‖E(tn)‖2L2(M)
. (62)

To estimate T5+T6 we take into account that ϕ(·) is a convex function and that Z j ∈ β(U j) = ∂ϕ(U j). Therefore, considering
T6, we have by virtue of the definition of ∂ϕ

1t
∫

M

Q
∫ tj

tj−1
Ŝ(t)Z j

(
U j − U j−1

1t

)
dtdA ≥ 1t

∫
M

Q
∫ tj

tj−1
Ŝ
(
ϕ(U j)− ϕ(U j−1)

1t

)
dtdA.

Since ϕ(U j) (resp. ϕ(U j−1)) are constants in (tj−1, tj], and using the notation

S̃t =
S j − S j−1

1t
, j = 1, . . . ,N,

it follows that

1t
n∑
j=1

∫
M

Q
∫ tj

tj−1
Ŝ(t)

(
ϕ(U j)− ϕ(U j−1)

1t

)
dtdA

= 1t
∫

M

Q
(
Snϕ(Un)− S0ϕ(U0)

)
dA−1t

∫
M

Q

(
1t

n∑
j=1

S̃tϕ(U j−1)

)
dA.

Hence,

T5 + T6 ≤ 1t
∫

M

QSn(ϕ(Un)− ϕ(unh))dA−1t
∫

M

Q

(
1t

n∑
j=1

S̃tϕ(U j−1)−
∫ tn

0
ϕ(uh(t))Stdt

)
dA. (63)

We bound the first term on the right-hand side of this inequality by appealing to the convexity of ϕ and using the fact that
zh ∈ β(x, unh) = ∂ϕ(x, u

n
h). Thus

1t
∫

M

QSn(ϕ(Un)− ϕ(unh))dA ≤ 1t
∫

M

QSnZn(Un − unh)dA,

and by the Cauchy inequality we can find constants C and γ1 sufficiently small such that∣∣∣∣1t ∫
M

QSnZn(Un − unh)dA
∣∣∣∣ ≤ 1t2C‖Sn‖2L2(M)

+
γ1

2
‖E(tn)‖2L2(M)

. (64)

To estimate the second term on the right side of (63) we use (H∗S ) and carry out the following decomposition

1t
∫

M

Q

(
1t

n∑
j=1

Stϕ(U j−1)−
∫ tn

0
ϕ(uh(t))Stdt

)
dA = 1t

∫
M

Q

(
1t

n∑
j=1

(̃St(x)− St(x, tj−1))ϕ(U j−1)

)
dA

+1t
∫

M

Q

(
1t

n∑
j=1

St(x, tj−1)(ϕ(U j−1)− ϕ(u
j−1
h ))

)
dA

+1t
∫

M

Q

(
1t

n∑
j=1

St(x, tj−1)ϕ(u
j−1
h )−

∫ tn

0
ϕ(uh(t))Stdt

)
≡ (A1 + A2 + A3). (65)
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Then, noting that

1t
n∑
j=1

(̃St(x)− St(x, tj−1))ϕ(U j−1) =
n∑
j=1

∫ tj

tj−1
(̃St(x)− St(x, tj−1))ϕ(U j−1)dt,

we have, by virtue of a Taylor expansion of S̃t and the Cauchy inequality, that A1 is bounded as

A1 ≤ K |M|
1
2 max
1≤i≤N

|ϕ(U i)|1t2
∫ tn

0
‖Stt(t)‖L2(M)dt = C1t

2, (66)

where K is a positive constant independent of h and1t . To estimate the term A2, we use the Young inequality and the fact
that ϕ is convex; then

1t
n∑
j=1

St(x, tj−1)(ϕ(U j−1)− ϕ(u
j−1
h )) ≤ 1t

n∑
j=1

St(x, tj−1)Z j−1(U j−1 − u
j−1
h )

≤ C11t2max
j
|Z j−1|2

n∑
j=1

|St(x, tj−1)|2 + C2
n∑
j=1

|U j−1 − uj−1h |
2.

Hence,

|A2| ≤ C11t2‖St‖2L∞(0,T ;L2(M))
+ C21t

n∑
j=1

‖E(tj−1)‖2L2(M)
. (67)

Finally, to bound the term A3 we use Peano’s Theorem to estimate the quadrature error. So that, we have that∣∣∣∣∣1t n∑
j=1

St(x, tj−1)ϕ(u
j−1
h )−

∫ tn

0
ϕ(uh(t))Stdt

∣∣∣∣∣ ≤ 1t
∫ tn

0

∣∣∣∣ ∂∂t (St(t)ϕ(uh(t)))
∣∣∣∣ dt.

Then, after applying Lemma 4 (ii) and the facts that ∂ϕ is bounded and Stt(t) ∈ L2(0, T ; L2(M)) it follows that there is a
bounded constant C independent of1t and h (but depending on |M| and tn) such that

|A3| ≤ C1t2. (68)

Thus, from (63)–(65) and the estimates (66)–(68) yields

|T5 + T6| ≤ C1t2 + C1t
n∑
j=1

‖E(tj−1)‖2L2(M)
+
γ1

2
‖E(tn)‖2L2(M)

, (69)

where the constant γ1 is the same as the one in (64). It remains to estimate the term T7 in (61). To do so, we set

1t
∫

M

∫ tn

0
(f (t)uht(t)− f̂ (t)Ut(t))dtdA = 1t

∫
M

∫ tn

0
(f (t)− f̂ (t))uht(t)dtdA

+1t
∫

M

∫ tn

0
f̂ (t)(uht(t)− Ut(t))dtdA ≡ (B1 + B2). (70)

To bound B1 we apply the Cauchy inequality and use Lemmas 4 and 8 (ii). Hence,

|B1| ≤ C1

∫ tn

0
‖f − f̂ ‖2L2(M)

+ C21t2
∫ tn

0
‖uht‖2L2(M)

≤ C1t2. (71)

To bound the term B2 we apply the Young inequality.

1t
∫

M

∫ tn

0
f̂ (t)(uht(t)− Ut(t))dtdA = 1t

∫
M

∫ tn

0
f̂ (t)Et(t)dtdA = 1t

∫
M

n∑
j=1

∫ tj

tj−1
f̂ (t)Et(t)dtdA

= 1t
∫

M

f nE(tn)dA−1t
n∑
j=1

∫
M

∫ tj

tj−1
E(tj−1)(f j − f j−1)dA

≤ c11t2‖f ‖2L∞(0,T ;L2(M))
+
γ1

2
‖E(tn)‖2L2(M)

+ c21t
n−1∑
j=0

‖E(tj)‖2L2(M)
+ c31t3

n∑
j=1

∥∥∥∥ f j − f j−11t

∥∥∥∥2
L2(M)

.
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Since f is Lipschitz continuous, then there exists a constant C such that∣∣∣∣1t ∫
M

∫ tn

0
f̂ (t)(uht − Ut)dtdA

∣∣∣∣ ≤ C1t2 + γ12 ‖E(tn)‖2L2(M)
+ c21t

n−1∑
j=0

‖E(tj)‖2L2(M)
, (72)

where the constant γ1 is the same as the one in (64). Thus, from (69)–(72) we have that

|T5 + T6| + |T7| ≤ C1t2 + C1t
n∑
j=1

∥∥E(tj−1)∥∥2L2(M)
+ γ1 ‖E(tn)‖2L2(M)

. (73)

Thus, from this inequality and (62) it follows the result (46). �

6. Proofs of Theorems 1 and 2

The main idea of the proof of Theorem 1 consists of solving first the problem for a fixed right-hand side term z ∈
L∞((0, T )×M). Thus, if we denote by uz such a solution, we shall show, by application of the following fixed point theorem,
that for some z the relation z ∈ β(x, uz) holds

Theorem 6 ([29]). Let K be a nonempty convex and weakly compact subset in a real Banach space. If L : K → K is a function
whose graph is weakly× weakly sequentially closed, thenL has at least one fixed point.

Now we proceed with the proof of Theorem 1 stated in Section 2.

Proof of Theorem 1. As in [15] we denote by H the space L2(M) equipped with the equivalent inner product

〈φ,ψ〉H =

∫
M

φψcdA.

Let Ã be the subdifferential (with the standard inner product) of the convex functional

Φ : φ→


1
p

∫
M

k |∇φ|p dA for φ ∈ W 1,p(M),

+∞ otherwise.

It is well known that dom(̃A) ⊂ W 1,p(M) is dense in H and that Ãφ = −div(k|∇φ|p−2∇φ). We define now Â by
dom(̂A) = dom(̃A) and〈̂

Aφ,ψ
〉
H =

〈̃
Aφ,ψ

〉
L2(M)

.

If we denote by
∗

∂ the subdifferential with respect to the other inner product, then Â coincides with
∗

∂ Φ (and, by definition,
with ∂Φ). We also define the operator

A : D(A) ⊂ H −→ H
w −→ Ãw + G(w).

Notice thatA coincideswith the subdifferential of the proper lower semicontinuous and convexmappingΛ : D(Λ) ⊂ H →
R defined by

Λ(u) =


1
p

∫
M

|∇u|pdA+
∫

M

G(u)dA u ∈ D(Λ)

+∞ u 6∈ D(Λ)
(74)

where G(u) =
∫ u
0 G(σ )dσ and

D(Λ) :=
{
u ∈ L2(M), ∇u ∈ Lp(TM) and

∫
M

G(u)dA < +∞
}
,

which is dense in H . To apply Theorem 6, we formulate problem (P) as a fixed point problem: u is a solution of (P) if and
only if z is a fixed point of the multi-valued operator

L : K −→ 2L
p(0,T ;H).

L is defined as follows. First, we choose the set K as

K = {z ∈ Lp(0, T ;H) : ‖z(t)‖L∞(M) ≤ C0 a.e. t ∈ (0, T )}
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where C0 := Qβw‖S‖L∞((0,T )×M). We notice that K is a nonempty convex and weakly compact set in Lp(0, T ;H). Second, we
consider the operator

S : K −→ C([0, T ];H)
z −→ v

where v is the unique mild solution of the Cauchy problem{
c
dv
dt
(t)+A(v) = z in H,

v(0) = u0.

By virtue of the properties ofA there exists a unique strong solution to this problem (see [6]). Third, we introduce a selection
operator F of the graph on the right-hand side of (P) as

F : Lp(0, T ;H) −→ 2L
p(0,T ;H)

v −→ {h : h ∈ QSβ(x, v)+ f a.e. (t, x)}.

Finally, we define the operator

L(z) = {h ∈ Lp(0, T ;H) : h ∈ F (S(z))}.

Now, in order to apply Theorem 6 we use the same arguments as in [18] to prove that

(i) for each v ∈ Lp((0, T );H), F (v) is a nonempty, convex and closed set of Lp((0, T );H),
(ii) graph (F ) is strongly×weakly sequentially closed in Lp(0, T ;H)× Lp(0, T ;H).
(iii) S is sequentially continuous from Lp((0, T );H)−weak to C([0, T ];H)−strong.

From (i)–(iii) we conclude that graph(L) is weakly × weakly closed and then, according to Theorem 6, L has at least a
fixed point.
SinceA is T -accretive in L2(M) and β is a bounded maximal monotone graph, we obtain the following result

Lemma 10. If u0 ∈ L∞(M) and f ∈ L∞((0, T )×M) then u ∈ L∞((0, T )×M). �

Our next concern is to prove Theorem 2. To do so we need an auxiliary result on non-degenerate functions showing that,
for any q ≥ 1, the multi-valued function β generates a continuous operator from a subset of L∞(M) to Lq(M).

Lemma 11 ([18]).

(i) Let w, ŵ ∈ L∞(M) and assume that w satisfies the non-degeneracy property. Then

∀q ∈ [1,∞) ∃Ĉ > 0 such that z, ẑ ∈ L∞(M) with z(x) ∈ β(x, w), ẑ(x) ∈ β(x, ŵ) a.e. x ∈M

‖z − ẑ‖q ≤ (βw − βi)min{Ĉ‖w − ŵ‖1/q∞ , |M|
1/q
} �

(ii) Let w, ŵ ∈ L∞(M) and assume that w, ŵ satisfy the weak non-degeneracy property. Then∫
M

(z(x)− ẑ(x))(w(x)− ŵ(x))dA ≤ (βw − βi)C‖w − ŵ‖2L∞(M) (75)

Proof of Theorem 2. Let u, û be bounded weak solutions of (P). We take the difference of the weak formulation (5) of (P)
for u and û and choose v = u− û as a test function. then

1
2
d
dt

∫
M

c(x)|u(t)− û(t)|2dA+
∫

M

(G(u)− G(û))(u− û)dA

+

∫
M

k(x)〈|∇u(t)|p−2∇u(t)− |∇û(t)|p−2∇û(t), ∇u(t)−∇û(t)〉dA

= Q
∫

M

S(x)(z(x, t)− ẑ(x, t))(u(x, t)− û(x, t))dA. (76)

By Lemma 11 and Theorem 1 it is easy to show that if p > 2 there exist positive constants Cl, C0, C̃1,p,∞ and C̃0 such that

1
2
d
dt
‖c(x)(u− û)‖2L2(M)

≤ (ClQ‖S‖L∞(M) −
C0‖u− û‖

p−2
L∞(M)

C̃1,p,∞
)‖u− û‖2L∞(M)

+ C̃0‖u− û‖2L2(M)
.
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Similarly, when p = 2 there exist positive constants Cl and C̃1,2,σ such that

1
2
d
dt
‖c(x)(u− û)‖2L2(M)

≤

(
ClQ‖S‖L∞(M) −

|M|
2
σ

C̃1,2,σ

)
‖u− û‖2L∞(M)

+‖u− û‖2L2(M)
+

ε

C̃1,2,σ
.

We notice that if ClQ‖S‖L∞(M) −
C0‖u−û‖

p−2
L∞(M)

C̃1,p,∞
< 0, the application of the Gronwall lemma to the last inequalities yields

‖u − û‖2
L2(M)

= 0, and so the uniqueness of solutions. When ClQ‖S‖L∞(M) −
C0‖u−û‖

p−2
L∞(M)

C̃1,p,∞
is not negative, we define a

rescaling onM and obtain the manifoldMδ from a new atlas {W̃λ, w̃λ}λ∈Λ, where w̃λ(x̃) = wλ( x̃δ ) and {Wλ, wλ}λ∈Λ an atlas
of M. Now, the partition of unity of Mδ subordinate to the covering W̃λ can be defined as α̃λ(x̃) = αλ(

x̃
δ
) with the new

metric verifying g̃ij = δ2gij. Hence, |Mδ| = δ
2
|M|. The formulation of (P) on the manifoldMδ is:

(Pδ)

cδ(·)ũt − δ
pdivMδ

(
kδ(·)|∇Mδ

ũ|p−2∇Mδ
ũ
)
+ G(·, ũ) ∈ QSβ(·, ũ)+ f in (0, T )×Mδ

ũ(0, x̃) = u0

(
x̃
δ

)
.

If we repeat the last argument for (Pδ), we get for p > 2,

1
2
d
dt
‖cδ(x)uδ − ûδ‖2L2(Mδ)

≤

(
Cl,δQ‖Sδ‖L∞(Mδ) −

C0δp‖uδ − ûδ‖
p−2
L∞(Mδ)

C̃1,p,∞,δ

)
‖uδ − ûδ‖2L∞(Mδ)

+ C̃0‖uδ − ûδ‖2L2(Mδ)
. (77)

In the case p = 2, we get

1
2
d
dt
‖uδ − ûδ‖2L2(Mδ)

≤

(
Cl,δQ‖Sδ‖L∞(Mδ) −

δ2|Mδ|
2
σ

C̃1,2,σ ,δ

)
‖uδ − ûδ‖2L∞(Mδ)

(78)

+‖uδ − ûδ‖2L2(Mδ)
+

ε

C̃1,2,σ ,δ
. (79)

Now, we determine the dependence of the constants Cl,δ , C̃1,p,∞,δ and C̃1,2,σ ,δ in terms of δ. For that, we consider the Banach
space

Vδ = {u ∈ L2(Mδ) : ∇u ∈ Lp(TMδ)}.

The constant Cl,δ appears in Lemma 11 when we substituteM byMδ . So that, we have

‖zδ − ẑδ‖L1(Mδ)
≤ (βw − βi)C̃δ‖uδ − ûδ‖L∞(Mδ)

,

where C̃δ = max{Cδ,
|Mδ |

ε
p−1
0
} = δ2max{C, |M|

ε
p−1
0
} = δ2C̃ , C and Cδ are the constants of non-degeneracy for M and Mδ

respectively. Then, it follows that

Cl,δ = δ2Cl.

The constant C̃1,2,σ ,δ verifies

‖f ‖2Lσ (M) ≤ C̃1,2,σ ,δ(‖∇f ‖
2
L2(TMδ)

+ ‖f ‖2L2(Mδ)
).

‖f ‖2Lσ (Mδ)
≤ 2µ̃

2
σ k(r, 2, σ )2ν̃−1max{1, µ̃}(1+ sup |∇α̃λ|)2(‖f ‖22 + ‖∇f ‖

2
2).

From the relations ν̃ = δ2ν, µ̃ = δ2µ and |α̃λ| = 1
δ
|αλ|we obtain

C̃1,2,σ ,δ = 2δ
4
σ −2µ

2
σ k(r, p, σ )2ν−1max{1, δ2µ}

(
1+ sup

1
δ
|∇αλ|

)2
.

C̃1,p,∞,δ is the constant of the imbedding Vδ ⊂ L∞(Mδ). In particular, if δ = 1 this is the constant C̃1,p,∞ that for p > 2 is
given by

C̃1,p,∞ = 2p−1k(p, r)pmax{ν
−p
2 , ν−1µ

p
2 }(1+ C1,2,p sup |∇αλ|)pmax{1, |M|

p−2
2 };
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hence,

C̃1,p,∞,δ = 2p−1k(p, r)pmax{ν̃
−p
2 , ν̃−1µ̃

p
2 }(1+ C1,2,p,δ sup |∇α̃λ|)pmax{1, |Mδ|

p−2
2 }.

By using ν̃ = δ2ν, µ̃ = δ2µ and |∇α̃λ| = 1
δ
|∇αλ|we obtain

C̃1,p,∞,δ = 2p−1k(p, r)pmax{δ−pν
−p
2 , δp−2ν−1µ

p
2 }(1+ δ

2
p−1µ

1
p k(r, 2, p)ν

−1
2

× max{1, δµ
1
2 }

(
1+ sup

1
δ
|∇αλ|

)
sup
1
δ
|∇αλ|)

pmax{1, δp−2|M|
p−2
2 }.

Next, we define Kp,δ by

Kp,δ :=


Cl,δQ‖Sδ‖L∞(Mδ) −

δ2|Mδ |
2
σ

C̃1,2,σ ,δ
if p = 2,

Cl,δQ‖Sδ‖L∞(Mδ) −
δpC0‖u− û‖

p−2
L∞(M)

C̃1,p,∞,δ
if p > 2.

It is easy to see that ‖Sδ‖L∞(Mδ) = ‖S‖L∞(M). By substituting every constant in terms of δ we have that

Kp,δ =


δ2ClQ‖S‖L∞(Mδ) −

δ2δ
4
σ |M|

2
σ

δ
4
σ −2max{1, δ2µ}(1+ 1

δ
sup |∇αλ|)2C2

if p = 2,

δ2ClQ‖S‖L∞(M) −
δpC0‖u− û‖

p−2
L∞(M)

max{δ−pν
−p
2 , δp−2ν−1µ

p
2 }K̃p,δCp

if p > 2,

where

K̃p,δ =
(
1+ C1,2,p,δ sup

1
δ
|∇αλ|

)p
max{1, δp−2|M|

p−2
2 }

and C2 and Cp independent of δ. Then, if p = 2

lim
δ→0
K2,δ = lim

δ→0
δ2ClQ‖S‖L∞(M) −

δ4|M|
2
σ

max{1, δ2µ}(1+ 1
δ
sup |∇αλ|)2C2

,

and if p > 2

lim
δ→0
Kp,δ = lim

δ→0
δ2ClQ‖S‖L∞(M) −

δpC0‖u− û‖
p−2
L∞(M)

max{δ−pν
−p
2 , δp−2ν−1µ

p
2 }K̃p,δCp

.

In both cases the limit is zero and this reduces the proof to the first case.
To prove part (ii) we assume that there exist two solutions u and û of (P) verifying the weak non-degeneracy property.

Arguing as in (i) it follows that

1
2
d
dt
‖u− û‖2L2(M)

+
C0
C̃1,p,q
‖u− û‖pL∞(M) ≤

∫
M

QS(z − ẑ)(u− û)dA + C̃0‖u− û‖2L2(M)

where C̃1,p,q = C̃1,p,∞ if p > 2, and equal to C̃1,2,σ if p = 2. By Lemma 11, we get

1
2
d
dt
‖u− û‖22 ≤

(
CQ‖S‖L∞(M) −

C0‖u− û‖
p−2
L∞(M)

C1,p

)
‖u− û‖2L∞(M) + C̃0‖u− û‖

2
L2(M)

,

with C being the constant of the weak non-degeneracy property. We conclude the uniqueness as in (i) by studying the sign

of CQ‖S‖L∞(M) −
C0‖u−û‖

p−2
L∞(M)

C1,p,∞
and by rescaling in the case that such a sign is positive. �

7. Numerical tests

We present numerical results with the term of the radiation energy modelled according to Budyko’s formulation,
Re(u) = Bu + C , this means that G(x, u) = Bu. In Fig. 1 we show the initial icosahedron that yields the partition D0 and
the partition (mesh) D4. The numerical tests are carried out on the partition D6 composed of N6 = 81 920 triangles and
M = 40 062 nodes (or vertices), with an average mesh size h = 0.02067 (radians) or equivalently h ' 130 km.
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Fig. 1. Initial Icosahedron and mesh after 4 refinements.

As we said in Section 3, we approximate the partition Dk of the 2-sphereM by the partition Dhk composed of triangles in
R3 that generate the polyhedronMh of triangular faces. To calculate the numerical solution in the family of finite element
spaces V̂h we employ the method introduced in [17] after noting that ∇Mu ∈ Lp(TM) can be written as

∇Mu = ∇u− (−→n M · ∇u)−→n M,

where−→n M is the unit outward normal vector onM and∇u =
(
∂u
∂xi

)
i=1,2,3

denotes the gradient of u considered as a function

of the Cartesian coordinates (x1, x2, x3) referred to the Cartesian coordinate system, the origin of which is at the centre of
the sphere. Recalling that û(x), x ∈ Mh, is a lifting of u(x∗), x∗ ∈ M, then ∇Mu will be numerically approximated by the
approximation to ∇Mh û(x) ∈ L

p(TMh) the expression of which is

∇Mh û(x) = ∇ û(x)− (
−→n Mh · ∇ û(x))

−→n Mh for any x ∈Mh,

where −→n Mh denotes the unit outward normal vector on Mh, which is a constant vector on each triangular face Ωj of
Mh, defining thus a piecewise constant approximation to −→n M . û(x) is approximated by ûh(x) ∈ V̂h satisfying ûh(P)|Ωj ∈
P1(Ωj). The local basis functions {λk(x)}3k=1 are the barycentric coordinates defined by the relations

3∑
k=1

xkiλk = xi, for i = 1, 2, 3

3∑
k=1

λk = 1 ∀P ∈ Ωj

where xi are the coordinates of any point x ∈ Ωj and xki are the coordinates of the vertices ofΩj. Then, denoting by−→n j the
unit normal vector onΩj we have that for any x ∈ Ωj

∇Mh ûh(x) =
3∑
k=1

Uk∇λk −

(
3∑
l=1

njl
3∑
k=1

Uk
∂λk

∂xl

)
−→n j.

where Uk = ûh(xk). We remark that by construction of the family of finite element spaces Vh, Uk are also the values uh(xk).
Important features that make this formulation attractive for computations are the absence of the so-called ‘‘pole problem’’
and the discretization of the Laplace–Beltrami operator can bemanaged with the computer codes developed for the Laplace
operator in a Cartesian coordinate system. To see this is so, we consider

∫
Ωj
∇Mh ûh · ∇Mh v̂hdAh and obtain∫

Ωj

∇Mh ûh · ∇Mh v̂hdAh = VSjU
T

where V = (V1, V2, V3),U = (U1,U2,U3), with Vk and Uk being the values of v̂h and ûh at the vertices of Ωj respectively,
and Sj isΩj-element symmetric matrix the entries of which are

sik =
∫
Ωj

∇λi · (∇λk − (
−→n j · ∇λk)−→n j) dAh, 1 ≤ i, k ≤ 3.

Note that sik are the entries of the stiffnessmatrix corresponding to the Laplace operatorminus
∫
Ωj
(−→n j ·∇λi)(−→n j ·∇λk)dAh.
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Fig. 2. Distribution of temperature at time t = 0.

To calculate the numerical solution it is convenient to work with the non-dimensional formulation of the equations. To
this end, we take Tc = 104 years as the characteristic time scale and the radius a of the Earth as the characteristic space
scale. The non-dimensional temperature u is given by the formula

u =
u∗ − u∗0
u∗0 − u

∗

0

,

where u∗(x, t) denotes the sea-level atmospheric temperature expressed in Kelvin degrees, u∗0 and u
∗

0 represent the
minimum and maximum values of u∗0 (the initial temperature) respectively. In our computations u

∗

0 = 300 − 100 cos
2 θ ,

0 ≤ θ ≤ π, see Fig. 2, where the right side upper panel shows the distribution of temperature (vertical axis) in Kelvin
degrees along the meridian ϕ = 0o, with the horizontal axis being the colatitude ϑ-axis; here the North Pole is located
at ϑ = 90o and the South Pole at ϑ = −90o. The lower panel displays the distribution of temperature in the parameter
(ϑ, ϕ)-plane.
The value of the coefficient c(x) is taken as

c(x) =
a
3

u∗0 − u
∗

0

Tc
(ρcp)(ρc)s,

where ρcp denotes the average product of density times specific heat of the planet Earth, whereas (ρc)s is a correction factor
to account for the variation of ρc on the Earth surface. We take the following values [21]

(ρc)s =

{0.8 for land
1.2 for sea
0.9 for ice.

The coefficient k(x) is the thermal conductivity given by the formula

u∗0 − u
∗

0

3a
kmks,

where km = 300 Wm−1K−1 denotes the average conductivity of the planet Earth and ks is a correction factor for the Earth
surface that we take as [21]

ks =
(
0.86+ 0.311 cos2 θ − 0.98 cos4 θ

)
(1− 0.73r),
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with r = 1 if θ < π
2 − 0.22π and zero otherwise. The values of Q , S and the coalbedo as well as the constants B and C of

Budyko’s model for the radiation energy are borrowed from [21]. Thus

QS(t, x) = 340
(
1.24− 0.72 cos2 θ

)
β(x, u) =

{
0.8 if u∗ > 250 ◦K,
0.25 otherwise.

G(x, u∗) = 2.03u∗,
f (t, x) = 2.03× 273.16− 212.

To calculate the solution Un to the fully discrete problem (Ph,1t ) we have to solve a nonlinear problem with two
nonlinearities, namely, the one due to the p-Laplacian when p > 2,∫

M

〈
k
∣∣∇Un∣∣p−2 ∇Un,∇vh〉 dA,

and the other one due to the Heaviside graph on the right-hand side,∫
M

QSβ(x,Un)vhdA.

We deal with the p-Laplacian nonlinearity approximating Un in |∇Un|p−2 by the second-order extrapolation formula
2Un−1 − Un−2 when n > 1, and by Un−1 when n = 1; whereas the second nonlinearity is treated by monotone iteration.
Thus, at each time step tn we calculate Un ∈ Vh by the following iterative procedure:
For k = 0 setW 0 = 2Un−1 − Un−2 if n > 1 orW 0 = Un−1 if n = 1, then for k = 1, 2, . . . solve∫

Mh

cW kvhdAh +1t
∫

Mh

〈
k
∣∣∇MhW

0
∣∣p−2 ∇MhW

k,∇Mhvh

〉
dAh +1t

∫
Mh

G(x,W k)vhdAh

=

∫
Mh

cUnvhdAh +1t
∫

Mh

QSnβ(x,W k−1)vhdAh +1t
∫

Mh

f vhdAh, vh ∈ Vh,

stop when∥∥W k −W k−1∥∥L2(Mh)∥∥W 0∥∥L2(Mh) ≤ tol, or k = KMAX.

Set

Un+1 = W k.

In the numerical experiments we take tol = 10−4 and 1t = 10−2 in non-dimensional time units, this corresponds to
100 years of real time. Fig. 3 displays the distribution of temperature at T = 7000 years. The remarkable features of this
figure as well as those of Fig. 4 are the following: (i) the ice caps get colder and extend towards the equator; (ii) mid and
equatorial latitudes get warmer; (iii) existence of narrow free boundaries (in both northern and southern hemispheres)
where the temperature experiences a rapid variation; and (iv) there is some degree of asymmetry in the distribution of
temperature in midlatitudes due to the distribution of sea and land in the northern and southern hemispheres.
Fig. 4 shows the distribution of temperature at T = 105 years when the steady state has been reached. The contrast

between Figs. 3 and 4 is that the polar region temperatures are colder in Fig. 4 than in Fig. 3, although the geographical
extension of the polar regions is almost the same in both figures; on the other hand, the zone between the parallelsϑ = ±50o
are warmer in Fig. 4 than in Fig. 3, particularly in the tropics and the equator. To see the influence of exponent p on the
solution, we show in Fig. 5 the distribution of temperature at T = 105 years (steady state) with p = 6. The main difference
with respect to Fig. 4 is that the free boundaries in Fig. 5 are wider than that in Fig. 4.
As a final remark, we must say that the main purposes of these experiments are to illustrate the theoretical analysis

and to see the viability of the numerical model; so that, no climatic conclusions should be drawn from these experiments.
However, the model may be a valuable tool for qualitative climate studies if more realistic initial condition and coefficients
are used to simulate climate scenarios.
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Fig. 3. Distribution of temperature at time T = 7000 years with p = 3.

Fig. 4. As Fig. 3 but at T = 105 years.
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Fig. 5. As Fig. 4 but with p = 6.
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