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We consider a general class of one-dimensional parabolic systems, mainly coupled in
the diffusion term, which, in fact, can be of the degenerate type. We derive some new
L1-gradient type estimates for its solutions which are uniform in the sense that they
do not depend on the coefficients nor on the size of the spatial domain. We also give
some applications of such estimates to gas dynamics, filtration problems, a p-Laplacian
parabolic type equation and some first order systems of Hamilton–Jacobi or conservation
laws type.
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1. Introduction

We consider the following class of quasilinear parabolic systems

ut − (A(u)ux)x + B(u) + C(u,ux) = f(t, x), (1)

on Q = (0, T ) × Ω, where Ω = (0, l). Here u = (u1, . . . , un) is the unknown vector-
valued function. To this system we add some boundary conditions as, for instance,

ux(t, 0) = 0,u(t, l) = 0, 0 < t < T, (2)

and the initial condition

u(0, x) = u0(x), x ∈ Ω. (3)

To simplify the exposition, we assume that the diffusion matrix is diagonal A(u) =
(Aii(u)). However, each term Aii(u) may depend on the n components of u and
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therefore the system can be considered as strongly coupled. We also assume that the
vector functions f and u0 are given satisfying certain regularity conditions which
will be indicated later.

A special attention is paid to degenerate systems: i.e. to the case in which the
corresponding matrix A is semidefinite positive and in fact vanishes at certain crit-
ical values of the vector solution ucr, i.e. A(ucr) = 0. The mathematical treatment
is considerably more delicate than the uniformly parabolic case where the matrix
A is definite positive.

Systems similar to (1) appear very often in many different contexts such as biol-
ogy, chemistry or filtration in porous media. Our particular motivation corresponds
to the case in which system (1) describes the discharge of a laminar hot gas in a
stagnant colder atmosphere of the same gas under the assumptions of the boundary
layer approximation (see Sec. 3 and [6, 7, 10, 46, 51]). In that case n = 2, u1 is the
horizontal component of the velocity and u2 is the the gas temperature.

When studying the above mentioned special case, the authors became aware of
the gradient estimate

TV (ui(t, ·)) ≤ TV (u0i(·)) +
∫ t

0

TV (fi(τ, ·))dτ, (4)

for i = 1, . . . , n, and also that it remains valid for solutions of a large class of systems
as (1). Curiously, it seems that this property was not well observed previously in
the literature, even for the simpler case of scalar semilinear parabolic equations (the
linear heat equation, for instance), neither for simpler systems for which A(u) is
reduced to the identity matrix. Here TV (ϕ(t, ·)) denotes the total variation of the
Radon measure ϕx(t, ·), i.e.

TV (ϕ(t, ·)) = sup

{∫ l

0

ϕ(t, x)φx(x)dx : φ ∈ C∞
0 (0, l), |φ(x)| ≤ 1 for x ∈ (0, l)

}
,

for a given function ϕ ∈ L∞(0, T : BV (0, l)).
This is the reason why instead of presenting a detailed analysis of the specific

system describing the gas discharge problem we give here the proof of estimate (4)
for the solutions of a wider class of systems of the form (1).

Because of the generality of the considered framework, we shall not discuss
here any question related to the existence and regularity of solutions of systems
(1)–(3). Certainly, estimate (4) applies to weak solutions (i.e. satisfying the system
in distributional sense) which can be obtained as limit of more regular solutions
(for instance, classical solutions of some approximate formulations).

In fact, one of the main ingredients in our approach springs from the philosophy
that, as in the scalar case, weak solutions of degenerate systems (1) are mainly found
by considering the limit of regular solutions of suitable uniformly parabolic auxiliary
systems defined through regularization and approximation of its coefficients. So, in
this way, some regularity properties of the weak solutions of degenerate equations
are obtained by proving them firstly for regular solutions of the approximate systems



February 27, 2010 14:17 WSPC/S0219-1997 152-CCM
S0219199710003725

New L1-Gradient Type Estimates of Solutions 87

and then passing to the limit. That was also the philosophy proposed already by
Hopf [37], in 1950, when he studied Burgers equation by considering the limit, as
µ→ 0, in the viscous equation ut + uux = µuxx.

So, we shall always assume that the considered problem has a weak solution
which is regular enough, at least by regularizing its coefficients. We recall that some
general existence and regularity results for the uniformly parabolic case can be
found, for instance, in [41, 42, 2] (where the reader can also find a long list of
references) under the essential condition that A is a positive definite matrix. We
remark that in the case in which the term C(u,ux) involves some sourcing terms
with a superlinear growth, the existence of global solutions requires some additional
conditions on the data implying the smallness of the L∞ norm of the solution: see,
e.g., [49]. The degeneration of the matrix A is one of the reasons to understand
the solution in a weaker form and the appearance of several localization properties
of solutions such as the finite speed of propagation, waiting time effect, etc. (see,
e.g., [12]). This creates some significant difficulties in order to get some existence
and uniqueness results on weaker classes of solutions. Nevertheless, many results
are known to this respect (see, for instance, the treatment of systems of degenerate
equations made in [1]).

We point out that the (spatial) gradient estimate (4) is, in some sense “uniform”,
since it will not depend on the matrix function A (neither on the vector functions
B and C).

In fact, such estimate will be obtained (firstly for regular solutions and then for
a more general class of solutions) for a given component, ui (for some i = 1, . . . , n)∫ l

0

|uix(t, x)|dx ≤
∫ l

0

|uix(0, x)|dx +
∫ t

0

∫ l

0

|fix(τ, x)|dxdτ, (5)

for any t ∈ (0, T ]. Obviously, if the required conditions hold for any i = 1, . . . , n
then we conclude (at least in the regular case) that

‖ux‖L∞(0,T :L1(Ω)) ≤ ‖u0x‖L1(Ω) + ‖fx‖L1(0,T :L1(Ω))

(notice that this last inequality does not imply the single one (5)).
This kind of uniform gradient estimates remains true under some generalizations

(see Sec. 2.2). The extension to higher dimension and to other quasilinear equa-
tions including the case of nonlinear gradient diffusion terms, will be the object
of a separate work by the authors ([9]). In fact, such estimate has an important
meaning in the theory of degenerate parabolic systems since this property implies a
compactness criteria on a suitable functional space. This kind of arguments can be
used, for instance, to show that (4) remains valid for the case of the pure Cauchy
problem associated to (1) (i.e. when the spatial domain Ω is the whole space R). We
also send the reader to Remark 2.5 for some other comments on this property and
its study on some exact solutions of the scalar case (as, for instance, the so-called,
Barenblatt solution of the porous media equation).
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We mention that our structural conditions on the coefficients will include some
diffusive conservation laws of the form

ut + D(u)x = (A(u)ux)x + f(x, t), (6)

with

D(u) = (D1(u1), D2(u2), . . . , Dn(un)). (7)

Even in this special case, our method of proof is different from the one used to
derive the BV-estimates for solutions of hyperbolic systems of conservation laws.
The derivation of such estimates was based on the study of the associate diffusive
system and followed the philosophy of the already mentioned work by Hopf: see,
e.g., [40, 55, 54]. Indeed, estimates of type (4) are usually obtained for the special
case of Cauchy’s problem (and under other conditions which usually reduce the
system to the scalar case) by using that the associated semigroup is a contraction
in L1(R) and that (under conditions of autonomous coefficients) u(t, x+ λ) is also
a solution, for any λ ∈ R. In fact, the proof method of (4) can be extended to many
other frameworks (case of L1(R), accretive operators, renormalized solutions, etc.).
For such class of systems, our proof method does not require to work necessarily
with Cauchy’s problem and, in fact, can be applied to the case of a bounded interval
Ω = (0, l) with suitable boundary conditions.

The main idea to prove estimate (5) consists in multiplying the i-equation by
−∂Sδ(uix)/∂x, where Sδ(r) → sign0(r) as δ → 0, and to show that other contribu-
tions different to the ones arising in (5) converge to zero when δ → 0 under suitable
conditions on the coefficients. It should be noted that the trick of using a family of
test functions converging to the sign function has been very familiar in the realm of
elliptic, parabolic and first order hyperbolic equations for several decades in order
to prove simpler estimates of the following type∫ l

0

|ui(t, x)|dx ≤
∫ l

0

|ui(0, x)|dx+
∫ t

0

∫ l

0

|fi(τ, x)|dxdτ, i = 1, . . . , n. (8)

Perhaps, some of the older works related to L1-estimates are Miranda [44] and
Stampacchia [56] dealing with elliptic equations (Miranda used the test function
φ(u) = 1

q+1 |u|qu). An important progress in the treatment of elliptic equations
with L1 data was the pioneering work by Brezis and Strauss [23]. The application
of the abstract semigroup theory also leads to the use of test functions of the form
φ(u) = sign0(u) (see, for instance, Sato [50] and Crandall and Liggett [28]). The
application to parabolic and hyperbolic equations of conservation laws type was
first presented in Kruzhkov [40] and later extended, by using the semigroup theory,
in Crandall [27] and Bénilan [17] (who applied this type of test functions to the
porous media equation and other qualilinear parabolic equations). For some results
on systems, we refer the reader to [10] and its references.

To the best of our knowledge, this use of the test function −∂Sδ(uix)/∂x is new
in the literature. Although a formal integration by parts links our method with



February 27, 2010 14:17 WSPC/S0219-1997 152-CCM
S0219199710003725

New L1-Gradient Type Estimates of Solutions 89

the one already used in the literature consisting of differentiating the equation and
applying L1-techniques to uix (see, for instance, [32, 59]), our method has several
advantages: it needs less regularity on the coefficients of the diffusion operator, it
applies to Dirichlet boundary conditions (avoiding some complicated arguments on
the value of the second order operator on the boundary) and it does not involve
any constant in the final estimates (4) and (5).

We end the paper by giving, in Sec. 3, some illustrative applications of these
results to some special problems. We consider, in particular, the case of the discharge
of a hot gas mentioned before, the case of one-dimensional two phase filtration
described by the degenerate parabolic equation

st − (a(s)sx)x = V (t)b(s)x, (9)

and the (possibly degenerate) p-Laplacian type problem
ut − (Φ(ux))x = f(t, x), t ∈ (0, T ), x ∈ (0, l),

ux(t, 0) = ux(t, l) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, l),

(10)

where Φ is a continuous increasing real function. In this last case we prove a new
second-order estimate

‖ux‖L∞(0,T :BV (0,l)) ≤ ‖u0xx‖L1(0,l) + ‖fxx‖L1(0,T :L1(0,l)).

Finally, we consider the case of some first order Hamilton–Jacobi type system
(including some conservation laws){

ut + C(u,ux) = f(t, x), t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x), x ∈ R,

and prove that, under suitable conditions,

‖u‖L∞(0,T :BV(R)) ≤ ‖u0x‖L1(R) + ‖fx‖L1(0,T :L1(R)). (11)

Concerning this last system we point out that, as mentioned before, our proof
method is different to the used to derive BV-estimates for some hyperbolic systems
and that, in fact, it can be applied to the case of a bounded interval Ω = (0, l) under
suitable boundary conditions. Finally, we recall that estimates of type (11) are very
useful to show the convergence of some numerical approximation algorithms like
the ones by Lax and Friedrich or the one by Glimm (see, e.g., the exposition made
in the monographs [55, 54]).

Here, and in the rest of the paper we use the bold characters for the vector
function spaces in R

n, so, for instance, L1(0, l) = L1(0, l)n,L∞(0, T : BV(0, l)) =
(L∞(0, T : BV (0, l)))n, etc.
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2. Structural Assumptions and Main Results

In this section we assume, at least, that

f ∈ L1(Q) and u0 ∈ L1(Ω). (12)

We shall assume also that A = (Aij) is a diagonal C0(Rn : R
n2

) function,
A = (Aii), and, additionally, that A is a semi-definite positive matrix, i.e. such
that

a0|�ξ|2 ≤ (A(u)�ξ, �ξ) =
n∑
i=1

Aiiξ
2
i , (13)

for any (�ξ,u) ∈ R
2n and some a0 ≥ 0. We recall that the case a0 > 0 corresponds

to uniformly parabolic systems (this case leads to existence of regular solutions),
and that a0 = 0 corresponds to degenerate systems (in which case the solutions
must be understood in a weaker sense).

Since the proof of our main estimate (5) is given first for a single component ui
(for some i = 1, . . . , n) of the vector solution u, we shall assume that the main cou-
pling among the equations of the system comes from the diffusion terms and that,
by the contrary, the vector lower order terms B(u) + C(u,ux) are, in some sense,
weakly coupled. The precise structural assumptions on B(u) + C(u,ux) appear in
the decomposition in a “purely absorption part” and a “convective part”. Regarding
the components of the absorption part, B, we shall assume that

Bi(r) = Bi(ri), Bi∈C0(R : R) is nondecreasing, Bi(0) ≤ 0. (14)

Regarding the components of the convective part, C(u,ux), we shall assume that{
C ∈C0(R2n : R

n) and |Ci(u,p)| ≤ C0|pi|γi for some γi > 1/2, and

some C0 > 0, for any (u,p) ∈ R
n × R

n,
(15)

or {
C(u,ux) = D(u)x, D ∈ C1(Rn : R

n) with

D(u) = (D1(u1), D2(u2), . . . , Dn(un)).
(16)

2.1. On the uniform L1-gradient estimate for general systems

The main goal of the paper is to derive a L1-gradient uniform estimate (i.e. which
does not depend on the constants l, a0, a1,C0). For fixed δ > 0 we introduce the
functions

Sδ(r) =
r√

δ2 + r2
, (17)

and

Nδ(r) =
∫ r

0

Sδ(s)ds, (18)
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so that

Sδ(r) → sign0r and Nδ(r) → |r|, if δ → 0, (19)

where sign0r = 1 if r > 0, sign0r = −1 if r < 0 and sign00 = 0.
We shall start by considering the case or regular coefficients:

A ∈ C1 and
∣∣∣∣∂Aii∂uk

(u)
∣∣∣∣ ≤ C, i, k = 1, . . . , n for any u ∈ R

n,

Bi ∈ C1 and
∂Bi(ri)
∂ri

≥ 0, for any ri ∈ R,

C ∈ C1 (and D ∈ C2,D(u) = (D1(u1), D2(u2), . . . , Dn(un))).

(20)

Notice that now

(A(u)ux)x ≡ Auxx +
(
∂A
∂u

ux

)
ux,

and so, the vector equation (1) can be rewritten as a coupled system of scalar
equations

uit − [((A(u)ux)x]i + [B(u)]i + [C(u,ux)]i = fi, i = 1, . . . , n, (21)

with

[((A(u)ux)x]i = Aiiuixx +
n∑
k=1

∂Aii
∂uk

ukxuix.

Besides the assumed extra regularity, we start by working with strong solutions,
i.e. regular enough functions satisfying the system of equations and the additional
conditions in almost every point. Obviously, the above conditions are satisfied for
any classical solution u of (1)–(3), i.e. such that u ∈ C1,2

t,x([0, T ]×Ω) and u satisfies
(1)–(3) in every point. Let us recall that such high regularity is not needed for weak
solutions which satisfies the system in distributional sense.

Concerning the case of the above mentioned class of strong solutions we shall
prove the following result.

Theorem 2.1. Assume (13)–(15) or (16) as well as (20). Assume that there exists
a component i0 ∈ {1, . . . , n} for which

fi0 ∈ L1(0, T : W 1,1(Ω)), fi0 (t, l) = 0 for t ∈ (0, T ) and u0i0 ∈W 1,1(Ω). (22)

Let u = (u1, . . . , un) be a strong solution of the problem (1)–(3). Then∫ l

0

|ui0x(t, x)|dx ≤
∫ l

0

|u0i0x(x)|dx +
∫ t

0

∫ l

0

|fi0x(τ, x)|dxdτ, (23)

for any t ∈ [0, T ].
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One of the most important consequences of the above uniform gradient estimate
is its extension to the class of weak solutions:

Theorem 2.2. Let u ∈C([0, T ] : L1(Ω)) be a weak solution of the system (1)–(3)
corresponding to some coefficients A,B and C and data

f ∈ L1(0, T : W1,1(Ω)) with f(t, l) = 0 and u0 ∈ W1,1(Ω).

We assume that u = limuε, in C([0, T ] : L1(Ω)), where uε denotes the strong solu-
tion of the system corresponding to the approximating coefficients Aε, Bε and Cε

and the approximating data

fε ∈ L1(0, T : W1,1(Ω)), with fε(t, l) = 0 for t ∈ (0, T ), and u0,ε ∈ W1,1(Ω)

(24)

such that ∫ l

0

|u0εix(x)|dx +
∫ t

0

∫ l

0

|fεix(τ, x)|dxdτ ≤ C,

for some C independent on ε, for any i = 1, . . . , n and t ∈ [0, T ]. We also assume
that the conditions of Theorem 2.1 are satisfied by the approximating coefficients
Aε,Bε and Cε. Then there exists a subfamily of {uε} which converges to u also in
L∞(0, T : BV(Ω)), in the weak*-topology, and we have the estimate

TV (u(t, ·)) ≤ TV (u0(·)) +
∫ t

0

TV (f(τ, ·))dτ. (25)

We shall split the proof of Theorem 2.1 in several previous lemmas. Its pre-
sentation is motivated to exhibit some slight resemblances with the “weak time
dependence integration by parts formula” (see, e.g., [1] and its references) and some
properties related to the class of accretive operators in L1(0, l) (see, e.g., [23, 17]).

Lemma 2.1. Assume ∂Sδ(uix)
∂x ∈ Lp(0, T : Lp(0, l)), uit ∈ Lp

′
(0, T : Lp

′
(0, l)) ∩

C([0, T ]× ([0, µ) ∪ (µ, l])) for some 0 < µ ≤ µ < l and some p ∈ [1,+∞], ( 1
p + 1

p′ =
1) with ui(t, l) = 0, uix(t, 0) = 0 for a.e. t ∈ (0, T ) and u0i ∈ W 1,1(Ω). Then
uixtSδ(uix) ∈ L1(0, T : L1(0, l)), Nδ(uix) ∈ C([0, T ] : L1(0, l)) and∫ t

0

∫ l

0

uit

(
−∂Sδ(uix)

∂x

)
dxdτ =

∫ l

0

Nδ(uix(t, x))dx −
∫ l

0

Nδ(uix(0, x))dx. (26)

Proof. Notice that under the assumed regularity, uit(t, l) = 0 for any t ∈ (0, T ).
Thus ∫ l

0

uixtSδ(uix)dx =
∫ l

0

uit

(
−∂Sδ(uix)

∂x

)
dx+ uitSδ(uix)|x=lx=0

=
d

dt

∫ l

0

[∫ uix

0

Sδ(s)ds
]
dx =

d

dt

∫ l

0

Nδ(uix)dx, (27)

which leads to the result.
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Lemma 2.2. Assume

Aiiuixx
∂Sδ(uix)
∂x

∈ L1(0, T : L1(0, l)),

∂Aii
∂uk

ukxuix
∂Sδ(uix)
∂x

∈ L1(0, T : L1(0, l)).

Then

lim
δ→0

∫ t

0

∫ l

0

[(−(A(u)ux)x]i

(
−∂Sδ(uix)

∂x

)
dxdτ ≥ 0. (28)

Moreover,

lim
δ→0

∫ t

0

∫ l

0

[B(u)]i

(
−∂Sδ(uix)

∂x

)
dxdτ ≥ 0, (29)

and

lim
δ→0

∫ t

0

∫ l

0

[C(u,ux)]i

(
−∂Sδ(uix)

∂x

)
dxdτ ≥ 0. (30)

Proof. Obviously

dSδ
dr

(r) =
δ2

(δ2 + r2)
3
2

and
∂Sδ(uix)
∂x

=
δ2uixx

(δ2 + u2
ix)

3
2
.

Then ∫ t

0

∫ l

0

[(−(A(u)ux)x]i
∂Sδ(uix)

∂x
dxdτ := I1 + I2

with

I1 :=
∫ t

0

∫ l

0

Aii
δ2(uixx)2

(δ2 + u2
ix)

3
2
dxdτ ≥ a0

∫ t

0

∫ l

0

δ2(uixx)2

(δ2 + u2
ix)

3
2
dxdτ := I0,

and

I2 := −
∫ t

0

∫ l

0

∂Aii
∂uk

ukxuix
δ2uixx

(δ2 + u2
ix)

3
2
dxdτ.

Using Cauchy’s inequality we can estimate I2 as follows:

|I2| ≤
∫ t

0

∫ l

0

a0

3
δ2(uixx)2

(δ2 + uix)
3
2

+
3δC2

4a0

(
n∑
k=1

|ukx|
)2

δ

(δ2 + u2
ix)

1
2

u2
ix

(δ2 + u2
ix)

dxdτ
≤ 1

3
I0 + δ

3C2

4a0

∫ t

0

∫ l

0

(
n∑
k=1

|ukx|
)2

dxdτ.

This proves (28) (recall that u is regular enough and that the parameter δ only
arises in the definition of the test function). By integrating by parts and using (14),
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we have ∫ t

0

∫ l

0

∂Bi(ui)
∂ri

u2
ix

(δ2 + u2
ix)
dxdτ ≥ 0,

which shows (29). To prove (30) we notice that if we define

I3 :=
∫ t

0

∫ l

0

[C(u, ux)]i

(
−∂Sδ(uix)

∂x

)
dxdτ

and if (15) holds then we get

|I3| ≤
∣∣∣∣∣
∫ t

0

∫ l

0

C0
|uix|γiδ2uixx
(δ2 + u2

ix)
3
2
dxdτ

∣∣∣∣∣ ≤
∫ t

0

∫ l

0

δ|uixx|
(δ2 + u2

ix)
3
4

δC0|uix|γi
(δ2 + u2

ix)
3
4
dxdτ

≤
∫ t

0

∫ l

0

(
a0

3
δ2u2

ixx

(δ2 + u2
ix)

3
2

+
3

4a0
C2

0

δ2 |uix|2γi
(δ2 + u2

ix)
3
2

)
dxdτ

≤ 1
3
I0 +

3δ2γi−1

4a0
C2

0 lT + δ
3C2

4a0

∫ t

0

∫ l

0

(
n∑
k=1

|ukx|
)2

dxdτ +
C(T, l)
C2

 .

In the case in which (16) holds

I3 =
∫ t

0

∫ l

0

dDi

dui

uixδ
2uixx

(δ2 + u2
ix)

3
2
dxdτ

= −δ2
∫ t

0

∫ l

0

dDi

dui

∂

∂xi

(
1

(δ2 + u2
ix)

1
2

)
dxdτ

= δ2

∫ t

0

∫ l

0

d2Di

d2ui

(
uxi

(δ2 + u2
ix)

1
2

)
dxdτ − dDi

dui

1
(δ2 + u2

ix)
1
2

∣∣∣∣∣
x=l

x=0

 .
Passing to the limit we get (30).

Proof of Theorem 2.1. We denote the component i0 simply by i for the sake of
notation. By using that u satisfies the system in a strong sense, and applying the
above lemmas, we get∫ l

0

Nδ(uix(t, x))dx ≤
∫ l

0

Nδ(uix(0, x))dx + I4, (31)

with

|I4| =

∣∣∣∣∣
∫ t

0

∫ l

0

fi

(
−∂Sδ(uix)

∂x

)
dxdτ

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0

∫ l

0

fixSδ(uix)dxdτ

∣∣∣∣∣ ≤
∫ t

0

∫ l

0

|fix|dxdτ,
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where we used that fi(t, l) = 0 for t ∈ (0, T ). Joining (31) and the above estimates,
we reach the inequality∫ l

0

Nδ(uix(t, x))dx ≤
∫ l

0

Nδ(u0ix(x))dx +
∫ t

0

∫ l

0

|fix(τ, x)|dxdτ. (32)

Passing to the limit as δ → 0, we get the desired estimate.

Proof of Theorem 2.2. From the assumptions we can apply Theorem 2.1 to all
components of uε and, in particular, we get that∫ l

0

|uεix(t, x)|dx ≤ C, (33)

for any i = 1, . . . , n and t ∈ [0, T ], with C independent of ε. Since L∞(0, T : BV(Ω))
is the dual of a separable space (see, e.g., [4, p. 299]) we can apply Banach–Alaoglu–
Bourbaki’s compactness theorem (see, e.g., [21]) which implies the result.

Remark 2.1. The statements of the above theorems remain valid under different
boundary conditions. For instance, we can replace the boundary conditions (2) and
the assumption (22) by one of the following alternative boundary conditions (and
alternative assumptions): either

ui0x(t, l) = ui0x(t, 0) = 0, 0 < t < T, (34)

and we assume merely

fi0 ∈ L1(0, T : W 1,1(Ω)) and u0i0 ∈W 1,1(Ω), (35)

or

ui0(t, 0) = ui0(t, l) = 0, 0 < t < T, (36)

and we assume

fi0 ∈ L1(0, T : W 1,1
0 (Ω)) and u0i0 ∈W 1,1(Ω). (37)

Many possibilities can be considered: for instance, we can assume that the boundary
conditions (2) hold for a subset of the components but that there are other subsets of
the components for which (34) or (36) are prescribed. Finally, we send the reader to
the paper [10] for a treatment of the case in which the coefficients are nonautonomus
(and suitable assumptions are made on the dependence of A(t, x,u),B(t, x,u) and
C(t, x,u,ux) on t and x). A nonhomogeneous Dirichlet boundary condition and
the associated stationary problem are also considered in the mentioned reference.

Remark 2.2. In many cases, by using some supplementary assumptions and argu-
ments, it can be shown that, in fact, the limit function u of Theorem 2.2 is more
regular and u ∈ L∞(0, T : W1,1(Ω)). See, for instance, [1] for some systems and
[36] for some scalar parabolic equations. The regularity of weak solutions (defined
initially in the BV space) has been a question under a constant research: see, e.g.,
Serrin [52] and Brezis [22] for an old conjecture and its recent proof concerning
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the case of elliptic equations. Many other references in the literature deal with the
gradient regularity of weak solutions. In many cases ux ∈ L∞(0, T : L1(Ω)) and
the conclusion (25) can be properly written in the terms∫ l

0

|ux(t, x)|dx ≤
∫ l

0

|u0x(x)|dx +
∫ t

0

∫ l

0

|fx(τ, x)|dxdτ.

Remark 2.3. The estimates in Theorems 2.1 and 2.2 (and the cases indicated in
the above remarks) do not depend on l and remain valid for solutions of Cauchy’s
problem{

ut − (A(u)ux)x + B(u) + C(u,ux) = f(t, x), t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x), x ∈ R,

assuming that

f ∈ L1(0, T : W1,1(R)) and u0 ∈ W1,1(R).

The solution of the last problem can be obtained, for instance, as the limit of the
following problem

ut − (A(u)ux)x + B(u) + C(u,ux) = fl(t, x) t ∈ (0, T ), x ∈ (−l, l),
u(t,±l) = 0 t ∈ (0, T ),

u(0, x) = u0,l(x) x ∈ (−l, l),
as l → ∞, once we approximate f(t, x) and u0(x) by fl(t, x) and u0,l(x) satisfying
the natural corresponding assumptions. For other qualitative properties indepen-
dent on l, see [10] and the general exposition made in [26].

Remark 2.4. Inequality (25) can be obtained by a different method, for Ω = R,

when we know that the solutions satisfy a L1-contraction principle, i.e.∫
R

|u(t, x) − v(t, x)|dx ≤
∫

R

|u0(x) − v0(x)|dx +
∫ t

0

∫
R

|f(τ, x) − g(τ, x)|dxdτ,
(38)

for any t ∈ [0, T ], were v(t, x) denotes the solution corresponding to the initial
datum v0(x) and source term g(t, x), that and that u(t, x + h) is also a solution,
for any h ∈ R. Indeed, it is enough to take v(t, x) = u(t, x+ h) in (38) and use the
fact that

TV (u(t, ·)) = lim
h→0

1
h

∫
R

|u(t, x) − u(t, x+ h)|dx

(see, [34]). This argument is typical of scalar (diffusive or not) conservation laws
(see [40, 58] and other references in [54, 55]) but it can be applied for other kinds
of equations leading to accretive operators in L1(R) ([18]) or for classes of solutions
satisfying the problem in some weaker sense: renormalized solutions ([20, 3]) and
entropy solutions ([24, 59, 4]).
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Remark 2.5. Although the first mathematical treatment of degenerate parabolic
equations goes back to 1958, or even earlier (see, e.g., [45]) and it has been very
extensively considered by many authors since then up to present days (see, e.g., the
survey [38], the monographs [12, 57] and their long lists of references) it seems very
curious to us that, as far as we know, quite simple uniform estimates as the one
obtained in Theorem 2.2 were not included before in the literature. Perhaps, one
of the reasons for this was the extraordinary importance given to the self-similar
solution corresponding to the scalar equation (the so-called porous media equation)

ut = (um)xx in Q = (0, T ) × R. (39)

Indeed, the so-called Barenblatt solution is given explicitly by the expression

u(t, x) =
1

t
1

m+1

(
1 − (m− 1)

2m(m+ 1)
|x|2

t2/(m+1)

)1/(m−1)

+

. (40)

For many different purposes many authors devoted an important part of their
research trying to get optimal gradient estimates of the form

|(um(t, x))x| ≤Mu(t, x), (41)

for any (t, x) ∈ (0, T )×R , which, in fact, become optimal for a suitable constantM ,
as it can be checked by means of (40) (see, e.g., [19] and its references dealing with
Bernstein’s type arguments to prove (41)). Our point of view is slightly different
since, this time, our motivation starts on systems of coupled degenerate equations
involving some possible anisotropic coefficients which, in some cases, make impos-
sible to find special solutions of self-similar type. Moreover, even for the case of
scalar equations, it is clear that regularity (41) or (um−1)x ∈ L∞(Q) is, in some
sense, independent of the estimate obtained in Theorem 2.2. To see that, notice
that if we denote by [−l,+l] the support of u(t, ·), for t fixed, we can write∫ l

−l
|ux(t, x)|dx =

1
m− 1

∫ l

−l

1
u(t, x)m−2

|(um−1(t, x))x|dx.

If we assume (um−1)x ∈ L∞(Q) then the integrability of ux(t, x) is related to the
integrability condition ∫ l

−l

1
u(t, x)m−2

dx < +∞. (42)

But, at least in the case of the Barenblatt solution, u(t, x) behaves like |x±l|2/(m−1)

near the boundary of its support and we see that condition (42) holds if and only
if m ∈ (1, 3). We also point out that, even when the Bernstein technique is used to
get sharper estimates of the type (um−1)x ∈ L∞(Q) the obtained estimates are not
of contraction type, in contrast with the estimate obtained in Theorem 2.2 (see, for
instance, the collection of estimates obtained in [19]).
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We end this section by giving a variant of Theorem 2.1 in which we get the
uniform gradient estimate with an extra term.

Proposition 2.1. Assume the same conditions as in Theorem 2.1, but assuming
γi ≥ 1/2 in (15). Then∫ l

0

|uix(x, t)|dx ≤
∫ l

0

|uix(x, 0)|dx+
∫ t

0

∫ l

0

|fix(x, τ)|dxdτ + λi
C2

0i

a0
lt, (43)

for any t ∈ [0, T ], where λi = 0 if γi > 1/2 and λi = 3/4 if γi = 1/2.

Proof. The only change with respect to the proof of Theorem 2.1 concerns the
estimate of I3 for γi = 1/2. Now, by Young’s inequality we get that

|I3| ≤ 1
3

∫ t

0

∫ l

0

Aii
δ2u2

ixx

(δ2 + u2
ix)

3
2
dxdτ +

3
4

∫ t

0

∫ l

0

C2
0i

Aii
dxdτ,

and so the conclusion holds by using (13) and passing to the limit as before.

3. Some Applications

3.1. A diffusively coupled nonlinear system in gas dynamics

As mentioned in the Introduction, one of the motivations of this work started with
the preparation of our articles [6, 7] where we considered the following system
of (possibly degenerate) equations: given the domain Q := {(ψ, x) ∈ R

2 : 0 <

ψ < l, 0 < x < X}, for some arbitrarily fixed l, X > 0, and given the constants
σ ∈ (0, 1), P r > 0, G ≥ 0, ε ≥ 0 and δ ≥ 0, find a solution (u, T ) of the system{

ux − (A11(u, T )uψ)ψ +B1(u, T ) = 0,

Tx − (A22(u, T )Tψ)ψ = 0,
(44)

with the boundary conditions{
uψ(0, x) = 0, Tψ(0, x) = 0 0 < x < X,

u(l, x) = µ, T (l, x) = ε 0 < x < X,
(45)

and the “initial” conditions{
u(ψ, 0) = u0(ψ), 0 ≤ ψ ≤ l,

T (ψ, 0) = T0(ψ), 0 ≤ ψ ≤ l,
(46)

where

A11(u, T ) = T σ−1u, A22(u, T ) = (Pr)−1T σ−1u, B1(u, T ) = −G
u

(T − ε), (47)

and we assume that, at least,

u0, T0 ∈ W 1,1(0, l), u0(ψ) ≥ µ and 1 ≥ T0(ψ) ≥ ε on 0 ≤ ψ ≤ l. (48)

Here Pr > 0 is the Prandtl number and G > 0 is the Froude number. System (44)
is of parabolic type. Therefore condition (46) looks like an initial condition if we
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understand the variable x as a “fictitious” time. Problems (44)–(46) was obtained,
using von Mises’ transformation, from a mathematical model which describes the
discharge of a laminar hot gas into the stagnant colder atmosphere of the same gas
(see [46–48, 51]).

The existence and uniqueness of classical solutions of the nondegenerate case
(corresponding to the assumptions µ > 0 and ε > 0) were proved in [6, 7]. These
solutions satisfy the a priori inequalities

0 < µ ≤ u ≤ C(G,X), 0 < ε ≤ T ≤ 1 (with C(0, X) = 1). (49)

Note if G > 0 we cannot apply directly Theorem 2.1 since B1(u, T ) does not
satisfy condition (14). Nevertheless, arguing as in the proof of Theorem 2.1 we can
derive similar L1-gradient estimates.

Proposition 3.1. Assume (47) with G ≥ 0, µ > 0 and ε > 0. Then if (u, T ) is a
strong solution of (44)–(46) we have∫ l

0

|Tψ(ψ, x)|dψ ≤
∫ l

0

|T0ψ(ψ)|dψ. (50)

Moreover, if G = 0 then∫ l

0

|uψ(ψ, x)|dψ ≤
∫ l

0

|u0ψ(ψ)|dψ.

Finally, if G > 0, then∫ l

0

|uψ(ψ, x)|dψ ≤
∫ l

0

|u0ψ(ψ)|dψ + (exp(G/µ2) − 1)
∫ l

0

|T0ψ(ψ)|dψ. (51)

Proof. The two first estimates result from a direct application of Theorem 2.1. If
G > 0, µ > 0 and ε > 0 by multiplying the first equation of (44) by ∂Sδ(uψ)

∂ψ and
integrating over Q we get the identity∫ l

0

Nδ(uψ(ψ, x))dψ + I1 =
∫ l

0

Nδ(uψ(ψ, 0))dψ + I2 + I3,

where

I1 :=
∫ x

0

∫ l

0

A11

δ2u2
ψψ

(δ2 + u2
ψ)

3
2
dψdξ,

I2 := −
∫ x

0

∫ l

0

[
∂A11

∂T
Tψ +

∂A11

∂u
uψ

]
uψ

δ2u2
ψψ

(δ2 + u2
ψ)

3
2
dψdξ,

and

I3 := −
∫ x

0

∫ l

0

G

u
(T − ε)

∂Sδ(uψ)
∂ψ

dψdξ.
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Integrating by parts and using the boundary conditions (45) we can rewrite I3 in
the form

I3 =
∫ x

0

∫ l

0

Sδ(uψ)G
[
−T − ε

u2
uψ +

1
u
Tψ

]
dψdξ.

Using (49) and assuming 0 < µ < 1, we evaluate I3 in the following way

|I3| ≤ G

µ2

∫ x

0

∫ l

0

(|uψ| + |Tψ|)dψdξ.

Repeating the arguments of Theorem 2.1, we get the inequality∫ l

0

|uψ(ψ, x)|dψ ≤
∫ l

0

|u0ψ(ψ)|dψ +
G

µ2

∫ x

0

∫ l

0

(|uψ| + |Tψ|)dψdξ.

Applying Gronwall’s inequality and (50), we get (51).

Remark 3.1. Similar estimates hold for the limit cases ε = 0 and µ = 0 but now
stated in terms of the total variation of the associate weak solutions (u, T ) (see [8]).

3.2. An one-dimensional two phase filtration equation

It is well known (see, e.g., [5, 11–14, 35]), that the one-dimensional two-phase
filtration in a porous medium model can be described by the degenerate parabolic
equation

st = (a(s)sx + V (t)b(s))x, (t, x) ∈ Q = (0, T ) × (0, l), (52)

with the boundary and initial conditions

s(0, x) = s0(x), x ∈ (0, l), (53)

s(t, 0) = µ > 0, s(t, 1) = (1 − ε) > 0, t ∈ (0, T ). (54)

Here a, b ∈ C1[0, 1] and V ∈ C[0, T ] are given functions such that

0 < a0(µ, ε) ≤ a(s) ≤ 1, s ∈ [µ, 1 − ε] ⊂ (0, 1), a(s) = 0,

for s = 0 and s = 1, (55)

and

|V (t)| ≤ C <∞ for any t ∈ [0, T ]. (56)

We assume, at least, that

s0 ∈ W 1,1(0, l), s0(x) ∈ [µ, 1 − ε] for any x ∈ (0, l). (57)

The existence and uniqueness of classical solutions of the nondegenerate problem
(corresponding to the assumptions µ > 0 and ε > 0) were proved in [14, 13]. Note
that, again, we cannot apply directly Theorem 2.1 due to the degeneracy of a(s)



February 27, 2010 14:17 WSPC/S0219-1997 152-CCM
S0219199710003725

New L1-Gradient Type Estimates of Solutions 101

and the presence of the term V (t)b(s). Nevertheless, we can adapt the arguments
of Theorem 2.1 to prove:

Proposition 3.2. Assume (55)–(57). Let s(t, x) be the classical solution of
(52)–(54). Then, for any t ∈ (0, T ) we have∫ l

0

|sx(t, x)|dx ≤
∫ l

0

|s0x(x)|dx.

Proof. Multiplying (52) by ∂Sδ(sx)
∂x and integrating over Q, we get the identity∫ l

0

Nδ(sx(t, x))dx + I1 =
∫ l

0

Nδ(s0x(x))dx + I2 + I3,

where

I1 :=
∫ t

0

∫ l

0

a
δ2s2xx

(δ2 + u2
ix)

3
2
dxdτ, I2 := −

∫ t

0

∫ l

0

a′s
s2xδ

2sxx

(δ2 + s2x)
3
2
dxdτ,

and

I3 := −
∫ t

0

∫ l

0

V b′s
sxδ

2sxx

(δ2 + s2x)
3
2
dxdτ.

But we have the estimates

|I2| ≤ 1
2

∫ t

0

∫ l

0

a
δ2s2xx

(δ2 + s2x)
3
2
dxdτ +

1
2

∫ t

0

∫ l

0

a′2s
a

δ2s4x

(δ2 + s2x)
3
2
dxdτ

≤ I1
2

+
δ

2

∫ t

0

∫ l

0

a′2s
a
s2xdxdτ,

and

|I3| ≤ I1
2

+
1
2

∫ t

0

∫ l

0

V 2 b
′2
s

a

δ2s2x

(δ2 + s2x)
3
2
dxdτ ≤ I1

2
+
δ

2

∫ t

0

∫ l

0

V 2 b
′2
s

a
dxdτ,

which lead to∫ l

0

Nδ(sx(t, x))dx ≤
∫ l

0

Nδ(s0x(x))dx +
δ

2

∫ t

0

∫ l

0

(
a′2s
a
s2x + V 2 b

′2
s

a

)
dxdτ.

Moreover, it is not difficult to get an estimate of the last integral in the right hand
side of the above inequality. Indeed, let

I :=
1
2

∫ t

0

∫ l

0

(
a′2

a
s2x + V 2 b

′2

a

)
dxdτ. (58)

Then

I ≤ 1
2

max
s∈[0,1]

[a′2, b′2] + max
t∈[0T ]

V 2

a0(µ, ε)

∫ t

0

∫ l

0

(s2x + 1)dxdτ. (59)

However, s is a classical solution (recall that µ > 0, ε > 0). Then∫ t

0

∫ l

0

(s2x + 1)dxdτ ≤ C(T, µ, ε) (60)
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and thus

I ≤ 1
2

max
s∈[0,1]

[a′2, b′2] + max
t∈[0T ]

V 2

a0(µ, ε)
C(T, µ, ε) ≤ C̃(T, µ, ε), (61)

for a constant C̃(T, µ, ε) which does not depend on δ. Passing to the limit, as δ → 0,
we get the desired estimate.

3.3. A p-Laplacian parabolic type equation

The arguments of Theorems 2.1 and 2.2 can be used to get some new second order
estimates for solutions to the problem of p-Laplacian type

ut − (Φ(ux))x = f(t, x) t ∈ (0, T ), x ∈ (−l, l),
ux(t,±l) = 0 t ∈ (0, T ),

u(0, x) = u0(x) x ∈ (−l, l),
(62)

where Φ is a continuous increasing real function. The existence of a unique
weak solution, under this general condition on Φ, is a well known result (see,
e.g., [29]).

Proposition 3.3. Let u be the weak solution of (62) and assume that u0 ∈
W 2,1(−l, l) and f ∈ L1(0, T : W 2,1(−l, l)). Then, ux ∈ L∞(0, T : BV (−l, l)) and

‖ux‖L∞(0,T :BV (−l,l)) ≤ ‖u0xx‖L1(−l,l) + ‖fxx‖L1(0,T :L1(−l,l)). (63)

Proof. It suffices to use the fact that the function v = ux is the unique weak
solution of the problem

vt − Φ(v)xx = fx(t, x) t ∈ (0, T ), x ∈ (−l, l),
v(t,±l) = 0 t ∈ [0, T ],

v(0, x) = u0x(x) x ∈ (−l, l),
(64)

and then use the variant of Theorem 2.2 given in Remark 2.1 after a standard
approximation of solutions of (64) by classical solutions of some associate problems
(see, e.g., [36]).

Remark 3.2. When Φ(r) = |r|p−2r, for some p > 1, we get the one-dimensional
p-Laplacian operator. Although there are many regularity results for p-Laplacian
parabolic equations (see, e.g., [42, 29]) it seems that the regularity L∞(0, T :
W 2,1(−l, l)) was not proved before in the literature. Notice that the regularity
and the estimate given by (63) are new even in the class of “strong solutions” (sat-
isfying that ut, (Φ(ux))x ∈ L1(Q)): see, e.g., [4] and its references. Some references
on the regularity (|ux|p−2ux)x ∈ Lq can be found, for instance, in [30].

Remark 3.3. We point out that, although we shall not develop it here, the argu-
ments of Theorems 2.1 and 2.2 can be applied, with some slight modifications, to
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the solutions of (62) leading, in this way, to uniform L1-gradient estimates (see a
close point of view in [32, 59]). We also point out that other different uniform gra-
dient estimates, obtained by Bernstein type arguments, are known in the literature
(see, e.g., [31, 33, 53] and their references).

3.4. Hamilton–Jacobi and conservation laws

Consider the first order partial differential equation{
ut + C(u,ux) = f(t, x), t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x), x ∈ R,
(65)

with

f ∈ L1(0, T : W1,1(R)) and u0 ∈ W1,1(R).

We also assume that:
u is the limit, when ε→ 0, of solutions uε of

ut − εuxx + C(u,ux) = f(t, x) t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x) x ∈ R.

(66)

Then as a direct consequence of Theorem 2.2 and Remark 2.4, we get

Proposition 3.4. Let us assume (66) and conditions (15) or (16). Then

TV (u(t, ·)) ≤ TV (u0(·)) +
∫ t

0

TV (f(τ, ·))dτ.

Remark 3.4. As noticed in the Introduction, assumption (66) was first proved
in [37] for Burgers’ equation. Since then, many other results are available in the
literature (see, e.g., the monographs [43, 55, 16, 54]). We also point out that this
was obtained in [15, 25] for the case of some scalar conservation laws equations on
a bounded domain when a suitable boundary condition is added to the equation
jointly to the initial condition. For the case of Hamilton–Jacobi equations on a
bounded domain see [39, 43, 16].
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eralized solutions of degenerate problems of two-phase filtration, Dokl. Akad. Nauk
325 (1992) 1151–1155; English translation, Soviet Phys. Dokl. 37(8) (1993) 411–413.

[12] S. N. Antontsev, J. I. Dı́az and S. Shmarev, Energy Methods for Free Boundary
Problems: Applications to Non-linear PDEs and Fluid Mechanics (Bikhäuser, Boston,
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[17] Ph. Benilan, Équations d’évolution dans un espace de Banach quelconque et appli-
cation, Thesis, Universite de Paris-Sud (1972).



February 27, 2010 14:17 WSPC/S0219-1997 152-CCM
S0219199710003725

New L1-Gradient Type Estimates of Solutions 105

[18] Ph. Benilan, M. G. Crandall and A. Pazy, Evolution Equations Governed by Accretive
Operators, book in preparation.

[19] Ph. Benilan and J.I. Dı́az, Pointwise gradient estimates of solutions of onedimensional
nonlinear parabolic problems, J. Evol. Equ. 3 (2004) 557–602.

[20] L. Boccardo, D. Giacheti, J. I. Dı́az and F. Murat, Existence and regularity of renor-
malized solutions for some elliptic problems involving derivatives of nonlinear terms,
J. Differential Equations 106(2) (1993) 215–237.
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