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1 Introduction.

This paper is devoted to some generalizations and improvements of a previous paper by the authors
([12]) on Torroja’s structures. Such kind of structures by the outstanding engineer Eduardo Torroja
(Madrid, 1899-1961) are very peculiar kind of curved slender nearly cylindrical elastic shells enjoying
rigidity properties inherited from the geometry which furnish remarkable properties of strength. This
were used in various realizations of the real world such as the shell roofs of the Madrid Racecourse
(1935). Another example of this type of structures is, for instance, the ”pedestrian access shell in the
southwestern side of the UNESCO building (Paris, 1953-58) due to Marcel Breuer and Bernard Zehrfuss
with the collaboration of Antonio and Pier Luigi Nervi.

Torroja’s structures are intermediate between shells and beams: the mathematical asymptotic struc-
ture is hybrid of shells and beams.

Let us consider the slender shelldepicted in Figure 1 (details will be given later), where ε denotes
the small parameter with the thickness of the shell, whereas its lenght is l1 (independent of ε) and its
wideness is ηl2, where η = η(ε) is an asymptotic gauge function with

lim
ε↘0

η(ε) = 0, (1.1)

lim
ε↘0

ε/η(ε) = 0. (1.2)

It is ??? by x1 = 0 and free elsewere (ARISTA??).
The ”transversal curvature” in the direction of x2 is independent of ε. We mainly consider ”normal

loadings” such that the structure works in flection.
The key point is: should such kind of elastic structures be considered as a shell or a beam?
Basically, shells correponds to η = O(1). Asymptotics for ε ↘ 0 lead to the Love-Kirchhoff asymp-

totics, where normal segments to the midle surface behave as rigid, but, obviously, segments on the same
section, x1 = constant, are not rigidly linked to each other. The limit behavior is described by a PDE in
x1 and x2. Both variables play analogous roles. Oppositely, beams corresponds to η = O(ε). Asymptotics
leads to the Bernoulli-Euler’s assymptotic, where normal sections, x1 = constant, behavies as rigid (at
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the leading order of asymptotics), i.e. the various normal segments are linked. Th elimit behaviour is
then described by one ODE in x1.

The basic result of the previous paper ([12]) consists in the description and rigurous asymptotics for

η = ε1/4, (1.3)

or even
ε1/3 ≤ η ≤ 1. (1.4)

The corresponding asymptotics involves a PDE in x1 and x2 but both variables play very different roles:
the order of differentiation is higher in x2 than in x1. The corresponding energy space is highly anisotropic,
with ”hipper rigidity properties” in the transversal direction x2. Correspondingly, the ”limit equations”
are parabolic.

It should be pointed out that the Torroja’s asymptotics described by (1.3), or even (1.4), does not
cover the whole interval (1.1) and (1.2). Other cases of ”slender shells” remain out of the scope of this
study. Without pretension of exhaustively, let us mention Vlasov’s slender shells (see, for instance, [2])
which corresponds to sections with curvature radius of η order (instead of O(1) order) and η = ε1/3.

¿simplification , pie de página?
The basic geometry of the mid surface in ([12]) was exactly cylindrical, i.e.,

x3 = bx2
2. (1.5)

Nevertheless, Torroja’s structures in the real world were slightly different, incorporating a very small cur-
vature in the longitudinal x1 direction. Specifically, this curvature was of opposite sign to the transversal
one, so that the midsurface was hyperbolic. A generalization of ([12]) to that case was addressed in ([13]).
This generalization was allowed by using properties of hyperbolic differential equations (dependence do-
mains in particular) in order to obtain pertinent a priori estimates.

In the present paper we use a new more general method for obtaining a priori estimates which is
independent of the type (hyperbolic , elliptic or parabolic) of the midsurface. It uses a decomposition of
the space of functions of the transversal variable x2; flection rigidily term is effective up to a kernel of
finite dimenssion. As a matter of fact, ”geometrical rigidility” issued from other geometrica properties
is only used in a subspace of functions of the longitudinal vatiable with values in the above mentioned
finite-dimenssional kernel and is then effective for same what general perturbation of the cylindrical
shape.

Nevertheless, the decompostition of the space L2(0, l2) of the transversal variable y2 into K⊗K⊥ where
K is the kernel formed by polynomials of order not greater than 3, does not conmute with products of
functions of y2. Moreover, products with functions of y1 are no longer allowed for other technical reasons.
In particular, the presence of rectangular term b12 in the ...¿? As a matter of fact, the new method
only applies to cases with constant coefficients. Nevertheless, it is interesting, as it proves that rigidity
properties are not linked to hyperbolicity. They are also present at the same order of magnitude in the
elliptic case. This is a little surprising as elliptic shells with a part of the boundary free are ”sensitive”,
which amounts to some kind of unstability (see, for instance, [34] and its bibliography).

The reason is the asympthotic rigidification furnished by the flection terms.

We also note that according to η << 1, the whole surface is ”close to” any one of its tangent planes
and in fact, shallow shell theory is analogous to clasical ”Koiter-like” theory, allowing some technical
simplifications.

We note that the ”slight modification of the geometry” produced by a longitudinal curvature O
(
η2
)

gives discrepancies with the ”exact cylinder” of order O
(
η2
)
, which is the same as the discrepancies with

the (x1x2)−plane (see figure).
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As a matter of fact, the above described perturbation of the cylinder corresponds (in the framework
of shallow theory) to a surface of the form:

x3 = bx2
2 + η2a with a, b constants (1.6)

and this is a very restricted perturbation of the exact cylinder x3 = bx2
2. Indeed, the curvature lines

(within shallow approximation) are x2 = constant or x1 = constant, according to ∂1∂2x3 = 0 in (1.6).
This does not allow a kind of perturbation which was handled by Torroja (bla bla bla) corresponding to
a ”kind of cylinder” with curvature depending on the longitudinal variable, i.e.:

x3 = b(x1)x2
2 (b(x1) ≥ c > 0) (1.7)

Muchas notas

In other words, the considered geometric perturbation does not destroy the relevant rigidity properties
issued from the basic cylindrical shell scheme, but changes the specific coefficients (factors) describing
them. In this sense, the structure is sensitive to the small perturbations of the geometry.

2 The basic problem.

2.1 Setting of the basic problem

We consider a slender cylindrical shell as shown in Fig 1

x1

x2

x3

O( )h
2

O( )h
2

Curvature O(1)

Transversal length O(h)

O( )h
2

According to standard notations in cylindrical shell theory (see, e.g. [25], [10], [30]) the “plane of
parameters x1, x2” is merely the middle surface (cylinder) of the shell developed into a plane. We chose
x1 in the direction of the generators and x2 normal to them, so that the principal curvatures are zero in
the direction x1 and b = 1/R (we assume positive curvature see Remark 2.8 on the case b = −1/R) in
the direction x2, where R denotes the radius of the cross section of the cylinder. Accordingly, the second
fundamental form of the surface has components b11 = b12 = 0 and b22 = b, which is considered as a free
parameter for the time being. Moreover, the Christoffel symbols of the surface vanish identically, so that
covariant and classical differentiation coincide. Since b212 − b11b22 = 0 the surface is parabolic, i.e. the
directions of the principal curvatures coincide (see, e.g. [30]).

Remark 2.1 As a matter of fact, the Torroja’s structure mentioned at the introduction was not composed
of cylindrical elements but by slightly hyperbolic ones. Nevertheless, the curvature in the longitudinal
direction was much smaller (and even it vanished in early projects by Torroja: see [35] Chapter 1) than
in the transversal direction, so that our model with zero longitudinal curvature may be considered as a
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first approximation. The case of elliptic or hyperbolic middle surfaces shells case will be analyzed in [15].
Another example is the ”pedestrian access shell in the southwestern side of the UNESCO building (Paris,
1953-58) due to Marcel Breuer and Bernard Zehrfuss with the collaboration of Antonio and Pier Luigi
Nervi ([?], [21]).

Let ε be a small parameter, the relative thickness of the plate. Let η = η(ε) be a new small parameter
satisfying

η = O(ε
1
4 ) (2.8)

(but the typical example will be η = eε
1
4 for some constant e > 0, as announced in the introduction).

Let us denote the shell domain by
Ωε = (0, l1)× (0, ηl2), (2.9)

with ηl2 ≤ 2R. The corresponding tangential displacements are ũ1, ũ2, whereas ũ3 is the displacement
normal to the shell. Some times we shall use the notation ũ = ũε to indicate explicitly the ε-dependence.

We shall admit, in this section, that the shell is clamped by the “small curved boundary” ({0}×[0, ηl2]
and free by the rest (see some comments on other cases in Remark ??). This implies the kinematic
boundary conditions:

0 = ũ1 = ũ2 = ũ3 = ∂̃1ũ3 on {0} × [0, ηl2], (2.10)

where

∂̃α =
∂

∂xα
. (2.11)

The space of configuration will be denoted by V ε. It is the subspace of

H1(Ωε)×H1(Ωε)×H2(Ωε)

formed by the functions satisfying the kinematic boundary conditions (2.10).
Although it is possible to write the complete system of equations modeling the above elastic problem

(the “strong formulation”: see. e.g. [25]), here we shall follow a “variational or weak formulation” of
the elasticity problem for this structure which takes the form

εa(uε,v) + ε3b(uε,v) = 〈f ,v〉 (2.12)

where the coefficients ε and ε3 account for the fact that the membrane and flection rigidities are pro-
portional to the thickness of the plate and to its third power, respectively. Moreover, the two bilinear
forms a(uε,v) and b(uε,v) on the space V are defined thought the expressions (membrane strains in
shell theory): 

γ̃11(ṽ) = ∂̃1ṽ1 + η2b11ṽ3

γ̃22(ṽ) = ∂̃2ṽ2 + b22ṽ3

γ̃12(ṽ) = γ̃21(ṽ) = 1
2 (∂̃2ṽ1 + ∂̃1ṽ2),

(2.13)

 b11and b22 are constants,
b22 = b and

b11 = γb,with γ ≷ 0.

Note that γ > 0 corresponds to the so called elliptic case and that γ < 0 corresponds to the so called

hyperbolic case. We also assume that
ρ̃αβ(ṽ) = ∂̃αβ ṽ3 (2.14)

for the triplets ṽ = (ṽ1, ṽ2, ṽ3).
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Remark 2.2 It should be noted that the very expression for ρ̃22 in cylindrical shells is

ρ̃22(ṽ) = ∂̃2
2 ṽ3 + b∂̃2ṽ2

but, as we shall see in the sequel (2.25), (2.26), for instance, in the present framework the second term
of the right hand side is always asymptotically small with respect to the first one. In order to avoid
unnecessary cumbersome computations, we disregard it, according to (2.14).

The two bilinear forms on V are then defined by:

a(ũ, ṽ) =

∫
Ωε

Aαβλµγ̃αβ(ũ)γ̃λµ(ṽ)dx (2.15)

b(ũ, ṽ) =

∫
Ωε

Bαβλµρ̃αβ(ũ)ρ̃αβ(ṽ)dx, (2.16)

where the coefficients Aαβλµ and Bαβλµ satisfy the symmetry and positivity conditions

Aαβλµ = Aβαλµ = Aλµαβ (2.17)

Aαβλµθαβθλµ ≥ cθαβθαβ for θαβ = θβα (2.18)

with some c > 0. Analogous hypotheses will be assumed for the coefficients B; for technical reasons, we
shall assume that

B1222 = B2122 = B2212 = B2221 = 0. (2.19)

(in some results we shall require some additional conditions: see (2.106)). In shell theory they are the
membrane and flection rigidities (see, e.g. [30]); their specific values are classical in the isotropic case
(satisfying in particular (2.19)), but this also covers many anisotropic cases. This also allows us to define
the membrane stresses:

T̃αβ(ũ) = T̃ βα(ũ) = Aαβλµγ̃λµ(ũ). (2.20)

It will prove useful to define the entries Cαβλµ of the inverse matrix of A; they are the “membrane
compliances” (see, e.g. [30]) and (2.20) may equivalently be written:

γ̃λµ(ũ) = CλµαβT̃
βα(ũ) (2.21)

As applied forces, we shall give a normal loading depending on ε by the factor ε3 (see Remark ??
hereafter), specifically

〈f ,v〉 = ε3

∫
Ωε

F3(x1, x2/η)ṽ3(x1, x2)dx, (2.22)

(for other loading see Remark 2.4). We note that the shape of the profile of the applied loading in x2

is independent of ε but applied to the points x2/η). Defining y2 = x2/η (see also the scaling (2.25)
hereafter), the function F3(x1, y2) is independent of ε. We shall admit in the sequel that

F3 ∈ L2(Ω) (2.23)

where
Ω = (0, l1)× (0, l2). (2.24)

The specific definition of the problem in variational formulation is

Problem Pε. Find ũε ∈Vε satisfying (2.12) with (2.15), (2.16) and (2.22) ∀ṽ ∈ Vε.

An easy application of the Lax-Milgram theorem allows to see that this problem has a unique solution
depending on the parameter ε.

The objective of the rest of the section is to study its asymptotic behavior as ε ↓ 0.
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2.2 Scaling and a priori estimates in the basic problem.

Let us perform the change of variables :{
x = (x1, x2)⇒ y = (y1, y2),
y1 = x1, y2 = η−1x2

(2.25)

so, the domain Ωε is transformed into Ω and

∂1 = ∂̃1, ∂2 = η∂̃2; ∂α =
∂

∂yα
. (2.26)

Moreover, we shall perform the change of unknowns
ũ1(x) = η6u1(y),
ũ2(x) = η5u2(y),
ũ3(x) = η4b−1

22 u3(y),
(2.27)

(as before, some times we shall use the notation u = uε to indicate explicitly the ε-dependence). The
specific values of the exponents of η and b(ε) will be found later (see (??) and (??)). Let us explain a
little the meaning of (2.27). As θ is not defined, the total level of the scaling is not specified, only the
mutual ratios of dilatation of the three components are fixed. They are chosen in analogy with layers
in parabolic shells. Specifically, the ratio between the components 1 and 2 is fixed in order that the
new form of the shear membrane strain ẽ12 be formed by two terms of the same order (which, on the
other hand, are asymptotically large, forming a constraint for the limit problem). The ratio between the
components 2 and 3 is also fixed in such a way that the new form of the membrane strain ẽ22 be formed
by two terms of the same order.

We then perform the previous change for ũε as well as for ṽ in Pε and we have

γ̃11(ṽ) = η6(∂1v1 + γv3) (2.28)

γ̃12(ṽ) = γ̃21(ṽ) = η5 1

2
(∂2v1 + ∂1v2), (2.29)

γ̃22(ṽ) = η4(∂2v2 + v3), (2.30)

ρ̃11(ṽ) = η4b−1∂2
1v3, (2.31)

ρ̃12(ṽ) = ρ̃21(ṽ) = η3b−1
22 ∂1∂2v3, (2.32)

ρ̃22(ṽ) = η2b−1
22 ∂

2
2v3. (2.33)

It will prove useful to define
γε11(v) = ∂1v1 + γv3 (2.34)

γε12(v) = γε21(v) = η−1 1

2
(∂2v1 + ∂1v2), (2.35)

γε22(v) = η−2(∂2v2 + v3); (2.36)

ρε11(v) = η2∂2
1v3, (2.37)

ρε12(v) = ρ21(v) = η∂1∂2v3, (2.38)

ρε22(ṽ) = ∂2
2v3. (2.39)

so that:
γ̃11(ṽ) = η6γε11(v)

γ̃12(ṽ) = γ̃21(ṽ) = η6γε12(v)

γ̃22(ṽ) = η6γε22(v)
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ρ̃11(ṽ) = η2b−1ρε11(v)

ρ̃12(ṽ) = ρ̃21(ṽ) = η5b−1ρε12(v)

ρ̃22(ṽ) = η2b−1ρε2(v).

We recall that the spatial domain is now Ω = (0, l1) × (0, l2). The space of configuration, after scaling
will be denoted by V. It is the subspace of

H1(Ω)×H1(Ω)×H2(Ω)

formed by the functions satisfying the kinematic boundary conditions

0 = u1 = u2 = u3 = ∂1u3 on {0} × [0, l2]. (2.40)

Once we normalize
b22 =

ε

η4

the expression (2.12) then becomes:∫
Ω

Aαβλµγεαβ(uε)γελµ(v)dy +

∫
Ω

Bαβλµρεαβ(uε)ρελµ(v)dy =

∫
Ω

F3(y1, y2)v3(y1, y2)dy. (2.41)

Summing up, the problem Pε becomes after scaling:
Problem Πε. Find uε ∈V satisfying

aε(uε,v) =
∫

Ω
F3(y1, y2)v3(y1, y2)dy (2.42)

∀v ∈ V, where

aε(uε,v)
def
=

∫
Ω

Aαβλµγεαβ(uε)γελµ(v)dy +

∫
Ω

Bαβλµρεαβ(uε)ρελµ(v)dy.

It should be emphasized that, by virtue of the definitions (2.34) to (2.39), the coefficients in (2.42)
involve various powers of η, running from −4 to +4. The terms in η−4 to η−1 are “penalty terms”,
whereas those in η1 to η4 are “singular perturbation terms”. Only the terms of order 1 will remain in
the limit expression.

Let us proceed to the a priori estimates. We first estate a series of estimates in order to prove that
the functional in the right hand side of the (2.42) remains bounded with respect to the energy norm of
the left hand side. From the expression of aε(v,v) with uε = v, written under the form (2.42) and using
the positivity of the coefficients Aαβλµ we see that each term in the left hand side is majorized by the
right hand side. Specifically, using (2.17) - (2.18), we have:

Lemma 2.1 The estimates:
‖∂1v1 + γv3‖2L2(Ω) ≤ ca

ε(v,v) (2.43)

‖η−1 1

2
(∂2v1 + ∂1v2)‖2L2(Ω) ≤ ca

ε(v,v) (2.44)

‖η−2(∂2v2 + v3)‖2L2(Ω) ≤ ca
ε(v,v) (2.45)

‖∂2
2v3‖2L2(Ω) ≤ ca

ε(v,v) (2.46)

‖η∂1∂2v3‖2L2(Ω) ≤ ca
ε(v,v) (2.47)

‖η2∂2
1v3‖2L2(Ω) ≤ ca

ε(v,v) (2.48)

hold true for a certain c > 0 independent of ε and v ∈ V.
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Now, in order to prove that the functional in the right hand side is bounded independently of ε, we
need an estimate on u3 itself.

Lemma 2.2 The estimate:
‖v3‖2L2((0,l1);H2(0,l2)) ≤ ca

ε(v,v) (2.49)

holds true for a certain c > 0 independent of ε and v ∈ V.

Proof. Discarding the factors in η in (2.44) and (2.45) and differentiating we have:

‖∂2
2v1 + ∂2∂1v2)‖2L2((0,l1);H−1(0,l2)) ≤ ca

ε(v,v) (2.50)

‖∂1∂2v2 + ∂1v3)‖2H−1((0,l1);L2(0,l2)) ≤ ca
ε(v,v). (2.51)

Differenciating with respect ∂2
2 in (2.43) we get∥∥∂1∂

2
2v1 + γ∂2

2v3

∥∥2

L2((0,l1);H−2(0,l2))
≤ caε(v,v) (2.52)

using (2.46) ∥∥∂1∂
2
2v1

∥∥2

L2((0,l1);H−2(0,l2))
≤ caε(v,v) (2.53)

On the other hand, from (2.43), using the fact that v1 vanishes on {0} × [0, l2], by using the generalized
Poincaré inequality (see Section 9 of [8]) we obtain:∥∥∂2

2v1

∥∥2

H1((0,l1);H−2(0,l2))
≤ caε(v,v) (2.54)

From the last estimate and (2.50), taking the weaker norm, it follows that

‖∂2∂1v2‖2L2((0,l1);H−2(0,l2)) ≤ ca
ε(v,v) (2.55)

and using (2.51)
‖∂1v3‖2H−1((0,l1);H−2(0,l2)) ≤ ca

ε(v,v),

or even by applying the generalized Poincaré inequality of Section 9 of [8]) on account of the vanishing
of the trace on {0} × [0, l2]):

‖v3‖2L2((0,l1);H−2(0,l2)) ≤ ca
ε(v,v). (2.56)

We then use (2.46). Concerning the space H2(0, l2), its norm up to affine functions is merely the norm
in L2(0, l2) of the second derivative; the kernel of affine functions is of finite dimension, so that in it the
norms L2 and H−2 are equivalent. The conclusion follows. �

Then, provided that F3 ∈ L2(Ω) (this hypothesis is not optimal), we have

Lemma 2.3 The estimate

|
∫

Ω

F3v3dy| ≤ caε(v,v)1/2 (2.57)

holds true for a certain c > 0 independent of ε and v ∈ V.

Now, taking v = uε in (2.42) and using (2.55) we get the energy estimate:

Lemma 2.4 Let uε be the solution of problem Πε. The energy remains bounded independently of ε, i. e.
the estimate

aε(uε,uε) ≤ C (2.58)

holds true for a certain C > 0 independent of ε.

From this, Lemma 2.2 gives the main estimates of the solutions
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Lemma 2.5 Let uε be the solution of Πε. The estimates

‖γεαβ(uε)‖ ≤ C α, β = 1, 2 (2.59)∥∥∂1v
2
1 + γuε3

∥∥
L2(Ω)

≤ c (2.60)

‖η−1 1

2
(∂2u

ε
1 + ∂1u

ε
2)‖2L2(Ω) ≤ C (2.61)

‖η−2(∂2u
ε
2 + uε3)‖2L2(Ω) ≤ C (2.62)

‖∂2
2u

ε
3‖2L2(Ω) ≤ C (2.63)

‖η∂1∂2u
ε
3‖2L2(Ω) ≤ C (2.64)

‖η2∂2
1u

ε
3‖2L2(Ω) ≤ C (2.65)

hold true for a certain C > 0 independent of ε.

We note that (2.59) is merely a new form of (2.60) - (2.65). We shall need an estimate on uε2 itself.
We shall obtain it by differentiating with respect to y2 and integrating in y1.

Lemma 2.6 Let uε be the solution of Πε. The estimates

‖uε1‖H1((0,l1);L2(0,l2)) ≤ C (2.66)

‖uε2‖H̃1
0 ((0,l1);H−1(0,l2)) ≤ C (2.67)

‖u3‖2L2((0,l1);H2(0,l2)) ≤ C, (2.68)

holds true for a certain C > 0 independent of ε, where

H̃1
0 ((0, l1);H−1(0, l2)) = {w ∈ H1((0, l1);H−1(0, l2)) such that w(0, ·) = 0}. (2.69)

Proof. From (2.60) and (2.49) we get that

‖∂1v
ε
1‖L2(Ω) ≤ c.

Using the Poincaré inequality on account of the fact that the trace of uε1 vanishes on {0} × [0, l2] we see
that uε1 remains bounded in H1((0, l1);L2(0, l2)) (which proves (2.66)) and then ∂2u

ε
1 remains bounded in

H1((0, l1);H−1(0, l2)). Using (2.61) we then see that ∂1u
ε
2 remains bounded in L2((0, l1);H−1(0, l2)). As

the trace of uε2 vanishes on {0} × [0, l2], integrating in y1 we get the conclusion by applying the Poincaré
inequality. Finally, (2.68) follows from (2.49) and (2.57). �

A first result of convergence is

Lemma 2.7 Let uε be the solution of Πε. The following convergences (as ε→ 0) hold true (in the sense
of subsequences, the limits being not necessarily unique):

uε1 → u∗1 weakly in H̃1
0 ((0, l1);L2(0, l2)) (2.70)

uε2 → u∗2 weakly in H̃1
0 ((0, l1);H−1(0, l2)) (2.71)

uε3 → u∗3 weakly in L2((0, l1);H2(0, l2)) (2.72)

where u∗ = (u∗1, u
∗
2, u
∗
3) are distributions on Ω, belonging to the spaces specified in (2.70) - (2.72). More-

over, they satisfy:
∂2u
∗
1 + ∂1u

∗
2 = 0

∂2u
∗
2 + u∗3 = 0.

Finally,
γεαβ(uε)→ γ∗αβ weakly in L2(Ω), α, β = 1, 2, (2.73)

for some γ∗αβ ∈ L2(Ω).

Proof. By weak compactness, the conclusions are obvious consequences of the estimates in lemmas 2.5
and 2.6. �
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2.3 Limit and convergence in the basic problem.

Let us define the space G for the definition of the limit problem:

G = {v = (v1, v2, v3) ∈ H̃1
0 ((0, l1);L2(0, l2))× H̃1

0 ((0, l1);H−1(0, l2))× L2((0, l1);H2(0, l2)),

∂2v1 + ∂1v2 = 0, ∂2v2 + v3 = 0},
(2.74)

where we observe that v1 defines completely v2 and then v3. Clearly, G is a Hilbert space with the norm{
‖v‖2G = ‖v1‖2H̃1

0 ((0,l1);L2(0,l2))
+ ‖∂2

2v3‖2L2(Ω)

' ‖∂1v1‖2L2(Ω) + ‖∂3
2v2‖2L2(Ω)

Remark 2.3 A straightforward comparison with the space V shows that the space G for the limit problem
incorporates the two constraints corresponding to the ”penalty terms” in Πε (2.42), whereas the boundary
conditions for u3, which are concerned with the ”singular perturbation terms” in Πε (2.42) are lost. �

It is worthwhile to state an equivalent definition of the space G where the functions are defined in
terms of a scalar ”potential ψ”:

Lemma 2.8 The space G may equivalently be defined as the space of the triplets v = (v1, v2, v3) such
that:

v1 = ∂1ψ, v2 = −∂2ψ, v3 = ∂2
2ψ. (2.75)

where ψ is an element of

G̃ = H̃2
0 ((0, l1);L2(0, l2)) ∩ L2((0, l1);H4(0, l2)) (2.76)

where
H̃2

0 ((0, l1);L2(0, l2)) = {ψ ∈ H2((0, l1);L2(0, l2));ψ(0, y2) = ∂1ψ(0, y2) = 0}. (2.77)

Proof. Let v ∈ G. Because of the first constraint indicated in (2.74), there exist a distribution ψ,
defined up to an additive constant, such that v1 and v2 are given by the two first relations in (2.75). The
second constraint then shows that v3 is then given by the last relation in (2.75). As the traces of v1 and
v2 vanish for y1 = 0, we see that

ψ(0, y2) = C1 ∂1ψ(0, y2) = 0

with C1 a constant. We then fix the arbitrary constant of ψ to have C1 = 0. Using the Poincaré inequality,
it follows from ∂1v1 ∈ L2(Ω) and the above boundary conditions for ψ that ψ ∈ H̃2

0 ((0, l1);L2(0, l2)), so
that ψ is in the first one of the two spaces on the right hand side of (2.76). Belonging to the second space

follows easily from the last relations in (2.74) and (2.75). Conversely, it is straightforward that ψ ∈ G̃
implies v ∈ G. �

It should prove useful to prove a lemma on density in G.

Lemma 2.9 The subspace of G formed by the elements v = (v1, v2, v3) which are smooth, vanish in a
neighborhood of {0} × [0, l2] and derive from a ”potential” ψ according to (2.75) is dense in G. In other
words, the set of functions of G ∩V which are smooth and vanish in a neighborhood of {0} × [0, l2] is
dense in G.

Proof. As in Lemma 2.9 of ([12]), thanks to the equivalence of the spaces G and G̃ given by lemma

2.8, the proof (in the unconstrained space G̃) is almost classical (see, for instance, lemma 5.2 of [31] or
lemma 8.1 of [7]). �
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Obviously, the norm of G̃ is

‖ϕ‖2G =

∫
Ω

(
|∂1ϕ|2 +

∣∣∂4
2ϕ
∣∣2) dy. (2.78)

Lemma nuevo 1 - The expression

e(ϕ) =

∫
Ω

(∣∣∂1ϕ+ γ∂2
2ϕ
∣∣2 +

∣∣∂4
2ϕ
∣∣2) dy (2.79)

is the square of a norm on G̃, which is equivalent to the natural norm (2.78).

Obviously the norm form (2.79) is continuous on the norm (2.78), so that the Lemma (nuevo 1) is

equivalent to the coerciveness of e(ϕ) on ‖ϕ‖2G. So, it follows from

Lemma nuevo 2 - There exists a constant c such that for any ϕ ∈ G̃;∥∥∂2
2ϕ
∥∥2

L2(Ω)
≤ ce(ϕ) (2.80)

Proof of Lemma2. Let us decompose L2(0, l2) as the product of the subspace of functions which are
polynomials of order ≤ 3, (that we shall denote K, as it is the kernel of ∂4

2) and its orthogonal, denoted
by KK⊥ . The respective dimensions are ... and .... Accordingly, any function ϕ with values in L2(0, l2)
will be decomposed in the form:

ϕ = ϕK + ϕK⊥ (2.81)

by taking the orthogonal projection on K and K⊥ of the values of the function. The projectors
obviously conmute with defferentiation ∂1 and traces on y1 = constant. Obviously, ϕK takes the form:

ϕK = A(y1) +B(y2)y2 + C(y1)
y2

2

2
+D(y2)

y3
2

6
(2.82)

with A, B, C, D functions of y1 depending on ϕ. From the nulling of traces on y1 = 0, we have{
A(0) = B(0) = C(0) = D(0) = 0
A′(0) = B′(0) = C ′(0) = D′(0) = 0

(2.83)

As ∂4
2ϕ = ∂4

2ϕK⊥ , it follows from (2.79) taking a weaker norm that

‖ϕK⊥‖
2
L2(0,l1);H2(0,l2) ≤ ce(ϕ) (2.84)

Now, in order to get an analogous estimate for ϕK⊥ , we use the first term in the right hand side of (2.79).
We have ∥∥∂2

1ϕ+ γ∂2
2ϕ
∥∥2

L2(Ω)
=
∥∥(∂2

1 + γ∂1
2

)
(ϕK + ϕK⊥

∥∥2

L2(Ω)
≤ ce(ϕ) (2.85)

From (2.84), taking a weaker norm;∥∥(∂2
1 + γ∂2

2)ϕK⊥
∥∥2

H−2(0,l1);H−2(0,l2)
≤ ce(ϕ) (2.86)

so that, from (2.85) (always with a weaker norm);∥∥(∂2
1 + γ∂2

2)ϕK
∥∥2

H−2(0,l1);H−2(0,l2)
≤ ce(ϕ) (2.87)

But:

(∂2
1 + γ∂2

2)ϕK = (A′′ + γC) + (B′′ + γD)y2 + C ′′
y2

2

2
+D′′

y3
2

6
(2.88)
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We now note that
{

1, y2,
y22
2 ,

y32
6

}
form a basis in the 4-dimensional space K, so that the norm in H−2(0, l2)

is equivalent to any other norm, for instance the sum of the modulli of the components in that basis, so
that

‖A′′ + γC‖H−2(0,l1) ≤ ce(ϕ)
1
2

‖B′′ + γC‖H−2(0,l1) ≤ ce(ϕ)
1
2

‖C ′′‖H−2(0,l1) ≤ ce(ϕ)
1
2

‖D′′‖H−2(0,l1) ≤ ce(ϕ)
1
2

From this, using the initial conditions (2.83) and the generalized Poincaré inequality, we have:

‖C‖L2(0,l1) ≤ ce(ϕ)
1
2

‖D‖L2(0,l1) ≤ ce(ϕ)
1
2

and then

‖A′′‖L2(0,l1) ≤ ce(ϕ)
1
2

‖B′′‖L2(0,l1) ≤ ce(ϕ)
1
2

so that

‖ϕK‖L2(Ω) ≤ ce(ϕ)
1
2 (2.89)

and with (2.84):

‖ϕ‖L2(Ω) ≤ ce(ϕ)
1
2 (2.90)

From this, using the last term in (2.79):

‖ϕ‖L2(0,l1);H4(0,l) ≤ ce(ϕ)
1
2 (2.91)

and (2.80) is proven.
666666666666666666666666

We are now defining the limit problem. It involves the numerical coefficients 1/C1111, and B2222

where Cαβλµ is the matrix inverse of Aαβλµ, i. e. the matrix of membrane compliances, and B is the
matrix of flection rigidities. They are both strictly positive.

Problem Π0. Find u ∈ G such that∫
Ω

1

C1111
(∂1u1 + γu3)(∂1v1 + γv3)dy +

∫
Ω

B2222∂2
2u3∂

2
2v3dy =

∫
Ω

F3v3dy. (2.92)

∀v ∈ G, or equivalently, in terms of the potential, find ϕ ∈G̃ such that∫
Ω

1

C1111
(∂2

1 + γ∂2
2)ϕ(∂2

1 + γ∂2
2)ψdy +

∫
Ω

B2222∂4
2ϕ∂

4
2ψdy = −

∫
Ω

F3∂
2
2ψdy, (2.93)

∀ψ ∈G̃.
Obviously, this problem is in the Lax - Milgram framework, as the right hand side of (2.92) is a

continuous functional on G. We then have
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Theorem 2.1 Under the assumption F3 ∈ L2(Ω), Problem Π0 has a unique solution.

Remark 2.4 Clearly, the case considered here, F1 = F2 = 0 and F3 ∈ L2(Ω) is not the more general
case we can deal with the above arguments. So, for instance, taking into account the previous a priori
estimate we can consider other loadings F satisfying

|
∫

Ω

Fividy| ≤ caε(v, v)1/2, i = 1, 2, 3,

as it is the special case of F2 = 0 and F1, F3 ∈ L2(Ω). This is interesting for the special case in which
F is the gravity and the middle surface x3 = 0 makes an angle with respect to the horizontal, as it is the
case of the Torroja’s structure mentioned at the Introduction. Other possible choices are the concentrated
loadings of the type F1 = F2 = 0 and F3 given in terms of the Dirac delta and its derivatives as in [7].

Our main convergence result is:

Theorem 2.2 Let uε and u be the solutions of Πε and Π0 respectively. Then, for ε ↓ 0, we have:

uε → u

in the topologies indicated in (2.70) - (2.72) (lemma 2.7). In other words, the limit u∗ in lemma 2.7 is
the solution of the limit problem (2.92).

Before proving this theorem, let us define certain limits which will be useful in the sequel. We know
by (2.73) that the γεαβ(uε) have limits γ∗αβ . Correspondingly, we define:

Tαβε(uε) = Aαβλµγελµ(uε)

and
Tαβ∗ = Aαβλµγ∗λµ

so that
Tαβε(uε)→ Tαβ∗ weakly in L2(Ω), α, β = 1, 2.

Remark 2.5 It seems important to point out that the a priori estimates (2.61) and (2.62) does not allow
to conclude the identification γ∗12 = 0 and γ∗22 = 0 in spite to know that γεαβ(uε) weakly converge to γ∗αβ
and that necessarily ∂2u

∗
1 + ∂1u

∗
2 = 0 and ∂2u

∗
2 + u∗3 = 0. The reason is due to the presence of the terms

η−1 (respectively η−2) in the definition of γε12 (respectively γε22). Notice that, in fact, in most of the cases
we must have that γ∗12 6= 0 or γ∗22 6= 0, since otherwise we could get that T 11ε(uε) = A1111γε11(uε) +
2A1112γε12(uε) +A1122γε22(uε) converges (weakly in L2(Ω)) to T 11∗(u∗) = A1111γ11(u∗) = A1111∂1u

∗
1 and

this would imply (thanks to Theorem 2.2) that necessarily

A1111 =
1

C1111
, (2.94)

which is not necessarily true since it depends of the constitutive assumptions made on the elastic medium.
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Proof of Theorem 2.2. That the limit u∗ in lemma 2.7 belongs to G follows from the definition of
this space. Let us now prove that u∗ is the solution of (2.92). Let us take in (2.42) v in the dense set
of G indicated in Lemma 2.9. From the definition of G and (2.34) - (2.36) we see that the only non
vanishing γεαβ is

γε11(v) = ∂1v1 + γv3

and we have ∫
Ω

T 11ε(uε)γε11(v)dy +

∫
Ω

Bαβλµρεαβ(uε)ρελµ(v)dy =

∫
Ω

F3v3dy.

The term in the first integral obviously pass to the limit (note that γε11(v) does not depend on ε: see
(2.34)). Concerning the terms in ρ, we have, as we know, an estimate in the spaces involved in the
definition of G, so that the term

B2222∂2
2u

ε
3∂

2
2v3

also pass to the limit. For the same reason, with the estimates (2.63) - (2.65) all the other terms tend to
zero, with the exception of

η

∫
Ω

B1222∂1∂2u
ε
3∂

2
2v3dy

and

η2

∫
Ω

B1122∂2
1u

ε
3∂

2
2v3dy

which are not evident. The first one vanishes as, according to our hypotheses, B1222 is taken to be zero
(see (2.19)). As for the second one, according to distribution theory (integration by parts) it is equal to

η2

∫
Ω

B1122uε3∂
2
1∂

2
2v3dy.

We note that uε3 remains bounded in L2(Ω). Then, because of the factor η2, the expression tends to 0.
As a result, the limit is∫

Ω

T 11∗(∂1v1 + γv3)dy +

∫
Ω

B2222∂2
2u
∗
3∂

2
2v3dy =

∫
Ω

F3v3dy. (2.95)

We are now transforming the term in T 11∗ in the previous equation. To this end, let us take

w1 = w2 = 0, w3 ∈ C∞0 (Ω) (2.96)

and let us take in (2.42) the test function
v = η2w (2.97)

so that from (2.34) - (2.36) we see that the only non vanishing γεαβ are

γε11(v) = η2γw3

γε22(v) = −w3

and passing to the limit in (2.42) we have∫
Ω

T 22∗(−w3)dy = 0 (2.98)

so that
T 22∗ = 0. (2.99)

Let us now take
w1 ∈ C∞0 ((0, l1);C∞(0, l2)), w2 = w3 = 0, (2.100)
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and let us take in (2.42) the test function
v = ηw (2.101)

so that from (2.34) - (2.36) we see that the only non vanishing γεαβ are

γε11(v) = η∂1w1, γε12(v) =
1

2
∂2w1 (2.102)

and passing to the limit in (2.42) we have∫
Ω

T 12∗(
1

2
∂2w1)dy = 0 (2.103)

so that, as ∂2w1 is ”arbitrary”,
T 12∗ = 0. (2.104)

As the only non zero Tαβ∗ is T 11∗, the γ∗αβ are given by the expressions

γ∗αβ = Cαβ11T
11∗

and in particular
γ∗11 = C1111T

11∗.

Moreover, it follows from (2.70) and (2.73) that

γε11(uε) = ∂1u
ε
1 + γuε3 → ∂1u

∗
1 + γuε3 weakly in L2(Ω).

so that

T 11∗ =
1

C1111
(∂1u

∗
1 + γu3) (2.105)

and replacing it in (2.95) we obtain (2.92). This expression holds true for v in a dense set in G (see
lemma 2.9) so that u∗ is the unique solution of (2.92). The proof is finished. �

Our next result improves the convergence under some additional condition on the coefficients.

Theorem 2.3 Assume that
A11λµ = 0 if λ > 1 or µ > 1. (2.106)

Let uε and u be the solutions of Πε and Π0 respectively. Then

uε1 → u∗1 strongly in H̃1
0 ((0, l1);L2(0, l2)) (2.107)

uε2 → u∗2 strongly in H̃1
0 ((0, l1);H−1(0, l2)) (2.108)

uε3 → u∗3 strongly in L2((0, l1);H2(0, l2)) (2.109)

for ε ↓ 0.

Proof. We follows closely our proof of Theorem 2.3 in [12] (an argument inspired in some ideas by J.
L. Lions : see, e.g. Theorem 10.1 Chapter I of [22]). We reformulate the bilinear form as

aε(uε,v) =

∫
Ω

Aαβλµγεαβ(uε)γελµ(v)dy +

∫
Ω

Bαβλµρεαβ(uε)ρελµ(v)dy (2.110)

= a0(uε,v) + ε1/2a1/2(uε,v) + εa1(uε,v) + ε−1/4a−1/4(uε,v) + ε−1/2a−1/2(uε,v),

for the (positive) symmetric bilinear forms a1/2, a1, a−1/4, a−1/2 given by

a1/2(u,v) =

∫
Ω

∂1∂2u3∂1∂2v3dy,
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a1(u,v) =

∫
Ω

∂2
1u3∂

2
1v3dy,

a−1/2(u,v) =

∫
Ω

(∂2u1 + ∂1u2)(∂2v1 + ∂1v2)dy,

a−1/4(u,v) =
1

4

∫
Ω

(∂2u2 + u3)(∂2v2 + v3)dy,

(for the sake of simplicity, we assumed here that different coefficients are identically equal to 1 but the
general case can be treated in the same way since which is relevant is the order of ε in the above expansion)
and where, due to the assumption (2.106),

a0(u,v) =

∫
Ω

A1111(∂1u1 + γu3)(∂1v1 + γv3)dy +

∫
Ω

B2222∂2
2u3∂

2
2v3dy. (2.111)

We have that

a0(uε − u∗,uε − u∗) + ε1/2a1/2(uε,uε) + εa1(uε,uε) + ε−1/4a−1/4(uε,uε) + ε−1/2a−1/2(uε,uε)

=

∫
Ω

F3(y1, y2)uε3(y1, y2)dy − 2a0(u∗,uε) + a0(u∗,u∗)→

→
∫

Ω

F3(y1, y2)u∗3(y1, y2)dy − a0(u∗,u∗) = 0.

Then, by the above theorem (and since (2.106) implies (2.94))∫
Ω

1

C1111
((∂1u

∗
1 + γu∗3)− (∂1u

ε
1 + γuε3))2dy +

∫
Ω

B2222(∂2
2u
∗
3 − ∂2

2u
ε
3)dy→ 0,

which, by using the a priori estimates, leads to the result. �

We emphasize that the limit problem (in terms of ϕ) is given by the variational formulation (2.93).
The corresponding higher order partial differential equation for ϕ is obviously

(
1

C1111
∂4

1 + 2γ∂2
1∂

2
2 + γ2∂4

2)ϕ+B2222∂8
2ϕ = −∂2

2F3. (2.112)

which may be a little misstating when considered without the corresponding boundary conditions (on
Γl := [0, l1] × {0} ∪ [0, l1] × {l2}). Indeed, looking at (2.112) one may think that the data (and then
the solution) vanishes when F3 is affine with respect to y2 (as in that case the right hand side of (2.112)
vanishes). In fact, this is not the case as the natural boundary conditions are not homogeneous in general.
This is a consequence of the very peculiar form of the right hand side of the variational formulation (2.93),
which involves ∂2

2ψ instead of the test function ψ itself.
Let us write down the natural boundary conditions assuming, as usual, that F3 and the solution are

sufficiently smooth (e.g. F3, ∂
2
2F3 ∈ L2(Ω)) then∫

Ω
F3∂

2
2ψdy =

∫
Ω
∂2F3(∂2ψ)dy −

∫
Ω

(∂2F3)∂2ψdy

=
∫ l1

0
dy1 (F3∂2ψ)|l20 −

∫
Ω
∂2[(∂2F3)ψ]dy +

∫
Ω

(∂2
2F3)ψdy

=
∫ l1

0
dy1 (F3∂2ψ)|l20 −

∫ l1
0
dy1 [(∂2F3)ψ]|l20 +

∫
Ω

(∂2
2F3)ψdy.

(2.113)

Analogously, if we assume that ϕ, ∂8
2ϕ ∈ L2(Ω) then∫
Ω
∂4

2ϕ∂
4
2ψdy =

∫ l1
0
dy1 (∂4

2ϕ∂
3
2ψ)
∣∣l2
0

−
∫ l1

0
dy1 ((∂5

2ϕ∂
2
2ψ)
∣∣l2
0

+
∫ l1

0
dy1 ((∂6

2ϕ∂2ψ)
∣∣l2
0

−
∫ l1

0
dy1 ((∂7

2ϕψ)
∣∣l2
0

+
∫

Ω
(∂8

2ϕ)ψdy.

(2.114)
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Then, from (2.113) and (2.114), and as the test functions ψ, ∂2ψ, ∂
2
2ψ and ∂3

2ψ are arbitrary, we deduce
that the natural boundary conditions on Γl := [0, l1]× {0} ∪ [0, l1]× {l2} are B2222∂7

2ϕ = −∂2F3, B2222∂6
2ϕ = −F3 on Γl,

∂5
2ϕ = ∂4

2ϕ = 0 on Γl,
(2.115)

and so, the two first boundary conditions depend on the right hand side of the partial differential equation.
In fact, the previous Theorem 2.1 can be applied when, merely, F3 ∈ L2(Ω). Then, although G̃ ⊂

H̃2((0, l1);L2(0, l2)) the variational formulation is not enough as to formulate separately the partial
differential equation (2.112) from the boundary conditions (2.115). For instance, let us consider the
function F3(y1, y2) = (l2 − y2)α with α ∈ (− 1

2 , 0). Then, since F3 ∈ L2(Ω), the variational formulation
makes sense whereas boundary conditions (2.115) do not, as the traces of F3 and ∂2F3 on Γl do not exist.
It should be noticed that in the Lions-Magenes ([23]) theory (which is nevertheless only concerned with
elliptic problems, and so out of our framework) singular right hand side terms are only allowed when
their singularities are located at the interior of Ω and not when they are in a vicinity of the boundary.
This is associated with the fact that the allowed right hand side should belongs to the space Ξs(Ω), s < 0,
which are analogous to the space Hs(Ω), s < 0, inside of Ω but not near the boundary ∂Ω where Ξs(Ω)
only contains smother functions (see [23], Section 6.3, Chapter 2).

Remark 2.6 REVISAR The problem (2.112) is parabolic according the theory of linear partial differen-
tial equations (see, e.g. [37]). Indeed, the characteristics are find as normal curves to the vectors (ξ1, ξ2)
satisfying that Pm(ξ1, ξ2) = 0, where Pm is the “principal symbol” of the differential operator. In our
case, Pm(ξ1, ξ2) = B2222ξ8

2, and so, ξ2 = 0 is a multiple characteristic (of 8th-order). Thus, the passing
to the limit arguments show that the parabolicity of the middle surface leads to a limit equation as (2.112)
of parabolic type, with characteristic of multiplicity 8.

Remark 2.7 Obviously, to the implicit boundary condition on Γl given in (2.115) we must add the rest
of boundary conditions. So, for instance, the fact that the boundary {l1} × [0, l2] is free leads to{

T 11 = 0 on {l1} × [0, l2],
∂1T

11 = 0 on {l1} × [0, l2].
(2.116)

Remark 2.8 The case b = −1/R can be also considered with obvious modifications. For instance, in

the rescaling change (2.27) we must assume now that ũ3(x) = ηθ−2 |b|−1
u3(y). We point out that

corresponding sign changes at the different equations may justify the different behavior of solutions with
respect the case of b = 1/R. Easy comparison experiences can be made by using a flexible steel retractable
meter tape measure in its normal and reverse positions.

3 Generalizations and Remarks

It is worth while noticing that all the results hold true when the fixation conditions

u1(0, y2) = u2(0, y2)

are prescribed only on a part (with positive measure) of the boundary y1 = 0. Indeed, this is sufficient
to get

A(0) = B(0) = C(0) = D(0) = A′(0) = B′(0) = C ′(0) = D′(0) = 0

and the whole proof holds true.

Generally speaking, the former expression of the limit problem may be obtained by a formal expression
in powers of η (after scaling), without proving rigorously the convergence. Nevertheless in that case, it is
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important to prove that the limit problem admits loadings F1 ∈ L2(Ω) for instance. This needs to prove
that the corresponding functional ∫

Ω

F3∂
2
2ψdy

is continous on G̃, or, equivalently, that

‖ϕ‖2G ≥ c
∫

Ω

∣∣∂2
2ϕ
∣∣2 dy.

It is not hard to prove such kind of estimates in more general situations. For instance in cases when
the shape of the shell is not exactly rectangular. Let us consider for example the case described (after
scaling to the varables y1, y2) in the Figure 2.

y1l1

y2

a

b

y =a(y )2 1

y =b(y )2 1

W1

Indeed, the inequalities are obtained as before on the rectangle Ω1. Then, we pass to the whole Ω noting
that on each section y1 = constant,(∫ b(y1)

a(y1)

∣∣∂4
2ϕ
∣∣2 dy2 +

∫ β

α

|ϕ|2 dy2

) 1
2

is an equivalent norm to the standard one 3∑
j=0

∫ b(y1)

a(y1)

∣∣∣∂j2ϕ∣∣∣2 dy2

 1
2

.

The case of Figure 3 may also be considered but the proof needs a slight modification:
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y2

y1l1
a b

A

B
C

D

Indeed, the previous method allows us to prove the inequalities in the region of Ω on the left of b. In
order to go on, we should consider the rectangle ABCD. To this end, we have not ”boundary conditions”
on y1 = a; they are replaced by the fact that the inequality holds true in the portion a < y1 < b. As a
matter of fact, instead of the ”generalized Poincaré inequality”, we can use the fact that the norms

‖ϕ‖L2(a,l1) and
(∥∥∂2

1ϕ
∥∥2

H−2(a,l1)
+ ‖u‖2L2(a,b)

) 1
2

are equivalent (as the term ‖u‖2L2(a,b) controls the finite-dimensional kernel of ∂2
1).
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