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COMPACTNESS OF THE GREEN OPERATOR OF
NONLINEAR DIFFUSION EQUATIONS: APPLICATION
TO BOUSSINESQ TYPE SYSTEMS IN FLUID DYNAMICS

J. I. Diaz — 1. I. VRABIE

Dedicated to Professor Jean Leray

1. Introduction

It is well-known that compactness arguments are very useful in the study
of the existence and regularity of solutions of perturbed nonlinear evolution
equations. In the first part of the paper we fix our atiention on nonlinear diffusion

problems of the type

vw—ABwy=¢g inQr=(0,T)xQ,
(Pg) Bv)=0 on Zp = (0,T) % 09,
v(0,z) = uplz) onQ,

where (2 is an open regular bounded domain of BN and 3 is a continuous non-
decreasing function such that g(0) = 0. Problem {Pgy) arises in the study of heat
conduction when the thermal conductivity depends on the temperature (see e.g.
G. Diaz and J. I. Diaz [5] and its references). It also appears in many other
physical contexts (see the general expositions by Aronson [2], Kalashnikov [8]
and Vizquez [18]). In Section 2 we prove the compactness of the Green type
operators g — v and g — B(v) for vg € L1(Q) fixed, improving previous results

by the authors (see Diaz and Vrabie [6], [7]).
©1994 Juliusz Schauder Center for Nonlinear Studies
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400 Jo L Diaz -~ 1. 1. VRABIE

As an application of the mentioned results we consider the Boussinesq type

systerm

u;+(u-Viu —vAu + Ve =F(v) inQr,

v+ (u - Viv—ABw) =10 in Qp,
(Sps) diva =10 in @,

u =0 and {v) =0 on Lo,

u(0,2) = uglr) and v(0,z) = vy in £,

where now we assume N = 2. The special case 3(s) = s and Fv) = (0,v — V),
for some ¥ € R fixed, arises in thermohydraulics (see, e.g., Temam [17, p. 129]).
In these circumstances, the unknowns w,v and 7 represent the nondimension-
alized velocity, temperature and pressure, respectively, of a fluid occupying (1.
The general case analyzed here could be interpreted as a mathematical model
describing the movement of a fluid inside (2, in which a diffusion process takes
place simultaneously. According to the type of diffusion considered, u and 7 are
again the nondimensionalized velocity and pressure of the fluid respectively, but
v may represent either the concentration of a certain substance diffusing into the
fluid, or its temperature. We remark that our results can be easily applied to
more sophisticated systems arising, lor instance, in the study of premixed flame
models for the combustion of multicomponent mixtures of gases (see Manley,
Marion and Temam [14]). We also remark that the most important particular
case, of relevance in applications, corresponds to the choice of 3 either as a piece-
wise linear function (see Rulla [15] and Rodrigues [16]) or 3(s) = |s[™ !5 for
some m > 0 (see references in the mentioned surveys). Our existence result for
system {Sgr) concerns the cases of piecewise linear or fast diffusion operators,
e B(s)=|[s]""!s and m € (0,1). When 0 < m < 1 the problem is of relevance
in plasma physics (see references in G. Diaz and J. [. Diaz [5]). Finally, we point
out that our existence result gives the additional regularity (u - V)v € L2(Q7)

which is of interest for nonlinear diffusion operators.

2. Compactness properties of the nonlinear diffusion equation

In this section we prove some compactness results for the nonlinear diffusion
problem (FPg). Let © be a nonempty and bounded domain in RY having the
cone property and let 4 : R — R be a continuous and nondecreasing function
with #(0) = 0. We define B: R — R by

B(r) = A7) dr, for each r € R.
Ju
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In what follows we say that a function f : R*¥ — R! has a sublinear growth if

there exist ¢ > 0 and b > 0 such ihat
F () < allz|| + b, for each z € R,

We point out that if # has a sublinecar growth, taking into account that
is nondecreasing and 3(0) = 0, we casily deduce that 5B is nonnegative on Ry
and the corresponding superposition operator associated with B maps bounded
subsets in L2(£2) into bounded subsets in L'(£2).

It is well-known (see the mentioned surveys) that for each g € L'(Qr)
and each vy € LY(Q), there exists a unique function v € C([0,7]; L'(Q)) with
Bv) € LY0;T; W, (Q)) satisfying (Pg) in the sense of distributions over Q.
We shall refer to such a function v as to the unique solution of {P5) corresponding

to g and v, and we shall denote it by
(1) v = (g, v0).
The next compactness result has been proved in Diaz and Vrabie [6].
LEMMA 1. If 8 is strictly increasing, then for each fived vy € L*{(Q) and each

weakly relatively compact subset G in L*(Qr), the set

o(G o) = {p(g:vo); g € G}
is strongly relatively compact in C([0,T]; L1(82)).
The next consequence of Lemma 1 improves [7, Corollary 3.1].

COROLLARY 1. If f is strictly increasing, then, for each fized vy € L*((2)
and each p € [1,2), the mapping (-, vo) : L*(Qr) — C([0,T; LY(Q)) carries
L3(Q7) into C([0, T); LP(Q)) and is weakly-strongly sequentially continuous from
the former to the latter. In addition, if vg € L™ (Q) then the resull holds for any
p € [1,00).

Proor. We start by recalling that if J is continuous nondecreasing and
B(0) = 0 then, for each p € [1,00), each 1y € LP(2) and each g € L1(0,T; LP (),

v = (g, vg) satisfies

vl
(2) No(E) | Lo ey < llvoll ey + /u Nlg(m)l Loy dr,

for each t € [0,T] (see Bénilan [4]). Therefore, it v, € L*(Q2), ¢ € L*(Q7) and

p€[1,2), we have

ve L0,T; LA Q) € L0, T; LP(Q)).
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Now, let us assume by contradiction that v does not belong to C([0,T); L¥ ().
Then there exist ¢ € [0,7] and (¢, )nen in [0,7] with ¢, — ¢ and £ > 0 such that

(3) e <o) — v(ta) |l e,
for each n € N. Since v € C([0,T]; L*(Q)), at least on a subsequence, we have

lm v(t,) = vl(t) a.e. in L.

n—oo
Inasmuch as (v(t,}),er is bounded in L2(Q) and p € [1,2), from Ladyzhenskaya
et al. [9, Lemma 2.2, p. 72|, we conclude that on this subsequence v(t,,) — v(¢) in
LP(2). But this contradicts (3). Thus v € C([0, T]; LP(£2)). In a very similar way,
using Lemma 1, we may prove that for each fixed vy € L*(£2) and each bounded
subset G in L*(Qr), (G, vg) is strongly relatively compact in C([0, T]; LP(£2)).

Now, let (g, )nen be a sequence in L#(Qr) weakly convergent in this space

to g. Since {w{gn,vo);n € N} is strongly relatively compact in C([0,T]; LP (D)),
to complete the proof, it suffices to show that the set of all limit points of
(0(gn,v0) Inen in C{[0,T]; LP(Q)) contains only (g, vo). But this follows from
the fact that the unique limit point of (w(gn, vo))nen in the sense of distributions
over Qr is w(g,vg), and this completes the proof. A similar argument can be
applied for any p € [1,00) if vy € L>=(52). O

In order to prove the next compactness result, a simple lemma is needed.

LEMMA 2. If A is continuous nondecreasing and B(0) = 0, then, for each
vy € L) with B(vg) € L), the unique solution w of (Py) corresponding to
g=10, i.e. w=(0,vy), satisfies

(4) B(w(t)) € L'(Q), for each t € [0,T),
and
{5) V8wt Fein < _—|EB(’UJ( Mz

Joreach 0 < s <t <T.

Proor. Multiplying both sides in wy — AB(w) = 0 by 3(w), integrating over

£ and over [s,f] < [0,7T], we get

1 dB( o
/ /L—(—uﬁdrl:(?lr%v/ /[[Vﬁ(w‘)”“d:lrd'rﬁ(]4,
Jo Ja d7 s S0
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and thus

(6) | B(w{t))

nf
Loy + / |fv/j(w(7‘>)||i'-'(n) dr = H-B(w(é’))lle(s'z)~

Since B(vg) € LY(Q), from (6) we easily get (4). Next, multiplying both sides
in we — Ap(w) = 0 by #(whw,, integrating over { and over [s,¢] C [0,T], we

obtain , [
- 1/ d f . .
/ / wif' (w) dedr + / = / |V B(w)||? d dr = 0,
Js S0 2/, dr Jq
and consequently

2

IV B2y < IVBw()l 120,

for each 0 < s < t < T. From this inequality and (6) we deduce (5) and this
completes the proof. |

LeMMA 3. If 3 is continuous nondecreasing, with sublinear growth and 3(0)
= 0, then, for each fized vg € L*(Q) and each bounded subset G in L*(Qr), the

set

Blyp) = {8(v?*);v? = w(g,v), g€ G}

is strongly relatively compact n C{[0,T]; LP(Q)), provided p € [1,2)} and, in fact,
for any p € [1,00).if vp € L=().

Proor. We denote by S(t) : L1(Q) — L*(R), ¢t > 0, the semigroup of

nonexpansive mappings generated by AB on L'(£2), i.e.
S(t)vo = ©(0, vo)(2),

for each vy € L1(Q) and ¢ > 0. Let vy € L*(£2) be fixed and let & be a bounded
subset in L%(Q7). For each g € G, we set v¥ = p(g,vo). Then, in view of (2),

we deduce that the set
(SOt~ A); ge G, te0,T], A>0, t— >0}
is bounded in L?(Q2). Moreover, from Vrabie [19, Lemma 2.3.1, p. 65], we have
t
970 = S0 = Moy < [ oDl dr
b
for each g € G, t € [0,T]) and A > 0 with £ — A > 0. Thus

10 8) = St = M| oy < VARG,
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for each g € G/t € [0,7] and A > 0 with ¢ — A > 0, where |Q] is the Lebesgue
£2(G0¢): 8 € G}, Hence

measure of © and |G| = sup{]|g]
\lin}) [0 (€) = S(A) (L = Al L1y =0

for each ¢ € (0, 7], uniformly for g € G. Since # is continuous and has sublinear
growth, {B(v?(t)); g € G, t € [0, T]} and {B(S(M)v9(t~N); g € G, £ €0, T], A >
0, t — A > 0} are bounded in L%(f2). The last relation in conjunction with [9,

Lemma 2.2, p. 72] shows that
(7} lim [|8(v(2)) = BS(A?(t ~ Dller () = 0,

for each t € (0,7], uniformly for g € &, provided p & [1,2). Next, by (5), we
have .
IVB(S(A(t ~ M) ey < XHB(U”("E = Nz

for g € G, t € (0,T] and A > 0 with t — A > 0. Since H}(f) is compactly
imbedded in L*(R2), this inequality along with (2) shows that {B(S{(A)v9(t— \));
ge G, A>0, t— > 0} is relatively compact in L*(2) for each ¢ € (0,T]. From
(7) we then conclude that, for each ¢ € [0,T], {8(v?(t)); g € G} is relatively
compact in LP(§1), for p € [1,2).

We will now show that {3(v?); g € G} is equicontinuous from [0, 7] into
L2(9). To this end, let t € [0,T] and let § € C§°(2). We have

b4 t+h
/[vg(t+h) —v9(t)]0de = / f /3(1)”(7))A9dxd7“+f ] gfdz dr,
Ja ¢ Q ¢ )
for each g € G and h € R with ¢ + h € [0,T]. Consequently,
}111‘% |<’Ug(f -+ h) — ¢4 (t), 0)L2<g)| ={)

uniformly for ¢ € G. Since C5°(0) is densely imbedded in Z?(Q) and {v9; g € G}
is bounded in L>(0, T; L*(£2)) (see (2)), the last relation shows that {v9;g € G}
is weakly equicontinuous from [0, T] into L2(£).

Next, we prove that {8(v9); g € G} is strongly equicontinuous from [0, T'| into
LP(Q), for p € [1,2), or equivalently, for p € (1,2). To this end, let p € (1,2)
and let A: D(A) C LP(Q) be the realization of 4! in LP(Q), i.e.

Aw = {z € L*(Q); z(z) € B8 Hw(z)) ae. for z € Q}

for each w € D(A), where D(A) = {w € LP(Q); 3z € LP(Q), z(x) € g~ (w(2))

a.e. for € ). Since B is nondecreasing aund continuous, §7! is maximal
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monotone and thus A is m-accretive. Inasmuch as p € (1, 2), the dual of LP(2)
is uniformly convex and thus, in view of Barbu [3, Proposition 3.5, p. 75], A is
demiclosed, i.e. its graph is strongly-weakly sequentially closed in L¥(Q). Hence,
if w,, — w and z, — z in LP(Q2), and w, € D(A4), z, € Aw, for each n € N,
then w € D(A) and z € Aw.

Now, let us asswme by contradiction that {Z(v¥); g € &} is not strongly
equicontinuous in LP(2) at some ¢ € [0,7]. Then there exist € > 0, (gn)nen in
(¢, and h,, -+ 0 such that ¢ + A, € [0, 7] for each n € N, and

e 1B (t+ hn)) = B9 (£)

Lr(61)

for each n € N. Without loss of generality, we may assume that there exists
v € L*(Q) such that v9(¢) — v in L?(2) and also in LP(£2). Since {v9; ¢ &
G} is weakly equicontinucus from [0,7] into L*(Q), we easily conclude that
vIn(t+ hy) — v in LP(Q). Now, let us recall that {8(v9(t)); n € N} is strongly
relatively compact in LF()) for p € [1,2). Consequently, on a subsequence at
least, we have

Alud (t)) — w in LP(§2).

But S(v9(t)) € D(A) and v9(t) € AB(v9(¢)), for each n € N. Inasmuch as A
is demiclosed, we have w € D{A) and v € Aw, l.e. w= B{v). Similarly, one may

show that, on a subsequence at least,
oIt + hy)) — 0 = F(v) in LP(Q).

Thus S(v9 (¢t + hy)) — B (¢)) — 0 in LP(§2), thereby contradicting (8). This
contradiction can be eliminated only if {#{v?); g € G} is equicontinuous from
[0,7] into LP(2).

Finally, by the Arzeld-Ascoli Theorem, we conclude that {8(v¥);g € G}
is strongly relatively compact in C{[0, T}; LP(Q2)), for each p € [1,2), and this
completes the proof. If vg € L°(£)) the maximum principle shows v(f,-) €
L™ (£} and an easy modification yields the result for any p € [1, c0). O

COROLLARY 2. If 3 18 continuous nondecreasing with sublinear growth and
B(0) = 0, then, for each fized vy € L*(Q) and p € [1,2), the operator g — B(v9)
maps L Q) into C([0,T); LP(Q)), and is weakly-strongly sequentially continu-
ous from the former into the latter. The conclusion holds for any p € [1, o) if
vg € L>(Q).

Proor. In view of Lemma 3, y — #(v9) maps L*(Qr) into C([0,T]; L (1)),

provided p € [1,2). Therefore, we have merely to show that this operator is
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weakly-strongly sequentially continuous [rom L*(Qg) into C([0,77; L¥(Q)), for
p € [1,2). Thus, let g, — ¢ in L*(Q¢). Since, by Lemma 3, {3(v9);n € N} is
strongly relatively compact in C{[0, T}; L¥(€2})), to complete the proof it suffices
to show that the set of all limit points of ({v¥*}),en in C([0, T; LF(£2)) contains

only A{v?). To prove this, let us assume that, on a subsequence, we have
Blv™) — w in C([0,T], LP(£1).

As L?(Q) is compactly imbedded in H~1(Q) and, for each £ € [0, T}, {v9 (t); n €
N} is bounded in L*(2) (see (2)), this set is strongly relatively compact in
HYQ). According to [19, Theorem 2.3.1, p. 61], the set {v%; n € N} is
strongly relatively compact in C([0, T]; H~1(€2)). At this point let us observe that
gn ~ g in L?(Qr) implies g, — g in L*(0,7; H~*(Q)). Following the very same
arguments as in [19, Corollary 2.3.1, p. 67], we deduce that v9» — 09 strongly
in C([0,T; H~1())). Now, for each ¢ € [0, T}, at least on a subsequence, we have
vIn(t) = v9(t) in L3(R), and also in LP(£2). Recalling that B(v9 (1)) — w(¢) in
LP(£2), and reasoning as in the last part of the proof of Lemma 3, we deduce
that w(t) = B(v9(t)), for t € [0,7). Thus, the only limit point of (F(v9)),en in
C{[0,T]; LP ()}, for p € [1,2), is A(vY) and this completes the proof. The result
for p € [1,c0) is proved in a similar way. (I

REMARK 1. Under the hypotheses of Corollary 2, we may prove that for each
g€ L(Qr) and p € [1,2), v € C([0,T); LP(£2)), and also that the operator g —
v¥ is weakly-weakly sequentially continuous from L#{Qy) into C([0,T]; LP(Q2)).00

3. An existence result for a Boussinesq type system

We start by introducing the functional setting of the system (5z,7). As usual
(see Leray [11], Lions [13], Temam [17]) we rewrite the Navier-Stokes equation in
the space of divergence free vector fields. We recall that, in this way, we obtain a
new system with only two unknown functions u and v. Namely, let us consider

the function spaces

C(Q) = {u € C°(YURY); divu =0}
H,(Q) = the completion of CZ°(£2) in the L*(£2;R*)-norm
W”’(Q) = WP (4 R) N H, (9);
HZ(Q) = (R nW2(9Q).
Let P, : L*((;R%) — H,(Q) be the orthogonal projection and let us define the
Stokes operator —A, : H2(Q} — H,(§) by

Asu = P Au
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for each u € H2(Q). Applying the projection P, to both sides of the first
equation of (Sg p), observing that P, Vr = 0 and that divu = 0 implies u =
Pou, we see that (S5 r) may be rewritten as

uy+ Pr(u - Viu —vAzu = P,F(v) in Qr,

v+ (n-Vio—A3w) =0 in Qr,

u=0 and fv)=0 on L,

u(0,z) =ug(z) and v(0,z) =wvo(z) in L

(9)

We may now proceed to the statement of the main results for problem (Sgp).
THEOREM 1. Let §& be a nonempty and bounded domain in R* having the
cone property and v > 0. Let §: R — R be a continuous strictly increasing
function such ithat 8~ 4s a locally Lipschitz function. Let F : R — R? be a
continuous function. Then, for each T > 0,uq¢ € WIQ) and vg € L(Q),

problem (9) has at least one solution (u,v) in the following sense:

(10)  w e C(0, T} Hy () N L0, T; W, (€2)) N L0, T H(Q));
(11) u¢, Po(u - V)u € L*(0,T; H(Q));
(12) v & C([0,T]; LP(2)), for each p € [1,2);

(13) Alo) € C(0, T} I7() 1 12(0, T5 HL(9)) N L=(Qx),
for each p € [1, x0);

(14) (u Vv € L*(Qr),
and (1, v) satisfies (9) in the sense of distributions over Qr.
REMARK 2. We do not know if Theorem 1 can be extended to the case of
0 R®. The main difficulty is to get suitable a priori estimates in order to prove
(14), which is crucial in order to conclude the local existence (by means of our
approach). We also point out that Theorem 1 remains valid, at least for some
T > 0, for a general initial datum vy € L2(£2) if we assume additionally that 71
is a globally Lipschitz function. O
REMARK 3. Using similar arguments to those in Diaz and Vrabie [7] we may
extend Theorem 1 to the case in which F is an upper semicontinuous multifunc-
tion with nonempty and compact convex values. We may also allow F to depend

on u and we may replace the second equation in (Sy ) by

v+ (u - Vv — Af{v) € Glu,v) in Q.
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a . . . .
where G : R? — 2F is upper semicontinuous with nonempty and compact convex

values. O

To simplify the exposition we will assume v = 1 in (9). We note that all the
arguments used in this specific case are essentially the same as those needed for
arbitrary v > 0.

The idea of proof in Theorem 1 is of topological nature and rests heavily upon
Corollary 1. It consists in showing that a suitably defined operator has at least
one fixed point whose existence implies the existence of a local solution of {9).
We describe briefly this idea. First, let us fix T > 0,7 > 0 and p > 0 (which will
be chasen very precisely later on) and let us define the set K = B, (0,1) x B(0, p),
where B,(0,7) and B(0, p) are the closed balls with center () and radius r and
p, in L0, T, H,(Q)) and L*(Qr-) respectively. Next, let us observe that, for
each (f,g) € K, each of the two problems

ut—AUUZf inQT':
(15) u=>0 on X,
u(0,z2) =ug(z} inQ,

and (Pg) has a unique solution u € C([0,T™]; H,(2)) and v € C([0,T*]; L*(02)).
Moreover, since vy € L>®(§!) we can assume, without loss of generality, that
F and /8 have sublinear growth and #~! is globally Lipschitz. Indeed, by the

maximum principle any function v satisfying

v+ (u-V)v—ABv) =0 inQrs,
(Pﬁ,u) Alv)=10 o1 Xipx,
v(0, z) = vg(z) on £,

when div e = 0 must satisfy
[ollzo= (e ) < lvollzee(a)
(see e.g. Rulla [15]). Then we can replace 5 over the intervals
(=0, ~llvoll ooty — 1) U (Jlwgll oo () + 1, 00)

by any continuous extension B of 3 having sublinear growth and with 4= glob-
ally Lipschitz. So the solutions of (Pz ) and (Pg ) must coincide. A similar
argument holds for F. Now, let us define

Q. g) = (—Fy(u -Viu + P,F(v), ~(u - V)v),
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where u and v correspond to (£, g) by means of (15) and (Pg). Clearly, whenever
{f,g) € K is a fixed point of @,{u,v) satisfies {15) and () is a sclution of
{9). Hence, to complete the proof, it suffices to show that @ has at least one
fixed point. To this end we will prove that, for some suitably chosen T >
0, r > 0and p > 0, @ maps K into itsell and is weakly-weakly sequentially
continuous from A into K (both the domain and range being endowed with the
wealk topology of L0, T*; H,(Q)) x L*(Q7-)). Since K is convex and weakly
compact in L2(0,7%; H,(Q)) x L*(Qr+), by Arino, Gauthier and Penot’s Fixed
Point Theorem [1], @ has at least one fixed point in K.

Before showing how to choose T* > 0, r > 0 and p > 0, some preliminaries
are needed. First, let us define ¢ : H,(€2) — [0, 00 by

i ou;/0z;%dr  ifu € WhH(Q),
(‘D(u) — { 2 zl,‘[-——l fﬂ| / Ji ( )

o0 otherwise.
It is well-known that ¢ is convex, l.s.c. and proper and its subdifferential coin-
cides with the Stokes operator, i.e.
dp(u) = —-A,u

for each u € D(Jy), where D(dp) = H2(R). The next lemmas will be useful
later. -

LeMMA 4. If F: R — R? has sublinear growth there exist k € (0,1), h > 0,
c>0 and d > 0 such that, for each u € HZ(Q) and v € L2(), we have
(16) | = Palu - V)u + P.F(W), ()
< ElAsul, @ + hle()] +cllv]

Lo T d.
Proor. Since ¢ R? there exists C' > 0, such that

1P (u - V)ul? ) < Colm)llulla, ol deullm, @)

for each u € H2(Q) (see Temam [17]). Since W)?(Q) is continuously imbedded
in H,(§2), there exists Cy > 0 such that

alle, @) < Cillullyreg, = V3 (p(u))/?
for each u & W’é’g(ﬂ). From the last two lnequalities we get

(17) | Pr{u - V)u Hfr){r,((‘z) < mlp(uw)P A u w0,
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for each u € H2(Q), where m = +/20C,. In view of (17), we then have
I~ Py(a - V)u + PF()l3, 0y < 2mle(u)*?|Aculla, ) + 21 P F(0) 3, ()

for each u € H2(Q). But F has sublinear growth and thus there exist ¢ > 0
and & > 0 such that |F(v)|| € alvl+ b for each v € R. From this remarlk, the

preceding inequality and Cauchy’s inequality with € > 0, we get
| = Po(w - V)u + PF(u)}, 0

£ 9 m
< 2{ §||Agu i, ) + 5o

2ol | + 2ol

res < -
<ellAsuily, @ + ?[GD(U)]J +da*[[of|F2q) + 467

ey +b)°

for each u € HZ() and v € L*(N). This inequality clearly shows that (16)
holds with & =& € (0,1), h = m/e, & = 4a® and d = 4b?, and this completes the
proof. _ O

LEMMA 5. For each ug € W23(Q) and each r > 0, there exist two nonde-
creasing functions v, 0 : (0,00} — (0, +o0), with

lim v(r) = 0,

70

and such that, for each 7 > 0, and each £ € L?(0,7; H,(Q)) with ||f
< r, the unique solution u of (15) satisfies

L20,7Hy ()

(18) [l ree(@nipzy < ¥(7) +6(7).

Proor. In view of Solonnikov’s Theorem (see e.g. von Wahl [20, Theorem
IIL.1.1, p. 67]), there exists a nondecreasing function { : (0,00} — (0,00} such
that, for each ng € W12(Q) and each f € L%(0,7; H,(f2)), the unique solution
u of {15) satisfies

(19)  [lay

r2(@.&2) F [ullL2o,mm2(0) + [0 HL"‘O(O,T;W;’E(Q))

U 22 0,m5 8, (520 + Vip(wo)].

Hence the components of u belong to the space WQZ’I(QT) as defined in La-
dyzhenskaya et al. [9, p. 5]. Since  C R? has the cone property, also from
[9, Lemma 3.3, p. 80], [W; " (Q+)]? C L™(Q,; B?) and there exist C; > 0 and
Cy > 0 such that

(g (g, 2y < Cill@lloz(q.mey + Cliltel g, ey + 1l 20, a2 )
(20) || < Gl + Gl +[1af] ]
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for each 0 € [W5"'(Q-)]>. From (19) and (20), we conclude that there exists

'y > 0 such that

(21) Jlullp= (o, &2y < Cillullozomm, ) + Callm U 2208, 0y + V().

Since

o+
()l e, < ol ) + / (I£ ()l er,y 52y ds
JA

for each ¢ € [0, 7], and W}12(Q) is continuously imbedded in H,(f2), there exists

C4 > 0 such that

(22) iz, ma. o € Cav/me(ua) -+ Tl 220,78, (2))

for each ug € WY2(Q) and £ € L*(0,1; H,(Q2)).

Now, let ug € W}H2(Q) be fixed and let r > 0. We define v : (0,00) — (0, 00)
by y(7) = C1[Cy~/Te(ug) + 77, and 8 : (0,00) — (0,00) by 8(7) = C3l(7)[r +
Ve(ug)]. Clearly lim,_.gv(r) = 0, and by (21) and (22) we get (18), thereby
completing the proof. 1

LEMMA 6. For eachvg € L*(Q) and each p > 0, there exists a nondecreasing
function 1 : (0,00) — (0, c0) with
lim n(7) = 0,

T—0

and such that, for each g € L*(Q;) with ||glli2q.) < p, the unique solution v of
(Pa) satisfies

(23) V8L, < I1Bwo)llz ey +n(r).

ProoF. Multiplying both sides in (Pg) by 8(v), integrating over {2 and over
[0, 7], we get,

24) Bz @) + VBN E2(q.) = 1Bl Ly + (9. 80D 20,

In view of (2), we easily deduce

(25) [o(8)]

rrey < llvoll 2y + VTilglleeg.,

for each ¢ € [0,7]. Recalling that § has sublinear growth, i.e. that there exist
@ > 0and & > 0 such that

(26) 18(v)| < Glv| + b,
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for each v € R, from (24) and (25), we get

V8320, <IBWo)li@
+/7lg] Lo [0Hvoll L2y + '\/;EHQHLE(QT) +5/1€2],

where || stands for the Lebesgue measure of Q2. Hence (23) is satisfied by
7:(0,00) — (0, 00) defined as

n(r) = \/FP[EH'UD“LQ(Q) + Tap +5\/ﬁ]7

for each 7 > 0, and this completes the proof, O

We may now proceed to the definition of the set K. To this end, let ug €
Wi2(Q) and vp € L=(f2) and let us define r > 0 by

(21) =22 o(uo) + 1),

where k € (0,1) is given by Lemma 4. Next, let us define p > 0 by
(28) p* = M1+ 01 B(vo)ll rr(e) -+ 1,

where M is the global Lipschitz constant of =1 and 8 : (0,00) — (0,00) is
given by Lemma 5, for ug and » > 0 fixed as above. Finally, choose T* € (0,1]
satisfying

.2

3 .
@) 7 (nlpwo) + 5| + ooz + VTP +a) < 25502

7 "

where k € (0,1), >0, C > 0 and d > 0 are given by Lemma 5, r > 0 is defined
by (27) while p is defined by (28), and

(30) YT <1, T <L
Here 7,7 : (0,00) — (0,00) are given by Lemmas 5 and 6 for ug, v, > 0 and

p > 0 fixed as above.

LemMMA 7. Letr > 0, p > 0 and T* € (0,1) satisfy (27)=(30), and let
K = B,(0,7)%x B(0, p) where B;(0,1) and B(0, p) are the closed balls with center
0 and radius r and p, in L*(0,T*; H,(Q)) and L*(Qz-) respectively. Then, for
each (f,g) € K, the unique solution (u,v) of (15) and (Fs) satisfies

(—=P,(u - Viu + P,F(v), ~{u - V)v) € K.
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Proor. First, let us recall that (15) may be rewritten as

{ Ay 4 dpu(t)) =£(t), 0<t<T,
1.1(0) = Uy.

Multiplying both sides by dep(u(t)) we get
—(u () + 10p(E)llr, @) < 19 Ol @I Olla, @
a.e. for t € (0,7"), and

o(u (1)) /uw ()2 o dr < N0l + /”fumm

for each £ € [0,7*]. From this inequality we obtain both

.
(31) Anmwa@mswmmw
and

’F‘2
(32) p(u(t) < plug) + oL

for each t € [0,7*]. From (31) we deduce that, for each & € (0,1/2), we have
(1= 20 |AculfFe 0,7, ) < 2p(00) + r?

Taking & = (1 —k)/(2(1 + 3k)) € (0,1/2), after some standard calculations in-
volving (27), we get

(33) ElAoulFeorea, ) <
From Lemma 4, (32), (33) and (25), we deduce

| = Polu - V)u + PF(v)||5e

o (02))
T ) R
< 'l"”Arru H%Q(U,T*;HU(Q)) +h i [(p(ﬂ (t))p dt +- C”UHHLQ(QT*) -+ Td
LR L

1+k 5 . r?]” v o)
24 hfotua) + 5|+ Gl + VI + ).

<

In view of (29), this inequality shows that

(&)

(34) | = Polu - V)u + PR )2 rma1, ) 7
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But (34) shows that — P, (u - V)u-+ P, F(v) € B,(0,r) for each (f,¢) € K. Next,
let us observe that if M is the global Lipschitz constant of 37! then

2

1 Vol 720, € Mlullze g, w2 V@) 1220,

and thus, by (18) and (23), we get
H(u - V)ollZe(gp.y € MA(T) + 8T B (o) | Li(oy +n(T*)]-

Taking into account that for T* € (0,1], 6(T~) < 0(1), and using (30) and (28),
we conclude that

(- V)olta e < ML+ OWPIBw)lye) + 1] = 4"

Thus (u - V)v € B(0, p) and, along with (34), this completes the proof. a

ProOOF or THEOREM 1. In view of Lemma 7 we may define the operator
Q: K — K by

Q(f,g) = (Fo(u - Viu + FF(v), —(u - V)v),  (f,g) € K,

where u and v satisfy {15) and (Pps) respectively. In order to apply Arino,
Gauthier and Penoct’s Fixed Point Theorem [1], we only have to show that @
is weakly-weakly sequentially continuous. To this end, let ((f,,9.))nen be a
sequence in K such that

£, —f in L2(0, T H, (), gn—g in L3Qrr).
In view of Vrabie [19, Corollary 2.3.2, p. 68], we have
U, ~u in C([0, T} Hy (),

where u,, is the solution of (15) corresponding to ug and f,, while u is the

solution of (15) corresponding to ug and f. We also have
Py(uy-Vu, = P;(u-V)u in L2(0,T*; H,(2),

and, by Corollary 1, for each p € [1,00), v, — v in C([0, T*]; L?(Q?)}. Here v, is
the solution of (Fj3) corresponding to vy and gy, while v is the solution of (Pg)
corresponding to vy and g.

Next, we will show that

(35) (U V)vy — (u-V)v in L*(Qq-).
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Assuming the contrary, on a subsequence at least, we have (u,, - V)v, — w in
L*(Qp-) where w # (u - V)v. At this point let us observe that we may assume
without loss of generality that u,, — u a.e. in Q- and Vv, — z in L (Qp-) x
L*(Qp+). Cousequently, w = u - z. But A(v,) — A(v) in C({0,T*]; LP(2))
and A strictly increasing imply that z = Vv. But this contradicts the initial
assumption, and hence {35) holds.

Now, we will prove that
(36) F(v,) — F(v) in L2(Qp-) x L*(Qp-).

To this end, let us assume by contradiction that this is not the case. Then, at

least on a subsequence, we must have
Fo(A(v,) = F  in L¥HQp-) x LA(Qr-),

where F s Fy(A(v)). From Corollary 2 we may assume (taking a subsequence
if necessary) that F(v,) — F(v) ae. in Qz«. But in view of {9, Lemma 2.3, p.
72], it follows that F = F(v). This contradiction can be eliminated only if (36)
holds.

Since P is linear continuous, from (36) we easily deduce that
P,F(v,) — P,F(v)  in L2(0,T"; H, ().

Thus ¢ is weakly-weakly sequentially continuous from K into K, and since K
is weakly compact in L2(0,7*; H,()) x L?(Qr-), by virtue of Arino, Gauthier
and Penot’s Fixed Point Theorem [1], @ has at least one fixed point (f,g) € K,
and this completes the proof of the existence of a local sclution. From. the
boundedness of v we can assume, without loss of generality, that F is bounded
on R. Then, by a known result on the Navier-Stokes equation in the space
dimension two, each noncontinuable solution of (9) must be defined on [0, oa).
Since (10)—(14) follow from Lemma 4, (19) and Lemmas 3 and 7, the proof of

Theorem 1 is complete. [
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