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of the Solutions of Some First Order
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Introduction

This paper deals with the existence, the uniqueness and the qualitative prop-
erties of the solutions of the Cauchy problem

du

d
Py + P (@) +pwy2f  in(0,+») X R,

i=1 0%

(C.P)
1(0,.) = 1y () inR",

as well as those of the stationary equation
N

d
(S.P.)y > P (@) + Bw)DF  inRY,
=1 0%
where @ = (®,,...,®,) is a continuous function from R into R and § a maximal

monotone graph of R? [6].

When B is a smooth function, the equation (C.P.), is known as a balance law
equation (a conservation law if § = 0). It has been studied by numerous authors,
namely: Burger, Hopf, Lax, Oleinik, Vol'pert, Kruzkov and it is well known that
even if all the data are smooth, every solution of (C.P.), becomes in general
discontinuous after a finite time [22]. Thus the equation must be taken in a weak
sense. However, there may exist an infinite number of weak solutions of (C.P.),
and an additional principle called the entropy condition is needed to select the
unique physical weak solution. The form of the entropy condition which will be
used here was first given by Vol pert [29] and then improved by Kruzkov in his
penetrating work [21].

As for the hypothesis on B, our assumption of monotonicity allows us to elim-
inate the assumption of Lipschitz continuity made in previous works, [2], [11]
and [23]. We can even consider the case when B is a multivalued function, for
example the evolution variational inequality of the type
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N

% +> ai (@) —f=0  in(0,+) x R,

i=1 OX;

(0.1) =0 in (0, +w) x RY,

M e D B . N
(E+§a@f(u» f)u—o in (0,+) X RY,

1(0,.) = 1y () in RY.

When @ is linear such inequalities appear in Control Theory and they have been
already intensively studied [4].

For the existence of the solutions of (C.P.); we use the theory of nonlinear
semigroups of contractions in Banach spaces. In fact, when B = 0, it has been
noticed by Quinn [24] that the solutions of (C.P.), define a semigroup of non-
linear contractions in L'(RY). A more complete analysis of that fact was made
by Crandall {11] who constructed the generator of the semigroup. Crandall’s re-
sults were improved by Benilan [1], [2] on whose ideas a part of this paper is
based. We use some results of the theory of accretive operators via the generation
theorem of Crandall and Liggett [12]. So we are led to the following stationary
equation (with A > 0)

58

(0.2) ) — @)+ B Sf R
i=1 i

which is a special case of (S.P.).

The qualitative properties of the solutions of (C.P.), are various. For example,
when u,(.) has a compact support in R” we prove that the support of the solution
u(t,.) of (C.P.); is also compact for + > 0 and we obtain an upper bound for its
speed of propagation under one of the following hypotheses on ®:

i) ® is Lipschitz continuous,

i) VI=i=N, JL do/|®]" (o) < +oo.

When the initial data i, is asymptotically vanishing in R, @ is Lipschitz contin-
uous and [, do/|B%(c)| < +o we prove that the support of u(z,.) is compact for
any t > 0. We also obtain a time regularizing effect for the solution of (C.P.),,
that is u(z,.) € L™(RY) for any ¢+ > 0 even if u, is just an integrable function.

Some of those phenomena are deduced from previous qualitative properties of
the solutions of (0.2). Moreover an important characteristic of all the qualitative
properties given here is its unidirectional nature which is obtained thanks to a
unidirectional principle of comparison whose idea is to majorize any bounded
solution # of (5.P.), by the solution of

d
— (D, (v)) + B(V) 2 “f% (xk’-)"L““(R”'U on (o, +),
(0.3) o

V() = [l oy,
for any o and a suitable k.
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The contents of the article is the following:

1. Preliminaries and statement of the results solving (C.P.); and (0.2) in Kruz-
kov sense.

Existence and uniqueness for (C.P.); via the accretive operators theory.
Existence and uniqueness for (0.2) and (5.P.);.

Comparison principles.

Qualitative properties of solutions of (S.F.)y.

Qualitative properties of solutions of (C.P.),.

6.1. Finite speed of propagation.

6.2. Localization.

6.3. Asymptotic behaviour.

6.4. Instantaneous shrinking.
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1. Preliminaries and Statement of the Results Solving (C.P.); and (0.2)
in Kruzkov Sense

Throughout this article we always assume this fundamental hypothesis

(H.0) @ = ($y,...,Dy) is a continuous function from R into RY and B is a
maximal monotone graph of R* with 0 € B(0).

We first define what is meant by a solution in Kruzkov sense.

Definition 1.1. Suppose {) is some open subset of RY, @ = (&,,.. P a
continuous function from R into RY and B a multivalued function defined on R
with values in P (R). A function u € L5,.(Q) is a solution in Kruzkov sense in
Q of

q

g
(1.1) > — (@) + B 3,

i=1 i
where f € Ly, . (€1), if there exists h € Li,.(§), h(x) € P(u(x)) a.e. in ) such that

Vi E D' (Q) and for almost all k € R,
2 ?
(12 J signg(u — k){z (D;(u) — (Ds(k))g‘g“ +(f- h)C} dx=0,
=1 X

where @ (Q) is the set of all nonnegative smooth functions with compact support
in Q) and signy(r) = —1if r < 0,0if r =0, +1if r > 0.
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The definition means that u satisfies the equation
q

9
(1.3) > — @) =f-4h

i=] i

in Kruzkov sense in 2. Moreover (1.2) is valid for any k¥ € R. Another useful
definition is the following (see [11)

ViEB (), VLKER,
! 9
(1.4) f {E@Ew)—cbi(k)) fwf—h)c}dxzo
u>k A

i=1 d {

? ]
zf {Z (D) — D, (k) fj—(f—h)c}dx.
u<k {

i=1 d i

It is easy to see that any solution of (1.3) in Kruzkov sense satisfies the equation
in the sense of distributions in £}, as well as it satisfies the entropy condition (E)
of Oleinik [23].

In order to solve (C.P.); we need an additional assumption

, . |CD1(")|
(H.1) VIi=i=N, limsup——pr < +o,

o0 © [ [

Our main existence result which is proved in Section 2 with the results of Sec-
tion 3 is the following

Theorem 1.1. Suppose (H.0) and (H.1) hold. Then for any T > 0,

ug € L'RYY N L*(RY)
such that uy(x) € D(B) a.e. in R and
FELOTL'(RY) N L*(RYY),
there exists a unique
w € L7(0,T; L (RY) N L*((0,T) x RY)

such that u(r,.) = uy(.) in Li,(RY) when t — O essentially, solution of (C.P.),
in Kruzkov sense in (0,T) x RY. Moreover u € C(0,T1;L"(R™)) and the Sfollow-
ing estimate holds

(1.5) [iCet (2, 0| = Ca0) ] + f ICF (s, 0|, ds,
1)

(Under that formulaticn we mean that the estimate is true if we simultaneous-
ly take on each side of the inequality the couples (u,f), (u',f") or W ,.f7))
(h" = max(h,0), h~ = max(—h,0)) Jorall 1 =p = +twandt € [0T). If i is
the solution of (C.P.); with the initial data i,, we have
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!

(1.6)  [Gue(r,) = 4t NP = o = 8) | + [ (£ G, = s, N ds.

0

When N = 1 (H.1) reduces to ® continuous. The estimate (1.6) gives us a first
comparison principle between two solutions of (C.P.):u, = dy, f = f implics
u = ii. We also deduce from (1.5) that for any 7 € RY

(1.7 M, + 7 — wt, )|l

< g (. + 1) — gD + J’ | £is,. + 1) = f(s,.)|w ds.
0

Hence if u, belongs to the space BV(R") of functions with a bounded
Tonelli-Cesaro variation and if £ belongs to L'(0,7; BV(RY)), then u belongs to
C([0,T];BV(RY)).

The proof of Theorem 1.1. will be done in two steps. In the first one we solve
(C.P.); in the sense of accretive operator theory and get a semigroup solution
(which satisfies (1.5), (1.6) and belongs to C([0,T];L'(R"))). In the second one
we prove that the semigroup solution of (C.P.), satisfies the equation in Kruzkov
sense in (0,7) X RY. The first step is based on the solvability of the equation
(0.2) in some appropriate class. The proof of the following theorem is given in
Section 3.

Theorem 1.2. Suppose (H.0) and (H.1) hold. Then for any N > 0 and
feL'®")y N L*(RY)

there exists a unique u € L'R"M N L*(RY) solution of (0.2) in Kruzkov sense in
R¥. More precisely there exists

he LYRY) N L*(RY)Y, h(x) € B(u(x)) ae.inR"

such that (1.3) with right-hand side (1/\N)(f — M — u) is satisfied in Kruzkov
sense in RY. Moreover, for every 1 < p = +w, we have the estimate

(1.8) e + M) e = [ £ e
If it is the solution of (0.2) with right-hand side J, we have
(1.9) I + e = @ = Mo < IGF = HHF,

where h is the section of {B(i#)} corresponding to the equarion satisfied by ii.

Using the monotonicity of B we deduce from (1.8) and (1.9)
(1.10) [P PES VA 72
(.11 M e = 1F e,
(1.12) lw = Do+ M = B = 1= Yl
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We can notice that (1.12) gives us a simple comparison principle between two
solutions of (0.2): f=<f implies u < #. More sophisticated principles will be given
in Section 4. Theorem 1.2. also provides us a means to solve noncoercive sta-
tionary problems (5.P.), (see Section 3).

The following result which is a generalization of Proposition 2 of [2] will be
useful in the sequel.

Lemma 1.1. Let ® = (Oy,...,® ) be a continuous function from R into RY,
B a maximal monotone graph of R* and f, f € L1,.(§) () being some open subset
of RY). If u and i are solutions in Kruzkov sense in ) of
q

] 9 .
Z . () + B(u) F and E - (D, (2)) + B(i) D7,
i=1 i

i=1 i

then for any { € D (Q) there exists o« € L*(Q) with ax) € sign™ (ulx) — #(x))
a.e. in §) such that

L aL .
(1.13) a()] D (@) — By(&)) (- hipan=o,
0

i=1 X

where sign”(¥) = 0 if r < 0, sign™(0) = [0,1] and sign”(r) = 1 if r > 0.

Proof. Since we follow Proposition 2 of [2] we will just sketch the proof.
Take { € 9*(Q), p € DH(R?) with support in {x:|x| = 1}, [pdx = 1 and we
let p,(x) = nip(nx). For

n > (dist(a,supp )™’
we let g,(x,y) = {((x + y)/2)p,((x — y)/2): we have g, € B"(Q x Q).
©If we let signg(r) = sign,(r) sign” (») and take { = g,, we deduce from (1.4)

3
jj signg (u(x) — ft(y)){z (P (u(x)) = ;@M g—i

+(f) - h(X))E} dxdy = 0,

N 9L
“ff signg (u(x) — ﬁ(y)){z (D (a(y) = D, (u(x))) 7,

+(f(y) - ﬁ(y»;} dydx = 0,

where &, h belong to Li.. (), h(x) € B(u(x)) and A(y) € B(#(y)) a.e. in Q. If
we sum and use the monotonicity of f we get

a4
j f signg (u(x) — ﬁ(y)){z (D, () = qa,.(ﬁ(y)))(a_i + ﬁ)

{

+ (f(x) —f‘(y))c} dxdy = 0.
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We make the following change of variables: x = £ + n/n, y = £ — n/n and
we get

o {3
~afae-1))) 5 ((e=2)-r(e-2)) ¢}t fotman =

If we define (see [2]) the product " by
v (a,b) = lim A+ 2B) o = fla" ) = inf A7l + A [l = fla™ ),

v+ is upper semicontinuous and we have
(1.15) ¥ (a,b) = max{f abdx,o € L®,a(x) € sign” a(x) a.e.}.

We deduce

o [o((4 Do -Deozole+2)
ol 2

Going to the limit as 7 — +% we deduce

I 3

(1.17) " ((u— ﬂ)Z,Z (D;(w) ~ ®(L4))—+ (f- f)C)
which implies (1.13).

2. Existence and Uniqueness for (C.P.), via the Accretive Operator Theory

In this section we solve (C.P.); by considering it as an abstract Cauchy problem
of the following type

du i
—+Au3dDf on {0,7),
2.1 dt

u(0) = ug,

where u(?) = u(z,.) is a function from [0,T] into the Banach space L'(R"). For
that we define the operator A:

N

d
AQ) =D, — (@) + B(),
3

i=1 0%

in the following way:
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D(A) = {u eL'®RYY N L*RY):
Fhe L, (RY),h(x) € Bu(x)) a.e. inRY, AV € LY(RY)

o . I
and 2 5—- (®,(1)) = ¥ — hin Kruzkov sense in R" ¢,
=1 i
and Au = ¥ if u € D(A).
In order to construct a semigroup solution of (2.1) (see [1] and [12]} it suffices
to show that the range (R) of 7 + AA satisfies

(2.2) R + 2 = L'(RY) forevery A > 0,
and that A is T-accretive in L'(RV), that is

VA>0, Vv, 7ED(A), YwEAv, Vi E Ay,

(2.3)
v+ Aw) = = M) o = [l = 9) .

The T-accretivity in L' implies the accretivity (which means that (.)" is replaced
by () in (2.3)). For proving the T-accretivity of A we need the following result
(see 12]).

Lemma 2.1. Suppose © = (O, .., ®y) is a continuous function from R into
R" satisfying (H.1), { € DR") and let {,(x) = {(x/n). Then if u € L'(RY N
L*(RY), we have

N

8
i) Z(D,»(Li) b = C|lu| ",

i=1 r')x,— ot

where C depends only on @, ||ul|;-, diam(supp &) and ||grad £||,-.

— 0 when n— +oo,

S o 2l
i) ; D, (u) o,

gt

Lemma 2.2.  Under the hypotheses (H.0) and (H.1) the operator A is T-ac-
cretive in L'(RY).

Progf. Given u and i in D(A), ¥ € Ay and \Tf € Al we have
N

9 Yoa .
> — (@) + B 3y and > —(@@) +p@) 30

i=1 0% =1 0X;

in Kruzkov sense in R". From Lemma 1.1, for any { € @' (R") such that
£(0) = 1, there exists a € L”(R"), a € sign’(u — 1) such that

N
f oc(o{z (@) — ;) 575 - doc} dx =0,
RY X

i=1



VARIATIONAL INEQUALITIES 327

For n > 0, we have, by replacing { with {, as in Lemma 2.1,

Je

ax,

N
Tt (u - L‘c,z (®,() — D, + (=) En) =0.
=1

Since 7 is upper semicontinuous in L'(R") we deduce from Lemma 2.1 that

2.4) @ —ap— )

N
6 H
= limsup 7" (u — i, z (P, (1) — () ¢

n—s+oe =1 axi

+ =) c)
Since the right-hand side is nonnegative we deduce that for any A > 0

1 -
(2.5) ;\“(H(u =+ AN =) [l = @ = ) =0,

which ends the proof.

The following result will be useful for getting more precisely the existence of
solutions of (2.1).

Proposition 2.1.  Under the assumptions (H.0) and (H.1) we have D(A)L1 =
{p EL'RY) ¢(x) E D(B) a.e. in RV}

Proof. Weleta = inf D(B), b =sup D(B), —x=a=0=b = +x We
have

D@ C fp € L' (RY): 0(x) € D) a.e. in RV},
Given w € LY(RY), w & D(B) a.e. and n integer, we let

{ 1 + 1 +
min((b - —-) ,n) if wx) = min((b - —) ,n),
n n
w,(x) = ¢ w(x) if max(—(a + 1) ,—-n) =wx) = min((b - —1-> ,n),
n n
1\~ _ 1\
Lrnax(—(a + ;) ,wn) if wkx) = max(—(a + ;L) ,——n).

Hence w, € L'(RY) N L*(R"). Thanks to Theorem 1.2, for any & > 0 there
exists a unique u, € D(A) such that u, + & Au, = w,, and we have for any
reERVand 1 = p < 4w

el = wi e
llus(- + T) - uz(')“Ll = nwr:(- + T) - Wn(‘)”L's

which implies that {1, :e¢ > O} is relatively compact in L (RY) (see [17]). Hence
there exists « € LY(RY) N L*(RY) such that u,, — u a.e. in RY and in L},.(RY)

(2.6)
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as g; — 0. From the definition of w, and (2.6), {B{u.):& > 0} remains bounded
in L*(RY). Given & € R and { € B (R"), we have

s

N
J signg (i, — k){s 2 (D, (1) — B (k) P + (w, ~ u ~ EIIE)J;} dx =10,
RY i=i Xi

where £, is a section of {B(u.)}. If we take k > ||w ||.- and k < —||w; ||;- and go
to the limit as g, — 0, we deduce

f {(w, — w)ldx =0
RN

which implies w, = u. As w, — w in L'(R¥), w € D(A)" which ends the

n—r+x

proof.

Lemma 2.3. Under the hypotheses (H.0) and (H.1), suppose A > 0, f €
L'®RYY N L7(RYY and u € LY(RYY N L*(RY) is the solution of (0.2) in Kruzkov
sense in RY. Let h € L'(RY) N L™ (RY) be the section of {B(1)} corresponding to
(0.2). If k is any real number greater than ||f*||,-, then

2.7 AN k= |us and AU — T+ NB)TTRY = BT

Proof. We let J§ = (f + AB)™"; J¥ is an increasing contraction defined on R
and vanishing at 0. If we let w = u + A&, then w € L'Y(R") N L”(R") and, as
in the proof of Theorem 1.2 in Section 3, the following equation

I
9
(2.8) WA - (@08 (w)) = £,
i=1 OAy

holds in Kruzkov sense in RY. From Theorem 1.2 (see also [1] and [2]) we deduce
the following inequality

(2.9) ]l =

which implies u(x) + NA(x) = kae. inRY. fweleta=J5kand b = N""(k —
a), then b € B(a). From the monotonicity of B, u(x) = a and hlx) < b.

Proof of Theorem 1.1.

Fart I: Uniqueness. Suppose u and # are two solutions of (C.P.), in Kruzkov
sense in (0,T) X R", both belonging to L~ (0 T;L'RY)) N L*((0,T) % RY) such
that u(z,.) and 4(z,.) converge to 1y € DAY el (RN yin L. (RY) when ¢ goes
to O essentially. From Lemma 1.1, for any £ € 9" ((0,T) % R") there exists
a € L7((0,7) x RY) with

alt,x) € sign” (u(x,d) — 4{x,1)) a.e.in(0,7) x RY

such that

(2.10) f j ((u—u) —+a2 (@, () — cpf(a))gg> dedt = 0.
Aj
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In particular we take {(x,) = y(¢) u(x) where y € @¥(0,T) and p. € D™ (RY).

Ifsand r (0 = s <t < T) are Lebesgue points of o — |[(u — w)* (7,)|,' we
replace y by some sequence {y,} such that dv,/dt — 8(s) — () as n — +w.
Going to the limit in (2.10) yields

@11 ) — 460"l

= futs,) = s, 0" o + f J
s JRY

If we make s —> 0 essentially we get

dx dt.

N

ap
> (@) — (1) —
=1 ax;

dxdt.

£ N P
2.12) e, — ) o < f f S (@) — D) =
o JrY li=t dx;

Now we replace p(x) by p,(x) = pn{x/n) with pn(0) = 1. By Lemma 2.1 and
Lebesgue’s theorem we deduce from (2.12) that

(2.13) (e, ~ 2, N7 = 0,
which implies u(z,x) = #(¢,x). In the same way #(¢,x) = u(t,x) a.e. and u = 4.

Part [l Existence.

First step: construction of the semigroup solution. Suppose f €
LYO,T;LYRY) N L*(RY)). There exist a sequence of partitions P, = {0 = £ <
th < <™ = T} and a sequence of step functions {f,} taking the value f%
on (#571,t%), such that

T

lim max (£ - =0 and lim [ W f = fllz=) de = 0.
=40 |=k=N I I

For a fixed partition P, we let u, be the continuous piecewise linear function

taking the value uf at /£ (0 < k < N(n)), where the sequence {u*} is defined by
the implicit scheme

ui_ uﬁ_l k k
ot TAmSfn k=12, N,
(2.14) V=

u' =, € L'(RM) N L*(RY).

If we let ek = i — 117", the relation (2.14) is equivalent to

(2.15) ub + e AW s ek A Wk, k=1,2,...,N.

n

From Theorem 1.2 the sequence {u:} is well defined in L'(RY) N L*(RY) and
we have the estimate (1 = p = +x)

T
(216) ”Mﬁ,t)lle(O‘T;LP) = HL{B:)HLF + f ”f.,(f)”y’dt.
0
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Let i, be the continuous piecewise linear function taking the value
it (0 = k= N(n)) at ¢}, where {#}} is defined by

Ay — iy ]
o tA@3f, k=1,2,..,N,
(2.17) fe =

4l = 4, € L'RY) N L*R"Y).

We deduce from Theorem 1.2 that

T
(2.18) H(u,.—ﬁn)(t’llm.-r;mSl!(urﬁe)‘”Hu+J A = 2o .
0

Since u, € D(A)"' N L™(RY), the sequence {u,} converges in C([0,71;L' (R"))
to some u belonging to C([0,T];L'(RY)) N L=((0,T) x R") (see [18] for ex-
ample), and the function u satisfies (1.5). Such a function is called the semigroup
solution of (C.P.),). If 4 is the semlgroup solutlon of (C.P.); with initial data d,,
we get (1.6) from (2. 18) Let A (respectively it ) be the section of {B(u5)} (re-
spectively {B@"h in L'(RY) N L*(R"Y) correspondmg to the equation (2.14) (re-
spectively (2. 17)) and h” (respectlvely h,) the step function taking the value A%
(respectively A%y on (1571, 15). We deduce

T T
(2.19) f it = Aullcrde = Jlug = doll + f 1 = Fullor it
[} 0

from (1.12). We claim now that u satisfies (C.P.), in Kruzkov sense in (0,7) X
RN

Second step: f is independent of t. We let {a’} and {b%} be the sequences defined
by

f(—

an
S B B s E= 12,
(2.20) n " In
an = [lug llo=,
bt~ bt )
ﬁ“""ﬁ(b ”f ”in k=112a-‘41N3
(2.21) E— gk

b = —lug [~

If of (respectively ¥%) is the section of {B(a%)} (respectively {B(b*)}) correspond-
ing to (2.20) (respectively (2.21)), then

(2.22) Vi Yy =0=0H" =0t ae inRY

If o, and v, are the step functions taking the values of and v% on (¢57',7%) then

{o ,,} and {4} remain bounded in L}, (0,T) (see Veron [27]) and it is the same for
{h.} in Li. (0,T;L°(RY)).



VARIATIONAL INEQUALITIES 331

We consider { € @7 ((0,T) X RY) and £ € R. From (2.14) we get for 1 =
k= Nn

o S o
signo(ul — €4 D, (@, (uh) — ©,(6) - (&,
RY i=1

X;

e .
+ f—h,,-i“—-;;“""‘ L, )rdx=0.

But we check easily that
signg (uf — O™ —uf) = |kt — 8] = fuk — €],
$0

N(n)

2.23) > J (ul™t = ] = Jus — DL, ) dx
k=1 JRY

N(n)

+ Z ef | signg(ut — ©)
k=1 RY

N ag
{Z (Py(u5) = @)
i=1

£ (tn) + (f ~ hﬁ)@(tﬁ,.)} dx = 0.

From Abel’s transform we get

N(n} N(im—1
> J (o™ = €] = us = €D LR, Y = > |k = €t = L, Ndx
R¥ k=1 ¥

k=1 R

+ j (o = €180 ) = |y — €]L(T,))dx
RN

and
I}EH 2
9°C k+1

t:.(z’;”,‘)-c(rﬁ,.)=%(t’;,.)efi*‘+[ — (6, — Dt
at g 0t

'3
i}

Since {u,} remains bounded in L*((0,7) X R} and converges to u in
C([0,TT;L' (RY)), we get '
N(n)

T
lim (\Hﬁ"l*«’f\—qui~€l)2(tﬁ,.)dx=f j ]u—ﬂﬁédxdt.
R¥ o JrY at

R R k=1

Moreover

N(ny N ac
lim D) e f sign (f = €) 2, (@u(uf) — @(6) 2= (th,)dx
nES e R¥ i=1 a2x;
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f J signg(u — ) E (D, (u) — () -j—‘:— dxdt.

i=1 Xi
Since the sequence {h,} is relatlvely weakly compact in L5.(0,T;L*(R")) there
exists a sequence {h,.} and h € L}, (0,T;L*(R")) such that {A, .} is weakly con-
vergent to A in Li (0, T L”(R")). From the maximal monotonicity of B, k(t,x) €
B(u(t,x)) a.e. in (0,T) x R". Since the function (f,x) — u(,x) is measurable on
(0,7) X RY, the subset of ¥ € R such that

meas{(t,x) € (0,7) x RV u(t,x) =k} > 0
Is at most countable. So we can suppose that the measure of
{(t,x) € (0,T) X RV uit,x) = €}

is 0 and also that {u, } converges to u a.e. in (0,7) X R". Hence

(2.24) lim signg(u,, — €) = signe(u — £),

R +0

for almost all (z,x) € (0,7) x R". Going to the limit in the last term of (2.23),
we have
N(m

lim > ek | signo(ul, = OCF = hE,)L(E,. dx

n—)f-mkl RrRY

T
= J J signg(u — OO — h) {dxd:.
0 JRY

Hence we deduce from (2.30) that the following inequality holds for almost all
teR

T N
(2.25) j j signg(u — €){(u -0 % + z (@ ()
o Jr¥ ar I

- ®,(£)) g_{_ + (f h)(,}cbcdt =0,

which means that u satisfies (C.P.), in Kruzkov sense in (0,T) X RY.

Third step: f is a step function from (0,T) into L'(RY) N L™(R"). We suppose
that there exists a partition {0 = t, < t, < ... < t, = T} such that f = f; (inde-
pendant of £) on (¥, 44,) (0 = j = n — 1). If u is the semigroup solution of (C.P.),
on (0,T), u is continuous from [0,T] into L' (R") and satisfies

du

N
0

(2.26) —+ D — (@) + Bu) D,
dr 7= dx;

in Kruzkov sense in (¢,,6,4+1) X Ry (0 = j = n — 1). From (2.19) and the second
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step there exists # € L'(0,T;L' (RY)), h(x,) € B(u(x,n) a.e. in (0,7) X R such
that

AR
+ O, — (D) =f—h,

=1 9%
holds in Kruzkav in (¢,4:,) X RY.

We take { € @7((0,T) x RY) and for each 0 = j = n — 1 we consider a
sequence {{7}, L? € D" (t,441), such that {f = 1 on [t + 1/p,yys1 — 1/p] for
l1<j=n-2,¢=1on[04t — 1/p] (we can take {§ € D" ({0,7))) and
P =1on{t,.; + 1/p,T] (we can take {f_; € D" ((t,,,T1)). We also suppose
that for 1 = j=n — 2,

du
ot

(2.27)

ger ath
lim i = 3() — 8(41), lim __4;_0 = —8(1)
p—te dE o Of
and
p——l
lim —— = §(z,_,).
prto

From (2.27), we have forany f E Rand 0 = j = n — |
too 3 . N
|u = €] = (£L7) + signg(u — £ 2, (D)
0 RY ar =1
(2.28);

d
= @;(f) P @+ (- é@f}) dxdt = 0,

and

+co N 3
lim J J’ signg (i — ) {2 (@:(u) — P,(6)) P (&) + (i — h)ééﬁ-’}dxdf
0 : 0 X;

p—t= i=1

fiet . N ag
= signg (e — 0] >, (@ (u) — ;(£)) — o+ (f; = WLy dxd.
4 R =1 X

We deduce from the continuity of ¢ = [gr|u(t,.) — €|dx that
. b 3 41 5t

lim lu — €} — (L) dxdt = lu — €| — dxdt

p—rt= o RY at 4 nv al

ag L
+ . ‘H(tj) - €| “5; (tj)dx - o tu(tj.;.l) - el—é'; ([j+|)dx.

Going to the limit in (2.28); as p — -+ and summing the » inequalities yield
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T N
(2.29) f f ({u — ¢ %, sign (1 — 6){2 (B, (1)
o Jmrv dt

=1

— @, (£) % +(f— h)g}) dxdt = 0;
8x,~
hence u satisfies (C.P.); in Kruzkov sense in (0,7) x R".

Fourth step: end of the proof. We consider a general f belonging to
L'0,7;L'®RY) N L*(RY)) and a sequence of step functions {f,} from (0,T) into
L'RY) N L*(RY) converging to fin L'(0,7;L1(RY) N L*(R")). If u, is the so-
lution of (C.P.), with initial data 1, then {u,} remains bounded and converges to
uw in C([0,T]; L' (RY)) as we have from (2.18)

T
(2.30) H”n - ”HL”(U,T;L‘(RN)) = J “fn _f”Ll dr.
i)

Moreover u, satisfies (C.P.), in Kruzkov sense in (0,7) x R". If A, is the section
of {B(u,)} in L'((0,T) x R") corresponding to the equation
i,

N
d
231 —'—_5' - (I){ n = ;z_;n
(2.31) > ;axi( w) =f,—h

satisfied in Kruzkov sense, then we deduce from (2.19) that the sequence
{h,} is a Cauchy sequence in L'((0,T) x R"). Hence it converges to some h &
LY(O0,T) ¥ RY) with A(z,x) € B(u(t,x)) a.e. in (0,T7) X R". It is easy to check
that for almost all £ € R and any { € 97 ((0,T) X RY) we have

ag. +(f - h)g} dxdt =0,

(2.32) f[J’ { —6)_8_@4-%@)( - ®,0)—
. . signg(u o2 (1) ; .

from (2.31), which ends the proof.

3. Existence and Unigueness for (0.2) and (8.P.),

We first consider the coercive problem (0.2).

Proof of Theorem 1.2. Uniqueness. Suppose u and # are solutions of (0.2)
in L'(R") N L”(R") with the same right-hand side f € L'(R") N L*(R"). From
Lemma 1.1, for any { € " (R"Y) such that {(0) = 1 there exists a € L™(RY),
a(x) € sign" (u(x) — #(x)) a.e. such that

N
(3.1) f a{z (@,.(u)—~<I),.(a))§—':—(u—a)g}dxzo.
By i=1 i

i

If we replace £(.) by £,(.) = {(./n), we deduce from Lemma 2.1
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3.2) f (w—0)de=0;
Y

hence u = . In the same way i = u.

Existence. Since J§ is an increasing contraction vanishing at O, the N functions
®,0J9 satisfy (H.0) and (H.1). By Proposition 2.8 of [1] there exists a unique
v € LYRY) N L*(R"Y) satisfying

N
0

(3.3) vr Y, — @eJiw) =f,

i1 9
in Kruzkov sense in R", so

X 3
(3.4) J signg (v — k){)\ S (@I ) — Do JB(K) a—c +(f- v):;} dx =0,
RV i=1 X

holds for any { € @7 (R") and k € R. Moreover, for any 1 =< p =< +o, we have
(see [1] and [2])

(3.5) vl = 1%
If ¥ is the solution in Kruzkov sense of (3.3) with right-hand side f”, we have
(3.6) I = 9)F N = IGF ~ H .

If we let u=JPv, u € L'RY) N L*(RY) and u(x) € D(B) a.e. in RY. We
also have that u(x) + A B(u(x)) 2 v(x) a.e. so there exists k € L'(RV) N L*(RY),
h(x) € B(u(x)) a.e., such that u(x) + Nh(x) = v(x) a.e. Since J% is from R onto
D(B), we have for any £ € D(B) (£ = JE(kD

g }
F(f—u—\R{gdx=0.
Xi

N
(3.7) f Signu(”‘k){)\z(‘bi(u)“@i(g))g“
Ry i=1

Moreover, except for a countable number of values of €, we have sign,(v — k) =
signg(J8v — JRk) = signg(u — €) a.e.; so

. . Nt
(3.8) J signg(u — 6’){)\ z (D; (1) — D,(£)) a— +{(f—u-— )\h)g}dx =0
RY i=1 A
holds for almost all £ € D{(B). Since the equation
N
d
(3.9) > — (@) + u+ Nk =],
i=1 0%

is satisfied in @'(RY), (3.8) also holds for any € > sup D(B) and for any £ <
inf D(B); so (0.2) holds in Kruzkov sense in R”. Using the fact that J§ is an
increasing contraction, we deduce (1.8) and (1.9) from (3.5) and (3.6).

Remark 3.1. Notice that there is a one-to-one correspondence between the
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solutions (in L' (RY) N L*(R™)) of (0.2) and (3.3) taken in Kruzkov sense in R : i
is the solution of (0.2) and A the corresponding unique section of {B(u)} if and
only if v = u + Nh is the solution of (3.1).

Proposition 3.1.  Suppose (H.0) and (H.1) hold. Iff € L'(RY) N L*(RY) and
B are such that f(x) € R(B) a.e. in RY and B™' is continuous on the interval
(=NF " el F N1, there exists at least one u € L*(RY) such that

N

8
(S.P.), > o (@) + B 3,

=y OX;
holds in Kruzkov sense in BY.

Proof. For any & > 0 let u, € L'(RY) N L*(R"Y) be the solution of

Yog
(3.8) i, T (@) + B) 3,
=1 i

in Kruzkov sense in R". If A, is the section of {(u,)} corresponding to (3.8), we
have forany 1 = p = +x

(3.9) ellully =/l and [|BE), = F<

From unicity and (1.9), we get for any 7 € RY
3.10) lreCc + 1) = B Ol = {FC + 1) = FOle.

Hence the set {h,:& > 0} is relatively compact in Ly, (R") and there exist some
ke L'RY) N L*(RY) and a sequence {e,} going to O such that {h, } converges
to ki in Lj,.(RY) and a.e. in R”. From (3.9) and the continuity of 37", {u,, } con-
verges to some u a.e. in RY and h(x) € B(u(x)) a.e. in RV, hence u € L™(R")
as it is the same with 4. For any & € R and { € @* (R") we have

N
(3.11) f signomeﬂ—k){Z (@ (u,,) — B, 22
R i=1

ax,-

+ (f=h, — s,,uen)g}dx?_ 0.

Going to the limit as €, — 0, we conclude that (1.2) holds except for a countable
number of values &, which ends the proof.

Remark 3.2. We do not know whether u is the unique solution of (8.P.)sin
L”(RY) or not, but we notice that {#,} — % and {«,} — u (not only some sequence
{e,}). Otherwise we would have for two limit functions u and #, ¥ = B~'(h) and
4= B7"(h), |h— A =0 as in (1.9), which implies u = 4 since B is strictly
increasing on the interval which contains almost all the values of ufx) and #i(x).

As for the assumption of continuity on £7', it can be avoided in some cases,
in particular when @ is linear.
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Remark 3.3. A natural extension of Proposition 3.1 is to suppose that ™' is
continuous, (FH.0) holds and
lim sup|®,° B~ (M|/|r| ¥V < +oo.
r—=0
Then for any f € L'RMHNL” (RY) there exists at least one u € L™ (RY) satisfying

(S.P.). Moreover the corresponding section A of {3} belongs to L'(RY) N
L7 (RY).

4. Comparison Principles

4.1. The stationary case. We introduce the following hypotheses on ®;
(1=<i=N)
(H2) @,(0) =0, @ is strictly increasing
onRYand R(®)URPB)DR’.

Under the hypotheses (H.0) and (H.2,), the operator Bo®d, " is maximal mono-
tone with respect to R*, so for every a € R, every g € Ly ([, +)) and every
vo € D(B) N R" there exists a unique absolutely continuous nonnegative function
w defined on (e, +%) satisfying

dw 1 .
— + Be®, (w)Dg a.e. in(a,+®),
4.1) dx,
w(a) = @ (vy).
Moreover w(x) € D(B) N R(®,) a.e. and w(x) € R(®,) for any x > «.
Definition 4.1I. Under hypotheses (H.0) and (H.2,), we say that v satisfies
the evolution equation
d
— (@ )+ B Dg in (a+%),
(4.2) d,
V(O’.) = VU = D(B) m R+: g EE Lllu-z ([OL’+OO))1
if v = &;'(w) where w satisfies (4.1).
Lemma 4.1.  Suppose (H.0) and (H.2,) are satisfied and v is the solution of
the evolution equation (4.2); then

d
4.3) — (@) +F BV 3 g,
dx,

holds in Kruzkov sense in {o,+%).

Proof. Let P be the set of all nondecreasing Lipschitz continuous functions
on R having derivative with compact support and let p, € % such that —1 =
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P =1,p,0) =0, p, = Cn and supp p, C [~1/n,1/n]. For any k € R* and
any [ € @ (o, +%) we have

(g
4.4) f {&% {pyw — k) + (g — Bp,(w ~— k)é} dx; =0,
o 1

where h = g — dw/dx; € Bo®; Y (w) (h € L}, ([or,+%))). Hence

J; palw — k){(w — k) gx% +(g— h)é} dx,

(" DY v — Kplw — k) d
= Cdxlw O palw — k) dx,.

Since [{(dw/dx,)(w — k)p)(w — k)| = 2C{|dw/dx,|, we deduce by Lebesgue’s
theorem that

4.5) J’ signg(w — k){(w — k) -5—5— + (g — h)C} dx, = 0.
o 1

Moreover @' (w) € D) a.e. in (a,+o), If we let v = D7 (w) and take
k= @ (f) with £ @ R” then

o d
(4.6) f signy(v — f){(q);(V) - D, () ;'xi + (g — 71)€}dx1 =0,

1

and 2(x) € B(v(x)) a.e. Since v = 0 and (4.3) holds in D' («,+%) we can take
£ < 0in (4.6).

Remark 4.1. When g = 0, the hypothesis (H.2,) can be weakened since we
no longer have to suppose that R™ C R(®;) U R(B).

Remark 4.2.  Under the hypotheses of Lemma 4.1, if we suppose v, € R* N
B~'(0) and define ¥ and § on R by

vxy=v(x) on [a,+w), P(x) =v, on {—%,a),

gx) =g on (a,+%), £§x)=0 on (—x,u),

then the equation (d/dx,}(®,(¥) + B($) D $ holds in Kruzkov sense in R.
In order to get an x,-directional comparison principle we need weaker assump-
tions on (®,,...,Dy) than (H.1). So, for i = 1, 2, ..., N we consider

|q)j(")’

”.l(N—?-)/(N—l) <t

(H.3,) vie{l,...,N}—{i}, limsup

r—»0

Theorem 4.1. Suppose N = 2 and (H.0), (H.2,) and (H.3)) hold. If f €
Li(R,L*R™) and u € L'(RY) N L*(RY) satisfies in Kruzkov sense in RY
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Y8
(S.P.) > — @) + B 3,

i=1 i
then for any o € R and almost all (x,x") € (o, +®) X RY u(x,,x") is majorized
by u,(x,), where u, is the solution of the evolution equation

d
;,_ (q)l (ua)) + B(”m) 2 Hf+ (xlv)”Lx(RN‘I) in (a,+00)’
@.7) i

i, (o) = ||M+ uLx(RN) .

Proof. For A > 0Qwelet B, = NN = J,): B is a (1/N)-Lipschitz continuous
nondecreasing function defined on R* and R(®,) U R(B,) D R*. Let v, be the
solution of the evolution equation

d
(4.8) 2;1' (@ n) F By =+ ”f* (xl,,)HLx(RN_,) in (o, +),

vy () = (o) + A,

The function v, is absolutely continuous and strictly positive on [a,+%). Since
A —> Byo®7'(r) is nonincreasing and converges to the projection of 0 onto
Bod; ' (r) as N goes to 0, v, (x,) converges by decreasing to u,(x) when A goes
to 0. So it suffices to prove that Jju* (x;,.)]=@r-1) = valx;) on (o, +). If we de-
fine v, on [a,+%) X RY by ¥, (x,x") = vx(x,), we have forany k € R, any { €
* (@, +°) x R¥"") and any x, > o that

N a‘:
(4.9) > (@5 — B,(0) — (x,x") dx’ = 0.

R f=2 dx;

Since signg(¥, — k) does not depend on x’, we deduce from Lemma 4.1 that the
following equation holds in Kruzkov sense in (a,+%) X R"
N

i)
(4.10) > o (D00 + B ) = 7 0o Ny + A

i=1
Since the support of (u — ¥,)" is some closed subset of (a,+%) X R¥™', we let
R=inf{x; 2 «:3z € R""" and (x;,2) € supp(u — %)}

and we suppose R < +o,
IfR = a, then fJu™|l~@» = u.(a) + X which is a contradiction, so R > a.
For any y > 0 we consider {; € @"(R) with support [—v,v], {’ € @ R"™)
with support {x':|x'| = v} and we let { = {,{’. We can suppose
ag

— <0 on {xr=(c,x):0<x <x,
ox,

x| <~}
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Forn € N* and o' € RV™! we let

x —a
gn(xl’x’) = gl(xl - R)E’ (_"T)

If h is a section of {B(u)} in Lj,.(R) corresponding to (S.P.), there exists n €
L*((o,+%) x RY™Y), 0 € sign”(u — v,) a.e., such that

N a
(4.11) j N {z (@) — B, (7)) ~—
RY i=1 i

dax;

+(f=A— f‘f+(vv)||1.°‘m”“)

+ B)\(‘;)\} - h)gn}d‘x = 0

But By(u) = h & B(w) on {x: ulx) = v,{x)}, so we deduce that

~ agﬂ - aCﬂ
(4.12) J’ (@)~ By () S—dx (D () — B, (%))

dx = 0.
axl i= W>vy, axi

N
i=2
When n — +o, (30, /dx,)(x,,x") = L'(O)dL,/dx,)(x, — R); so if
(4.13)  meas{x = (x,x'):R<x; <R++vy and u(x)> % x)}>0,

we would have that

(4.14) lim supf (@, () — D, (5,)) -f—ix—g— dx < 0

n—s+tx 1

since @, is strictly increasing on R*.
Now let

a&,
Al = j D, (1) ¢ dx and B} = J
u>vy axi

u>vy
R+
=] ue-m
R U=y

d .—a
D, (1) — (1;'( ))l dx' dx,.
ax; n
From Lemma 2.1
RA-1 ax,- 1
n—rtee Jon- axf n

for almost all x;. Hence by Lebesgue’s theorem lim A7 = 0.

e ko

agn
(D,-(ﬁ)\)mdx, i=2.
dax;

dx’ = Cllu (o, )G,
Moreover

dx' =0
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Since « € L'(RY) and v,(x) = & > 0 on [R,R + 7], the measure defined in
(4.13) is finite. Since |aL,/dx;| = C/nfori =2, lim B} =0.

i ]
With those two estimates we deduce that
. . - a(m
(4.15) lim inf (D, () — P (H))—dx =0,
Lndti RN PR N axl.

which contradicts (4.14). So R = +o and v, (x,) = u(x;,x") on (a,+%) x R¥Y,
which ends the proof.

In order to obtain more complete information on any solution u of (S.P.);, we
introduce the following hypotheses (1 = { = N).

(H.2)) ®,(0) = 0, @, is strictly decreasing on R™ and R(d;) U R(~) D R,
(H.2!) ®;(0) = 0, P, is strictly decreasing on RYtand R(®) UR(—B) DR,

(H.2)  @,(0) = 0, &, is strictly increasing on R™ and R(®;) UR(B) D R .
As an easy adaptation of Theorem 4.1, we have

Corollary 4.1. Suppose N = 2, f € L, (R;L*(R"™")) and u € L'R") N
L*(RY) is a solution of (S.P.) in Kruzkov sense in R". Then for any fixed o €
R we have

i) under hypotheses (H.0), (H.2{) and (H.3,), if u, is the solution of

d
4.16) . (@, (1) + Blua) 2 — Nf oy Mm@ty in (—,0),

ua(a) = _-”uvHLm(RN)a
then u,(x,) = — u (x,x') = 0, a.e. in (—oo,0) x R

i) under hypotheses (H.0), (H.2}) and (H.3,), if u, is the solution of

d
— (D (1)) + Bluy) D ”fr (xls')HL“(RN“) in (—=,0),
4.17) dx,

() = ”M+||L"(RN),
then 0 < u' (x,,x") < uy(x)), a.e. in (—o,a) x R¥7

iii) under hypotheses (H.0), (H.27) and (H.3)), if u, is the solution of

d
@4.18) C—ix—;(d)l(uu)wB(uu)aw||f‘(x1,.)||L:mN-l) in (o, +),

u (o) = -—||u" HL"(R”):

then u,(x,) = — u (x,x) =0, a.e. in (a,+®) x R'7",
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Remark 4.3. In equations (4.7), (4.16), (4.17) and (4.18) the initial condition
on u, can be slightly modified in order to obtain a more accurate estimate: for
example Theorem 4.1 is still valid if

U, (o) = le ||”+||L“c(—w.:)xk”“‘>'
a

Remark 4.4. The condition of strict monotonicity assumed on @, in (H.2,)
can be relaxed in some cases. For example, when @, is not increasing on R* but

there exists (q;) € RY, a, # 0 such that Eji . a;®; is strictly increasing on R
and 2;11 a;®;(0) = 0, we can make the change of variables X, = zjii a;x; and

X; = x; for i = 2. The function v defined by v(X,,...,Xy) = u(x,,.. .,Xy) belongs
to L'(RY) N L*(R") and satisfies

N

3 (& 3
(4.19) g (Z a,-cb.-(v)) + 2o @00 + BO) 3,

b oA\j=1 i=2 i

in Kruzkov sense in R".
When B71(0) N R" = {0}, we have a nonpropagation phenomenon

Proposition 4.1.  Under hypotheses (H.0), (H.2)) and (H.3,), we suppose
that B7(0) N R™ = {0} and that f € L'(RY) N L*(R") is such that f* = 0 in
(—0,8) x RY"\ Ifu € L'RY) N L*(RY) is a solution in Kruzkov sense in RY
of (S.P.), then u’ = 0 in (—,5) x RV,

Proof. For any «, the solution u, of

i (q)l(uu)) + B(”u) 5 0 in ((11-{—00);
(4.20) dx,

(o) = HM+ ||L*(RN) ,

goes to 0 as x, goes to +, uniformly with respect to @ (in the sense that u, (x))
only depends on x; — ). For any € > 0 and A < & there exists « < A\ such that
U (x;) < € on [A\,B]; hence u(x,x’y < € in (A\,8) X R"'. Since & and X\ are
arbitrary, u” = 0 in (~,8) x R¥"!,

As a consequence we have the triviality of the kernel of A.
Corollary 4.2. Under hypotheses (H.0), (H.2,), (H.2!) (or (H.2")) and

(H.3)) for some 1 = i = N, if we suppose that 0 = B (0), then the only u €
L'(RY) N L*(RY) which satisfies

N

d
(S.P.)y > — (@) +Bw 20,

j=1 OX;

in Kruzkov sense in RY is the zero function.
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4.2. The evolution case. Our first global comparison result is a consequence
of Lemma 2.3 and the first step of the proof of Theorem 1.1.

Proposition 4.2.  Assume (1.0) and (H.1). For f € LLRYL'RY) N L™ (RYY)
and u, € DA N L™ (RYY, let u be the senmigroup (and also Kruzkov) solution
of (C.P.)in R* X RY with initial data u,. Let v* (respectively v ) be the solution
of

dv

+ B3¢ in (0,+®),
(4.21) dt

v(0) = vo,

with vy = |uglls and g®) = | £ @)= in (0,+2) (respectively vy = ~|lug |-
and g(t) = — ||f () -). Then u(t,x) = v (1) in (0,+®) x RY (respectively
u(t,x) = v ().

The next result has a unidirectional character.

Proposition 4.3. We suppose that (H.0), (H.1) and (H.2,) ho{d. Let f &
L (RYL'RYY N L*(RY), g € L, RTL'R) N L*(R), 1, € DA NL7(RY)
and vy € L'(R) N L*(R), vo(x,) € D(B) a.e. in R. We call v(t,x,) the solution
of

d
2y — @M +BR g inR" X R,
(4.22) a¢ axl

v(0,x,) = v(x)) in R,
and u(t,x,,x"), the solution of (C.P.). If ug(x,,x") = vo(x) ae. in R X R and

Frxaxy = g(x) ae. im RY X R X BV then u™ (1,x,x") = v(t,x)) ae. in
R* x R x R'"!.

Before proving this result we need

Lemma 4.2. Suppose N = 2 and (H.0), (H.1) and (H.2,) hold. Let
FfeEL/RY NL"®RY), g € L'R) N L°R), u € L'RY) N L*(RY) and v €
L'®) N L*(R) be such that

N

3
(4.23) > —— (@,) + p) + 43,
=1 0%
and
d
4.24) — (@, () + BV +v 3 g,
dxy

hold in Kruzkov sense in RY and R respectively. If g(x\) = f {x,,x') a.e. in
R x RY™, then vix)) = u¥(x,x") ae. in R x RV,
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Proof. From Theorem 1.2 i and v are the unique solutions of (4.23) and (4.24)
respectively. Since they depend continuously on f and g we can suppose that

supp f C {x = (x,,x):x3 + [¥'"=R*} and supp g C [-R,R].

Moreover v is a nonnegative absolutely continuous function since (4.24) holds in
%’(R); so, for any «, it coincides on (o, +) with the solution of

d
(4.25) T (@ (ve)) + Bva) + VoD g on {a,+%},
X

v, (o) = via).

If w, is the solution of (4.25) with initial data max(v(a),|lu™ =), we deduce from
Theorem 4.1 and classical comparison theorems that

(4.26) We(x) Z v(x;) and we(x) = Hlﬁ (M:-)”L’(RN-I),

a.e. in (a,+%). Since g vanishes outside [~R,R], for any x, < —R, we have
lim w,(x;) = O = v(x;). From the contraction property, we get for any x, >

o=

%, > « that
4.27) iwu(xll) - V(xl)l = Ewa(?zl) - V(ﬂ)’-

If we take o < # < —R and make o —» —o we get lim w,(x;} = v{x), and

o= —

we deduce the result from (4.26).

Proof of Proposition 4.3. There exists a sequence of partitions {P,} = 0 =
P2 <l <. .. <™ = T} and two sequences of step functions {f,} and {g, } taking
the values f£ € L'(R™y N L*(RY), gb € L'(R N L™(R on (¢7',24) such that

lim max (£ — £y =0

n—stm k

and

“fP /e = Floonns =0 = hl}} lg: — gloorzines -
Moreover since f* € L'(0,7;L' (R; L' (R;L”(R"™"))) we can suppose that fi €
L'(®R; L (RY™"). Since £ (#,x,,x") = g(t,x,) we can assume that
(fu) (,x) = gu(xy) ae inR X R
Let 1, and v, be the continuous piecewise linear approximations of u and v defined
through the implicit schemes
ub — !

9
> — (D) + B D in RY,
(4.28) s 2 ﬂxi( () + Bluy) D f

u® = u, in RY,
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ko k-1
Vi Vi

———  — (D VN + BVYD g inRY
(429) ti: . ff,_l dx1 ( 1(1/ )) B(Vn) En in R 4

V=, in R.
Since {u,} and {v,} converge to u and v in C([0,T];L'(RY)) and C([0,T1;L'(R)),
it is sufficient to prove (uf)" = v¥, which by induction reduces to (1,)" =< v,. As
the first step we have

N
d
=12 — (@) + (55 = £)BGn) + e Do + (1= 1)1
(4.30) i=t 0%

d
(ty — tg);; (@ (v)) + (= 1) Bv) + v D vo + (1 — 1) g
i

Since v, = ug and g} = (f1)*, we are finished because of Lemma 4.2.

The next result is a unidirectional version of Theorem 1 of [21] with weaker
hypotheses.

Proposition 4.4. Under hypotheses (H.0) and (H.3,), we suppose that for
j=1,2andf, € Li,.(0,T;LY(R"™)), the functions
w € L'((0,7) x Ry N L7((0,T) x RY)
are solutions of
N

d
+ 5" ((Df(uj)} + B(”j) 5]37

i=1 i

ou;
ar

(4.31)

in Kruzkov sense in (0,T) x R". We suppose moreover that ®, is Lipschitz con-
tinuous on the set

rer:jrl = max 161|073 mey
J=1,

with constant of Lipschitz C and, for a € RY and t € (0,T), we let
(4.32) S == (,x) |y —a|sCT -}

Then for any 0 < s =t < T, we have

4.33) f (1 — ) (2, X) dx
510

= f (u; — w) ' (s,x)dx + f J (fi —f2)+("r,x) dxdr.
51(5) s JSn

Proof. For the sake of simplicity we take a = 0. Let y € @7(0,7), [ €
PRy and p € DT (R) be such that {(0) = 1 [*%(p(s)ds = 1. For m and
n &€ N we define
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+oo

Xm(t:xl) = J‘ p(S)dS
mlx )+ C—Th

and
xl
gm,u(trxlvx,) = 'Y(I)Xm (t’xl)g (;)'

For m large enough ¢, , € W' ((0,7) x RY). With a slight extension of Lemma
1.1, there exists o & L“((O T) X RY), a € sign(1; — u,) such that

(ul - HZ) Xmé C
(0,TIxR¥ n at

aX,
+ (@) - @ (“2))'}’@( )

m

9%,

ad ? .
+ z (q)i(ul) - (I)i(ul))‘meg; (g (;)) + (fl —fl)gm,n}dxc{t = 0'
=2 i

But
. E)X,,, - aXm
0‘{(“1 — u)¥E (_) — 4 (D (i) — D, (1)) ¥L (") ""“""“}
n/ ot n/ dx
= —mp(m|x,| + C(r — T))E(;) Y{C (e, — uy)”

+ o sign(e, @, (i) — (I’l(”z))} =0

So we get

d : y
(4.34) f f a{(ul —u) 2 x, (—) + > (@)
(0,T)xRY dt n im2

dJ .
- @,(,))vX,, — (E (—)) + (fi —fz);m_n}dxdt =0.
ox; n

Using Lemma 2.1 as we did in Theorem 4.1 we have

N
(4.35) lim j J o z (Pi (1) — D (1)) VX0 2 ((: (—)) dxdt = 0,
n—te ) JenxrY =2 0x; n

50 we get

(4-36) f f {(”’l - HZ) Xm d + (fl .f:l)+Xm’Y} dxdt = 0.
(0,7)%R¥
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When m — -+, X, (f) converges to the characteristic function of §,(#). If we
fix s and 1 (0 < 5 < t < T) and replace dvy/dt by some sequence converging to
3(5) — 8(2), we get (4.33).

Remark 4.5. Proposition 4.4 gives us a new way for getting uniqueness of
solutions of (C.P.);. When N = 1 the assumption on i can be weakened and
replaced by u; € L. ((0,7) X R), j =1, 2.

5. Qualitative Properties of Solutions of (S.P.),

In this section we obtain many qualitative properties for solutions of (8.P.),
which can be compared to those of solutions of second order nonlinear elliptic
equations (see [16] and [25]). The greatest difference lies in the unidirectional
character of our properties

Proposition 5.1.  (Uniform boundedness principle). Under hypotheses (H.0),
(H.2,) and (H.3,), if we suppose moreover that

(5.1 fw__d%,,_< oo
. L B ®T (o) |

then there exists a nonincreasing function 8:(0,+«) — R” such that for all
T &R, all f € LL.(R,L*(R"™")) which are nonpositive in (T,+=) X R"" and
all u € LYRY) N L™(RY) solutions of (S.P.); in Kruzkov sense in R", we have
a.e. in (T,+x) x R¥!

(5.2 u(x,x) = 0(x; — T).

Proof. From (5.1) R* C R(®,). Since (5.2) is obvious when sup D(B) <
+o0, we assume R* C D(B) and let vz be the solution of

d

g (@,(vz)) + Bvp) 20 in (T,+c0),
(5.3) 1
v (1) = R.

vg can be computed with the formula

D(R)
do
(5.4) - T= J' T, forx, > T.
oty B 2P (@)

If R = ||lu™{| =@ then ve(x;) = u” (x), )| z=@v—y. If R — 400, vp(x;) increases
and converges to 8{x; — ¢) where 8 is defined by

5.5) Jm do
. r= _
P1(80)) % @7 (o)

which yields (5.2.).
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We obtain a global uniform boundedness property by introducing the following
hypotheses for 1 =i = N

One of the following pairs of hypotheses is satisfied:
(H.2)  {(H.2),(.20, {(H.2,), (.20}, {(H.2)),(H.2))} and {(H.2)),(H.2}.

We let K = {(x;)) € RV:q; = x; = b,¥ 1 < { < N} and L3(K) be the space of
all measurable and bounded functions with support in K. As a consequence of
Proposition 5.1, Proposition 4.1 and Corollary 4.1 we have

Corellary 5.1.  Under hypotheses (H.0), (H.2¥) and (H.3,) for any 1 =i =<
N, if we suppose moreover that 0 = p~'(0) and

do
f o o, g <t if ©, is monotone,
lol>1t “3 o, (U")|

ey

do

(5.6) j —— < +w if @, is decreasing on R™, increasing on R”,
B ® (o)

-1

do

f m < oo if ®; is increasing on R™, decreasing on R”,
oo e T

then there exists a function © defined in R” — K, bounded in the complement of
any neighbourhood of K, such thar for any f € Ly(K) and any u & L'(RYy N
L*(RY) satisfying (S.P.) in Kruzkov sense in RY we have a.e. in RY — K

(5.7 u(x) = 0 x).

Proposition 5.2. (Compact support property). Under hypotheses (H.0), (H.2;)
and (H.3,), if we suppose moreover that

1
(5.8) f _ P e
’ o B2o®{ (o) ’

then for any f € L (R;L™R"™") with supp f* C (—»,T) X R"™ and any
u € L'(®Y) N LTRY) solution of (S.P.) in Kruzkov sense in RY, there exists
T' > T such that supp u*" C (—,T") x R¥"".

The proof is essentially the same as the one for Propesition 5.1 in noticing that
the solution v of (5.3) vanishes for x; > T’ where
(5.9) T =T+ qu)L‘
) B ;' (@)
As a consequence we have a global compact support prope:ty.

Corollary 5.2. Under hypotheses (H.0), (H.2%) and (H.3)) for all 1 =i =
Nif
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: do , ,
J e <+ if &, is monotone,
B (@)

1
da
5.1 f e < 4% if @, is decreasing on R™, increasing on R*,
0 IBU“D:' '(a)]

O
do
J - <t if ©; is increasing on R, decreasing on R,
1 |B%e @ (o)

then for any f € LY(RY) N L”(RY) with compact support, any solution u €
L'RYY N L™(RY) of (S.P.); in Kruzkov sense in RY also has a compact support.

Remark 5.2. We can obtain other compactness results if we suppose that
Int B(0) = (B~(0),3"(0)) is nonempty. If (H.0), (H.2¥) and (H.3;) hold for any
| = i< N and if there exists a function &:[R,+%) = R" such that [z” e(s)ds =
+oo, then for any f € L'(RY) N L*(RY) such that

(5.11) B0 + s(x) = —f () =) =B (O0) — elx)

holds for |x| > R, any u € L'(RY) N L™(R") solution of (S.P.); in Kruzkov sense
in RY has a compact support.

6. Qualitative Properties of Solutions of (C.P.),

6.1. Finite propagation speed. The finite propagation speed of the support
of the solution of (C.P.); is a characteristic phenomenon of first and second order
hyperbolic equations and it appears in equation (C.P.), under two very different
hypotheses o @

i) @ is locally Lipschitz continuous,

1
do
ii)VlsisN,J -
—1}q’i (0')|

< 4o,

Under the first hypothesis our results are just a generalization of the results of
[21], but under the second hypothesis they are completely new.

Proposition 6.1. Suppose (H.0) and (H.1) hold and ®, is Lipschitz contin-
wous with constant C on {r:0 < r =< |ul =} for some uy € DAY N L™ (RY).
If ui(x,,x") vanishes outside {(x,,x'):|x; — a,| = R} and if u is the solution of
(C.P.), with initial data ug, then u*(t,x,,x") vanishes outside {(x,x"):|x; — a,| =
R + Ci}.

Proof. Under our hypotheses the solution of (C.P.), exists and belongs to
CR*;LYRYY) N L*(R" X RY). The equation is satisfied in Kruzkov sense in
(0,+%) X RY and ¢ — |lu"(z,.)]j,~ is nonincreasing. For n € N* and 0 = 1 =
n/C we define
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Su(t) = {(-xl:—xl}:|R + a +n— )Cl’ =pn - C[}

In particular R + a, + Ct < x;, = R + a, + 2rn — Ct. By Proposition 4.4 we
have

6.1 J th,x)deJ ug (x) dx.
S0 5,00}

But (x;,x)Y € S5,(0) &R + a, =< x;, =R + a, + 2n. Hence

J ut(t,x)dx =0,
5alt)

If we make n -+ +2, u"(t,x) vanishes on {(x,x"):x; = R + a, + Ct}. In the
same way u {t,x) vanishes on {(x;,x"):x, = —R + a, — Ct}.

For a multidirectional version of Proposition 6.1 we let

|x|. = max |x|, x=(x,....x).
1=i=N

Corollary 6.1. Suppose (H.0) and (H.1) hold and ® is Lipschitz continuous
with constant C on {r:|r| = |[u®]|;=} for some uy € DAY N L™(RY). If uy has
its support in {x € RV:|x|., = R}, then the solution u(t,.) of (C.P.), with initial
data uy has its support in x € RV :|x|l. = R + Ct}.

Proposition 6.2. Suppose (H.0), (H.1) and (H.2)) hold and

(6.2) f B e
' o P '

Let uy € D(A)Ll N L*(RYY be such that

supp ug C {(x,x):a < x, < b}.

Then if u is the solution of (C.P.)y with initial data w,, we have for r = 0.

&y (fugle=) ds
suppu (1, Y C i, N ie <=, =<b -+t .
pp u (1,.) {( 1,x") | L d)f‘(s)}

Proof. From Proposition 4.3, u" (¢,x,,x") is majorized by v(t,x,) where v is
the solution of

LA B»)30 inR' xR,
(6.3) or  dx,

V(O,X}) = V{}(.Xl) = Hu(‘;”L‘X(a.b) (x1)3

where ¥4 is the characteristic function of [a,b]. So it suffices to prove that for
any t = 0
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D) ds
6.4 t,YyClab+t .
(6.4) supp v(t,.) [a JO (bfl(s):l

For n & N* we let v, be the continuous piecewise linear function taking the value
v at kt/n (0 = k < n) where the sequence {v;} is defined by

d
Dok — vy 4 = (@,05) + BG5) D0 iR,
(6.5) t dx,
Vi = Vo,

the equation being taken in Kruzkov sense in R. In particular for k = 1 we have

d L 1 n 1 n \]
(6.6) (@ (v} + Blva) + = v D - v
dx { t

1

Since (B + n/1) '(0) = 0 and supp v C [a,+), supp v, C [a,+). Moreover
for x, = b, v} coincides with the solution w}, of the following evolution equation

L By + BV WSO on (bt
-_— w, W, - w, s OO’
6.7) dx, t

wa(b) = v, (D).

By (i (b)) ds
wohs J o0 () + /0P ()
Dy wh (1 ) ! b

@, (wl) has a compact support. Since @, (w, (b)) = @, (lvo],=) we deduce that

Since we have

D1 (Ivolle=)
(6.8) supp w! C [b,b + J S— ds - ]
0 Bl e®@ ' (s) + (n/n D (9)
We define the sequences {b,} and {wi} (k = 1,...,n) such that
b b f‘i’xﬂvuilml ds -
0 BYo @7 (s) + (n/D DT ()

and w* is the solution of the following evolution equation

4 (®,(WE) + Bwk) + Y in (b;_,+=)
(69) dx1 1 n n ; n k—Eks k]
Wﬁ(bkﬂ) = Vﬁ(bk—l)-

Suppose we have proved that for 1 = j = k — 1 that supp v/, C [a,b;]. For x; =
by_i, v coincides with w’ and w? is given by
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By (vE(b— 1)
©.11) b= f ds
. ) R - 4 .
l Dy (wh(x1)) BOO(IDL I(S) + (P?/I)CDL L(s)

since @, (vA(b)) = B, (Jvoll.™), supp Wk C [bey,be]. Since vi~" is zero in (—w,a),
it is the same with v§ and we get supp v C [a,b,]. Hence

@i(lluollz=)
ds
R @7 (s) + (n/1) 7 (S)] '

(6.12) supp vy C {a,b + nf
0

By Lebesgue’s theorem

) Jrfbl(lﬂahﬁ) ds f¢1(l|rln[|c=) d
im n - - =1 - .
nts g B @i (s) + (/D D7 (5) 0 O (s)

Since v,, converges to v(z,.) in L'(R), we get (6.4).

Remark 6.1. 'We can make a = —o in Proposition 6.2. For that we replace

the initial data vy by Xz.5. apply the previous result to the corresponding solution
g of (C.P.)y and make R — —oo,

When [¢” ds/®7'(s) < +¢ we obtain a propagation speed independant of u,.

Remark 6.2. Under hypotheses (H.0), (H.1) and (H.2) we can give nonprop-
agation results for the support of u(z,.). If we suppose supp ug C [a,b] X RV
and supp up C [4,b] x R"™', then

[(H.2),(H.2D1 = supp u*(¢,.) C [a,+%) X RY™', supp u (#,.) C (—o0,b] x R¥"!,

[(H.2,),(H.2!")] = supp u'(£,.) C [a,+2) X R¥"", supp u”(t,.) C [@,+%) Xx R¥™!,

[(H.2)),(H.21)] = supp u* (1,.) C (—,b] X RY", supp u™(t,.) C (=o0,5] x RV™?,

[(H.20),(H.2{)1 = supp u"(2,.) C (—o0,b) x RY™! supp u™(z,.) C [a,+%) x RV 1.
The multidirectional version of Proposition 6.2 is the following

Corollary 6.2. Under hypotheses (H.0), (H.1) and (H.2¥) forall 1 =i = N,
if we suppose moreover that

1
ds
— < if ®; is monotone,
f—1 ’(I)i l(S)l
bod
5
(6.13) f e St if ®,; is decreasing on B™, increasing on B,
0 ‘(DJ (3)”

0
s
e < b0 if @, is increasing on R, decreasing on R7,

-1 ‘q)f 1(5)|

then for any uy € DAY N L*(RY) with support in {x € RY:|x — al. = R},
the solution u(t,.) of (C.P.), with initial data w, has its support in {x € R”:|x —
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alo = R + Ct} for t = 0, where C depends on © and |uy|;-.

In some cases it is useful to exchange the role of 7 and one of the x;; for example

Proposition 6.3. Suppose (H.0) and (H.1) hold, b, is strictly increasing on
R* and ®;" is Lipschitz continuous with constant C on {r:0 < r = gl =} where
o € DA NLE®RY). If u is the solution of (C.P ), with initial data uy and if
supp ug C {(x;,x"):x, = a}, then for any t = 0 supp ut(r,) Cl(x,x)ixy = a +
t/C}.

Proof. We let w = @ (1) and, as we did in Proposition 4.4, we consider for
e > 0, p and y belonging to @ (R) such that supp vy C [a — &/2,+=),
[f2p(s)ds = 1, 1 € D7([0,+%)) such that n = 1 on [0,T] and dn/dr < 0, and
e @ RY") such that {(0y = 1. Let

r

+ o
X
Xm(tyxl) = JA p(s)ds and Em.n ([sxl!'x,) = n(t)v(xl)Xm(rvxl)é(—)'
m(xyre—a—r1/C) n
Fort/C <ef3,x,+¢e—a—t/C>x —a+2/3s0x ~a- 2e/3 > g/6
on the support of v and vX,, € B*((0,7) * R) for m large enough. Hence
Ly € D7(0,7) X RY) and we have from Lemma 1.1 that

? ZN ?
(614) j f (M - é/n,n + (I),'(Di) Em,n) Cdet = 0!
o N 0F p ax;

(for the sake of simplicity we suppose N = 2 so H.1 implies ®(0) = 0). (6.14)
can be written as

o9 [[]_fel@maly) i) 52) + ool
(6.15) wowdxlnmn Wnaxl IRCOL R UL o

+ X, =) én +N®oq>“‘ D[ )) e =
YXn L o 2 2P (W) XM o £ . xydedx” = 0.
i=2 i

80X, _ 09X, - S\ (4
w( ) +(I>1‘(w)( ) =0 and (I)ll(w)«/Xm?_.‘,(—)(P) =0
0x, ot n/ \ dt

on {(z,x):w(t,x) > O}. When m — +, X,,(¢,x,) converges to the characteristic
function X, (t,x,) of {(t,x,): %, < a — & + t/c}, so we get

oo [[[{rawsl:)
(6.16) - delngln

N
d .
+ > @ed (W)X — —)) dx,drdx’ = 0.
L (w)y ﬂaxf(g(n } ydtdx

i=2

But
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If we make m go to the characteristic function of (0,7) and vy go to 8(a —
e/2) ~ 8(a) for some « > a, we obtain (for almost all &)

T I
6.17) j f w““(z,a,x')xe(r,a)g(i)d.x'dz
1]
<[ [orfa- ) foa-2)e(z)
taw—x X\taa—-—= L — )dx'dt
2 n
[ [ oo ) cne
0 a—ef2 Jw>l =2 xl n

From Remark 6.2 the support of u* does not propagate on the left of a so
w'(t,ea — £/2,x') = 0 a.e. Moreover, arguing as we did in Proposition 4.3 and
Theorem 4.1, we have

T o
(6.18) lim f J f Z @0 B} (W)X, ——(C(i))d'x'd\:ldt=0
=+ Jg a—g/2 Jw> =2 -xx n

which yields

1>+ 00

T '
(6.19) lim supf Jw+(r,a,x’)XE(r,a)§()—c-) dx'dt = 0.,
0 n

Hence w'(f,0,x') = Qae. forx’ € RY ' and T/C > t/C > — a + &. Making
e = 0 and T — -+ we obtain the result.

Remark 6.3. Thanks to Propositions 6.1 and 6.3, if we suppose moreover
that all the @; and ®;' are Lipschitz contmuous with constants C; and C; ofi™
{r 0=r <”uo |e=} for some wu, in D(A)* N L"(RY) such that suppu; C

H [a:,b;], then if u is the solution of (C.P.), with initial data u, we have

i=1

supp u' (¢, )Cn{a +Cb+tC]

i=1 i

6.2. Localization. In this section we give a sufficient condition on @ and B
such that the support of the solution u(z,.) of (C.P.), remains bounded (in some
direction) independently of ¢ > 0.

Proposition 6.4. Under hypotheses (H.0), (H.1) and (H.2,), we suppose
moreover that

1
(6.20) f b
' o Bld7(s)

If uy €ED@AY N L*RYY is such that supp ug C {(x,x):a = x, < b} and if
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u is the solution of (C.P.), with initial data uy, there exists b* > b such that
supp u* (¢,.) C {(x,,x"):a = x, = b*} for any t > 0.

Progf. From Remark 6.2 supp u™(¢,.) C [a,+%) X RY ~! and from Proposition
4.3, u'(t,x,,x') is majorized by the solution v of
v d

et — (D ; +
6.21) Py + o, @M+ S0 inR* X R,

v(0,%1) = volx;) = ‘lug”LxX(n,b)(xl)-
For & and A > 0 we let w, be the solution of the evolution equation

d
— (P (w)) + Ba(w,) 20 in (b,+o),
(6.22) dx,

we (D) = |lug |- + &,

and we define w, in R* X (b;+) by w,(t,x;) = w.(x;). As we have seen in
Proposition 4.1, W, satisfies

o,

d
- ch —s de 1
o +E)x1( (We)) + Ba () 20

(6.23)

in Kruzkov sense in (0,+=) X (b,+%) and there exists m > O such that
W (t,x,) > v{t,x;) a.e. in [0,+%) X [b,b + m). We consider v € G* (0, + )
and { € @ (b,+) such that d{/dx, = 0 in [b + m/2,+). From Proposition 2
of [2] we have

dvy di
(6.24) f {(v - w){ -c; +(®,(v) — <I>1(vT;E))'yE—}dx,dt =0,

X1

If we make dy/di — 8y — 8, we deduce that

(6.25) JC(V = W) (8,x)dx,

‘ d
= f L(ve — ws)*(xi)dxl + j j (@ - q)l(ws))——z;—dxldta
0 Jveiy, dxl

and the right-hand side is nonpositive. Going to the limit as & and A go to 0 and
{ to the characteristic function of [b,+%), we get v(r,x;) = w(x,) in R* X (b,+x)
where w is the solution of

£ (By(w) +Bw) 20 in (b,+°),
(6.26) dx,
wib) = [luy ||~

If we compute w we deduce
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P (leeglle=) ds :l

. ) b+ A0 -l |
(6.27 supp v(z,.) {ab J; B (s)

for any ¢t = 0.

Remark 6.4. By combining Propositions 6.3 and 6.4 we obtain a compact
support property in R* x R for (¢, Y " (£, %y, )| where u 1s the solution of
(C.P.), with initial data uy € D(A)L M L*(R"Y) such that supp ug C {(x;,x"):a =
x = bl.

The multidirectional version of Proposition 6.4 is

Corollary 6.3.  Under hypotheses (H.0), (H.1) and (H.2¥) for all 1 <[ = N,
if we suppose moreover that condition (5.10) holds, then for any u, € D(A)Ll N
L™(RY) with compact support there exists a compact K of RY such thas, if u is
the solution of (C.P.), with initial data u,, supp u(t,.) C K for any t > Q.

6.3 Asymptotic behaviour. Our first result is a time-regularizing effect with
a uniform boundedness principle.

Proposition 6.5. Assume (H.0), (H.1) and for some R > 0
(6.28) j s <+
. oo,
4 BO (s)

then there exists a contmuous decreasing function h:(0,+») ~> [0,+) such that
for any uy € DAY N L7 RY)Y, the solution u of (C.P.)y satisfies u(t,x) = h()
a.e. in (0,+=) x RV,

Proof. First we notice that (6.28) implies max B~'(0) < +o. We let
ds
0 b
&+ B ()
T &€ (0,+=]. From (6. 28) te> [ ds/Bs) is a decreasing bijection from
R* ,+) to (0, T*1. Let & be the inverse mapping. We define # on (0,+%) by

h(1) = k() on (0,771 and h(r) = R* on (T"*,+). The function 4 is continuous
on (0, +) and it satisfies

R" = max p~(0) and T =

dh .

— + B30 ae. in(0,+x),
(6.29) dr

ROy =supDP)ER" U {+=}.

By Proposition (4.2) u(t,x) = h(f) a.e. in (0,+=) x R".
Remark 6.4. 1f we suppose that the following inequality
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(6.30) f I A S
. - w,
B . B
holds for some R > 0, there exists 4:(0,+%) — R™ such that [[u(z,.)]|- = ]ﬁ(t)

for any t+ > 0 and any u solution of (C.P.); with initial data u, € DAY N
L*(RY). Other regularizing effects can be found in [3] and [26].

Using the same ideas we have the following compact support property for ¢ =

u(z,.).
Proposition 6.6. Assume (H.0), (H.1) and
631 bds F d
o B°®  JLBY®
then for any uy € D_(Aj’“l N LE(RY) there exists T* > 0 such that the solution u
of (C.P.), with initial data uy has its support in [0,T%] x R”.

Remark 6.5. When Int B(0) = (EAQ),B+ (0Y), and is nonempty, any solution
u(t,.) of (C.P.); with initial data 1y & D (A} N L”(RY) vanishes for ¢ large enough
provided (H.0) and (H.1) hold and f which belongs to L ([0, 4% L' RY) N L*(RY))
satisfies for t = T, > 0

(6.32) B~ + p) =—f (1,)=0=f"(2,) = B7(0) — pW),
where p: [Ty, +%) — R" is such that [7,” p(s)ds = -+,

6.4. Instantaneous shrinking. The instantaneous shrinking of the support of
the solutions of (C.P.), is a simple consequence of the hyperbolic nature of the
equations and of the comparison theorems previously obtained.

Proposition 6.7. Under hypotheses (H.0), (H.1) (H.2,) and

(6.33) f B i
. 0 BD(S) ’

we suppose moreover that ®, is Lipschitz continuous on {r:0 = r = |luy[|;-}
where

u € DAY N L7®RY) N LYR; L™ (RY ™))
and that

| llln}r Huf{ ()CJ,.)“Lx(RN—l) = 0.
If u is the solution of (C.P.), with initial data ug, then
i) there exists T* < +o such that u™ (t,x) = 0 in [T*,+%) X RY,
i) there exist wo monotone real functions b* and b~ defined in (0,+%) such
that supp u*(t,.) C {(x,x"): b7 () = x, = b" (O} for any t > 0.
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Proof.  Part 1) was proved in Proposition 6.6. Thanks to Proposition 4.3 it is
sufficient to prove ii) for the solution v of

A (@, + B30 in (0,4+%) X R,
(6.34) a  ax,

v(0,x,) = vp(xy) = Huf{ (xla-)|L”(R"’"')

since v(t,x;) = u*(r,x,,x') a.e. We call C the constant of Lipschitz of @, on
{r:0 = r < |luj|-}. For & > 0 we define

§(e) = inf{x, :vg(x =& a.e. in (x;,+%)},

(6.35) 3 () = supf{x; i vy(x) = e a.e. in(—o,x)},
) *ds
g) = ,
0 BO(S)

and we claim that v(z,x;) is almost everywhere zero on the set
(6.36) {(t,x):r=s(e),x; =87 (e) + CH U {(t,x,) 11 = t(e),x;, = 8 () — Cr}.
For that we call &, the solution of the evolution equation

E

(6.37) dt

+ Bh,) 20 in (0,+00),

h(0) = &.

he is given by inversion from t = [} , ds/B°(s), for 0 = t = (&), h, = 0 for
t > t(g). Moreover we have

oh,
af

(6.38)

d _ _
+ = (Dy(h)) + Blh) 20,
dx,

in Kruzkov sense in (0,+%) X R where A, (t,x,) = h.(). For n € N and 0 <
t=n/C, weset S,(5) = {x;:|x; — 8(e) — n| < C(n/C — n}. From Proposition
4.4 we have

(6.39) f (v — h)"dx sj (vo — &) dx.
Sl

5,(0)

If we make n — 4+« and use the fact that &, = 0 on [¢(g),+) we deduce that v
vanishes on

{tx) e = 1e),x, = 87 (e) + C1}.
In the same way v vanishes on

{tx) = t(),x, =37 (e) — Ct}.
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Moreover for any ¢ > 0 small enough we can find e > 0 such that t = #(g); we
let & = (), define b7 (1) = 8" (e(r)) + Ct, b () = § ((1)) — Ct and we have
supp v{t,.) C [67(),b7 (1] for any ¢ > 0.

Remark 6.6. When N = 1 the assumption (H.2,) is unnecessary and (H.0)
reduces to ¢, is continuous.

The multidirectional version of Proposition 6.7 is the following

Corollary 6.4. Under hypotheses (H.0), (H.1) and (H.2F) forany 1 = i =N
and

(6.40) fl ds _ [ _ds <+
' o B )L B'® ’

we suppose moreover that ® is Lipschitz continuous on {r:|r| = |ug| -} where

N
%EBQVﬂ{ﬂUmpfmmm}

i=}

and 1im ue(x) = 0. If u is the soluwtion of (C.P.), with initial data uy, then

A

i) there exists T* > 0 such that u{t,x) = 0 in [T*,+w) x RY,

ii) there exists a monotone function b:(Q0,+») — [0,+=) such that supp
u(t,) C {x:|x|l. = b@®} for any t > 0.

When Int B(0) is not empty we also have an instantaneous shrinking of the
support of the solution of (C.P.),. For example

Proposition 6.8. Under hypotheses (H.0), (H.1) and (H.2,), we suppose
moreover that ®, is locally Lipschitz continuous on R* and Int ' (0) = (0,87 (0))
with B(0) > 0. Assume

uo € DAY NL7RYY N LYR; L*RY™'Y)
and
FE L ([0,+); L'(RY) N L*(RY))

such that ‘ lim Hug (xl,v)“f_*(n’”") =0,
Efi sy

F € Li ([0, +o); L' (R L”(RY™1)))
and
(6.41) uf+ (tyxls')HLx(RN'l) = B"(0) = al),

for t = T and |x;| = R, where a:[T,+) — R” is such that [ ;" a(s)ds = +.
if u is the solution of (C.P.); with initial data u, then the conclusions of Proposition
6.7 remain valid.
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The proof follows the one of Proposition 6.7 and is left to the reader as well
as the proof of the multidirectional version of Proposition 6.8. Other examples

of instantaneous shrinking for solutions of parabolic variational inequalities can
be found in [7] and [19].
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