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On a Nonlocal Stationary
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Abstract

We prove the existence and some qualitative properties of the solution to
a two-dimensional free-boundary problem modeling the magnetic confinement of
a plasma in a Stellarator configuration. The nonlinear elliptic partial differential
equation on the plasma region was obtained from the three-dimensional mag-
netohydrodynamic system by HenpErR & CARRERas in 1984 by using averaging
arguments and a suitable system of coordinates {Boozer’s vacuum coordinates}.
The free boundary represents the separation between the plasma and vacuum
regions, and the model is described by an inverse-type problem (some nonlinear
terms of the equation are unknown). Using the zero net current condition for the
Stellarator configurations, we reformulate the problem with the help of the notion
of relative rearrangement, leading to a new problem involving nonlocal terms in
the equation. We use an iterative algorithm and establish some new properties on
the relative rearrangement in order to prove the convergence of the algorithm and
then the existence of a solution.
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1. Introduction. Statement of the main result

This paper deals with the mathematical treatment of a two-dimensional free-
boundary problem modeling the magnetic confinement of a plasma in a Stellarator.
The derivation of the model [rom the ideal magnetohydrodynamics static system is
presented in Section 2. In contrast with Tokamak devices, Stellarator geometries
are not axisymmetric. The magnetohydrodynamic equilibriom state depends on
the toroidal angle, and thus the nested magnetic surfaces are very complex because
of the three-dimensional character of these configurations. Nevertheless, certain
types of Stellarator geometries lead to bidimensional problems by the method of
averaging. The model under consideration is obtained through the averaging
results by Henper & Carreras [HC]. They used a special inverse coordinate
system (p, 8, ¢) (the Boozer vacuum coordinates system; see Boozer [Bo]) where
p = p{x, y, z) is a function which is constant on each nested toroid {p > 0 except for
the magnetic axis where p = 0}, 0 = 8(x, y, z) is the poloidal angle (i.e., 0 is constant
on any toroidal loop) and ¢ = ¢ (x, y, z) is the toroidal angle (1.e., constant on any
poloidal circuit). Boozer’s coordinates are constructed so that the vacuum mag-
netic field lines are straight in the (0, ¢)-plane. By averaging in ¢ and adding the
free-boundary formulation to the Grad-Shafranov type equation obtained by
Henper & Carreras, Disz [D1] formulated the problem in the following terms:
Let Q = {(p, 0): 0 < p <R, 0€(0, 2n)} and define 0Q = I'rul Ul by

Tg = {(R,0):0e(0,2m},T, = {{p, 0) or (p. 2n): p(0, R)}, Ty = {(0, ): 0 (0, 2m)}.
Given A >0, F, > 0, a, be L™(Q) with # > 0 in Q and yeIR, find
uw:Q-R, F:R-oR.

such that Fe W= (R), F(s) = F, for all s £ 0 and (u, F) satisfy

— Zu=alp,OF () + F)F'(u) + ib{p, Ou, in Q, (H
@) ule,=7 u(p.0) = ulp.2m) for pe(0.R), S5=0 on Ty, &)
J[Fa)F (u) + Ab(p. O)u, ] pdpdd =0 Vie [infy u, supe u], {3)

fe =t}

where % is a suitable elliptic second-order differential operator with ceefficients
depending on p and @ and where u, 1= max (u, Q).

First of all, let us mention the main differences between () and the model
considered in the mathematical literature on the study of the confinement of
a plasma of Tokamak devices (see e.g. TEmam [T1, T2], BEREsTyCK1 & Brezis [BB],
Brum [B], FrieDpmaN [Fri], Mossivo & Temam [MT], Raxotoson [R3] and their
references). Due to the axisymmelry of the geometry, the unknown u (the magnetic
flux) in the Tokamak case may be written as a direct function of the standard
cylindrical coordinates system and so the operator % is the usual Laplacian
operator (& = A). A more important factor seems to be the difference between the
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additional condition (3} {expressing the Stellarator condition of zero net current
within each flux magnetic surface) and the Tokamak condition of positive total
current

JIF)F (u) + 2bu,Jdx =1
0

for a prescribed I > 0. Due to this fact, in the Tokamak case it does not seem
possible to determine the function F unless we have some extra information, such
as the value of the normal derivative of u at dQ} (see Bererra & VoceLius [BV] and
its references). Then the mathematical model for Tokamaks assumes an equation of
state for F similar to the equation of state for the pressure. It is usually assumed
that F(u)F'(u) + Ab(x)u, can be written as uc(x)u, forsome pe R, and ce L*(Q)
with ¢ > 0 in Q. The coeflicient ¢ in (1) is intrinsic to Stellarator configurations, and
so it does not appear (a = 0) in the Tokamak model. We point out that terms of the
form aF(u) appear very often in models of the Stellarator case (even if {p, ) are
taken in different ways; see, e.g., GreEn & Jonnson [GI]). In conclusion, Stel-
larators lead to inverse-type models, such as (#;), with F unknown, while in the
Tokamak case, the final model corresponds formally to F = 0. Finally, due to the
choice of the inverse coordinates (p, #), the constant y appearing in (2) can be
assumed to be known, which is not the case lor the Tokamak model.

The main aim of this article is to study the existence of solutions to problem
(#2,). A special statement of our existence result is:

Theorem 1. Suppose thatessinfp|al > 0,y < 0. Then there exisis A > 0 such that if’

Albl e < A, then there is a pair (1, F) satisfying (%) and

() ue W' *(Q) with meas{(p, 8)e: % =% =0} =0,

(i) F is entirely determined by u, F(t) > 0 for te[i ;= infq u, M := supg u] and
FeW =T, M[).

One of the key ideas of our approach is to reformulate problem (2, ) in terms of
a different problem (4, ) of a nenlocal nature which eliminates the unknown F. The
rough idea of this new model {see Diaz [D2]) is to use condition (3). Differentiating
with respect to ¢ and using the notation p{t) = 3¢, , we find that

MAH%)
{u=1t} |VHJ

J pdpdd
fu=t} |V“;

We point out that functions of a similar nature appear very often in the study of
plasma problems (see, e.g., Grap, Hu & Stevins [GHS]). After some change of
variables it is possible to express (4) in terms of the notion of the relative rearrange-
ment (see Diaz [D2]) introduced first by Mossino & Tesam [MT] to deal with
a different nonlocal problem in plasma physics and later applied in many different
contexts (see Diaz & Mossmo [DM], Mossino [M], RakoTtoson [R1, R2, R3],
Raroroson & Temam [RT], ete.). In our case there are some technical difficulties
due to the presence of the Jacobian weight p in the integrals.

=) pdb

FIOF'(t) = for te[0, sup u]. 4
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After recalling the modeling of the problem, in Section 2, we introduce some
auxiliary mathematical tools. Since the operator & becomes degenerate near the
boundary T, it is convenient to work with suitable weighted function spaces,
which is done in Section 3. As we stated before, we start by reformulating problem
() into an equivalent problem (#,), eliminating the unknown F by using the
notions of monotone and relative rearrangements. These steps are carried out in
Sections 4 and 5 (some technical details are presented independently in Section 8).
This new problem (2;) will be solved by using an iterative method. The chief
difficulty comes from the lack of continuity of the relative rearrangement mapping.
To overcome this difficulty, we obtain a new expression for the relative rearrange-
ment in terms of a quotient of derivatives of two weighted monotone rearrange-
ments. Thanks to a slight modification of a result of ALmGrem & Lies [AL]
concerning the continuity of the first derivative of the monotone rearrangement
mapping, we can take limit in the iteration process. Finally we complete our study
with some qualitative properties on the solution of problem (#,), such as a suffi-
cient condition assuring the existence of the free boundary, and an estimate from
below on the size of the associated plasma region.

A summary of part of the results of this article, concerning a special formulation
of problem (%;) was presented in Diaz & RAKOTOSON [DR].

2. Modeling

The Stellarators are a class of toroidal plasma-confinement devices alternative
to the Tokamaks. The currents producing poloidal magnetic fields in Stellarators
flow in external conductors, allowing a range of magnetic configurations wider
than those found in Tokamaks. The geometry of these magnetic configurations is
very important since it is directly related to the stability of the plasma.

Ideal magnetohydrodynamics is the most basic single-fluid model for determin-
ing the macroscopic properties of a plasma. Magnetohydrodynamic equilibrium is
determined by the system

Vp =Jx B, (5
VxB=J (6)
V-B=0, (7

where p is the pressure, B the magnetic field and J the current density. From (5) it
follows that

B-Vp=20, (8)
J-Vp=0. &)

Thus the pressure is constant on each magnetic surface (i.e., a surface made up of
magnetic field lines; by (9) they are also current surfaces). If such a surface lies in
a bounded volume of space and has no edges and if neither B nor J vanish
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Figure 1

anywhere on it, then by a well-known theory due to ALEXANDROFF & HOPF it must
be a toroid (ie., a topological torus). Since the magnetic field lines are in toroidal
nested surfaces (see Figure 1), it is useful to introduce a set of new toroidal
coordinates (3, 8, @), such that § = (x, y, z) is an arbitrary function constant on
each nested toroid and 0 = #(x, y, z) is the poloidal angle which is constant on any
toroidal circuit but changes by 2 over a poloidal circuit. (Here by a toroidal circuit,
we mean any closed loop that encircles the axis of the torus once, and by a poloidal
circuit a closed loop that encircles the minor axis once.) The toroidal angle ¢ is
defined analogously, by interchanging poloidal and toroidal.

WNotice that since the toroidal nested surfaces are not necessarily symumetric, the
coordinate system {7, 0, ¢) does not coincides, in general, with the “standard”
toroidal coordinates (p, 0, ¢) associated with a family of symmetric toreidal nested
surfaces.

There are several special choices of (5, 0, ¢) which are relevant for different
purposes. Here we use the Boozer vacuum coordinate system (Boozer [BoJ) which
is very useful for Stellarators since magnetic field lines become “straight” in the
(0, ¢ )-plane. In what follows, for the sake of simplicity in the notation, we denote
this set of coordinates by (p, 8, ¢).

For a vacuum configuration (i.e.,, one without any plasma), the magnetic field
B, may be written in contravariant form as

B, = BopVp x V(0 — t.,(p)¢)

where t,{p) is the so called vacuum rotational transform and B, is a positive
constant. The covariant form of B, is

B, =F,V¢ (10)

where F, is a constant (which is customarily taken to be positive). In practice, the
quasi-cylindrical-like Boozer set of coordinates {p, p0, ¢) which have the usual
near-axis behaviour of the field components is commonly used.

In contrast to Tokamaks, the Stellarators-type configurations are very compli-
cated due to the fully three-dimensional nature of the device. To simplify the model
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to a two-dimensional problem, different averaging methods have been used; see
Greene & Jounson [(GJ] and Henper & Carreras [HC]. Following the last
reference, we may decompose the magnetic field in terms of its toroidally averaged
and rapidly varying parts. For a general function f, this decomposition takes the
form

f=<>+7

where
1 2
<f>-=% gqub-

In our case, motivated by the set of coordinates (p, pf. ¢ ), the natural way of doing

that is to set
Bi B Bi N Ei
D \D D

where B’ are the contravariant components of the vacuum magnetic field,
i=p, 8, ¢, and D is the Jacobian

=(Vpx pV8) Vo

Using a suitable assumption (the Stellarator expansion hypothesis) HENDER &
Carreras [HC] show that (7) leads to

) a(5)-

and thus to the existence of the averaged poloidal flux function ¥ = i (p, 8} defined

by
BP\ 1Y B? _ _ElJ/
G (5w o

They also show that (B, ) is a function i alone, as is {p» (recall (8)). By introducing
the usual notation

F():=<By>, pW):=<p> (12)
HenpEr & CarrERAs [HC] obtain a Grad-Shafranov type equation for
~ LY = alp, OF () + FOHF'Gh) + b(p, O)p'(¥) (13)

where
_1fa ol iy o A
e A O ) R e O R 1 G )
with
app(ps 0) 1= pLg™> (p, 0),
ap()(p: 0) = aﬂp(pa 9) = <gpﬂ>(P: 6)*

1
UOO(P: 9) = ; <g00> (p 0)
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and where {g"'>, i,j = p, # are the averaged components of the Riemannian metric
associated with the vacuum coordinate system (all those coefficients are 2r-peri-
odic functions in #). The rest of the coefficients in (13) are given by

By [0 G
alp, 8) = E"FG" [@ (PPt(p¥g?>) + % (pt(p)<g””>)}

F, /1
b{p, 6) :=B—; <5>(p, 6).

We remark that b > 0 and that the function a usually does not have any singularity.

Equation (13) holds enly on the (averaged) region occupied by the plasma. In
order to get a global formulation as a free-boundary problem, we remark that
Vp = 0 in the vacuum region, and so, using (10), we employ a simpler analysis than
before to obtain

— &Y, =alp, OF,.

Besides, it is clear that the free boundary (separating the plasma and vacuum
regions) is a (toroidal) magnetic surface and, since p = p(y), by normalizing, we can
identify the free boundary as the level line { = 0}, the plasma region as { > 0}
(and thus {p > 0}) and the vacuum region by {iy <0} and {p = 0}). It is also
well-known that the pressure cannot be obtained from the magnetohydrodynamic
system, and some constitutive law must be assumed. Here, for simplicity, we
assume a quadratic law (see, e.g., Temam [T1]):

p=5ThT e = max{y,0}, (14

which is compatible with the above normalization. In order to extend the unknown
F () for negative values of  we again use (10), and so we must find (p, 8) and
F:IR — R such that F(s) = F, for any s £ 0, satisfying

— LW = alp, OF W) + FW)F' () + Ab(p, O« (15)

on any bidimensional open set (in the variables (p, ) associated with a physical
three-dimensional domain Q* (i, in the original Cartesian variables (X, Y, Z))
containing in its interior the plasma region. If we take as Q3 the interior of
a vacuum magnetic surface, the construction of the Boozer coordinates implies that
the associated open set in the (p, #) variables becomes

Q={(p,0:pe(0,R),6e(0,2m)].

The boundary of Q° is assumed to be a perfectly conducting wall, and thus
B n* =0 over Q3 where n* denotes the outer normal vector to 80, The averaging
process implies that over the associated part of 802, ie., on

g ={(R, 0):0€(0, 2n)},
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we must have
(B> -n=09,
where # is the outer normal to I'z. From (11) we obtain that
5]
—L’ll— =0 onl}g
dr

with 7 the unit tangent vector to ['z. In other words,

W
“T(R. D=
80( 0 =0,
which shows that
y=7 onTq (16)

for some (negative) constant . Since the variable  has been constructed as an
angle, we know that

W(p,0)=(p,2n) for pe(0, R), (17)
which also gives a boundary condition on
I, = {(p, 0) or (p, 27): p (0, R)}.
Finally, the remaining part of d€ is
To = {(0,0):0e(0, 2n);},

and the required boundary condition is
. ay
Y = constant V 8&(0, 2x) or equivalently 5= Oon Ty (18

This comes from the fact that the three-dimensional problem does not have any
singuolarity at p = 0.

We point out that if we understand (p, 8} as the polar coordinates associated
with a Cartesian bidimensional space in the variables (x, ), then the set Q is
transformed into the ball

Q= {(x,y):x* + )y <R? (19)
and that if we define the identification
Fix, y) = (p, O). ' (20)
then the boundary conditions (16)—(18) become
=7y on dQ. (2n

This approach allows us to simplify many technical details, but since the coeffi-
cients of the operator & are given in the (p, 6) variables, we shall not follow this
way. We also notice that, in general, the variables (x, y) do not coincide with the
two first components of the physical three-dimensional variables (X, Y, Z}.
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In contrast with Tokamak devices, it is not restrictive to assume y given a priori,
since in the vacuum region y{p, 8) = i/r,{p), we have the relation

yri(p) = Cpi{p)

with t(p) and C known. If, for instance, the Stellarator possesses a limiter, then the
location of the free boundary is well-determinated and so are the rest of the vacuum
levels.

To complete the formulation of the problem under consideration, we must add
the Stellarator condition imposing a zero net current within each flux magnetic
surface. According to the averaging method of HEnpEr & Carreras [HC], this
condition can be expressed (Diaz [D1]) as

| [FWF )+ iby.pdpdd =0 for any te[inl i, sup y/]. (22)
bz
Notice that in the Stellarators, this condition comes from the design of the external
conductors. This contrasts with the usual condition of positive total current due to
the mner toroidal current in the plasma for such configurations (see, e.g., TEMAM
[T1] and Brum [B]}

3. Weighted function spaces and the operator &

Throughout this paper, Q denotes the rectangle {(p, 0):0 < p < R, 0£(0, 27)}.
Nevertheless, many of our results remain true if Q is merely a connected open set
included in {{p, H)eR?:p > 0}. We define the following weighted spaces: For
1£r< + oo,

L'(Q, p) = {u:Q — IR is Lebesgue measurable with J fu(p, O pdpdf < o }
93

It is a Banach space endowed with the natural norm |ul} , = J,|u(p, 6)|" p dp d0.
We also define

i (Q)M{uEL @, p), eL @, p), la” e L2(0, p)},

W2 (G, p)={ueL2(Q, p), Vit = (g“ Zg) L0, )}

If we denote by (f, 9), = [ f{p, Dg(p, B)pdp df the scalar product en L*(€, p),
then we can define the scalar product on A} Q)

o of ag 1 0f 1dg
Uome=tian+(2.2) +(1L10)

(which makes this space a Hilbert space). W*2(€}, p) when endowed with the
natural scalar product is also a Hilbert space. We easily have the following
continuous Injection;
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Lemma 1.
Hy@swh(Q,p).
Motivated by the boundary conditions (2), we introduce the subspace } o(Q)

as the closure in H1(Q) of the set

_ 0
{uEC’”(Q], u=20on l'R,—l—[

Fi 0 on Iy and u(p, 0) = u(p, 2x) for any pe(0, R)}.

Remark 1. Asindicated in [ D3], the identification (19), (20) mentioned in Section 3
converts the spaces H1(Q) and ] () to the usual Sobolev space H 1) and
H(Q). The associated Sobolev~Pomca1e type inequalities on W 1 2(Q, p) and H},
are given in [RS] and [S].

Another useful result is

Lemma 2. I/ 1 £ q < 6, then the imbedding
W 2(Q, p)s LUQ, p)

is contimious and compact, Furthermore, for each g [, 6], there exists a constant
¢ > 0 such that

du |? 1 6u 1z -
I or all ue AL ,(Q).
Elq,[_ ':aPZp ‘Pagv,J f p,()()
In particular, the norm |u |12;;,(_Q) on H},,O(Q), is equivalent to the norm
ou |2 N 1 oul?
ap 2.p P 60 Z,p.

For (@, y)e HL(Q) x H}(Q) we define the bilinear form a(¢. ¥) by
oo, )

on @qu 51& » laqpmﬁ . 1@@0t/l o 1(’?({)01/
H< n <0> pap a0 T Rk PR YT "O}’WG
3

We have
Lemma 3. (i) The bilinear form a is continuous, coercive and symumetric on
L o () x H} o(Q).

(i) For each \ in H olQ) such that l =0 on Ty, there is a unigue element

af
— P in the dual of H) o(Q) such that

G(QU: I/I) = <(l7~ - $1ﬁ> fOT (l” @EE;O(QL
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where (-, ) denotes the duality product between the dual space FI},’O(Q)’ and
H} () i
(iii) For each fe L*(Q, p), there exists an unique element r of H 5.0(Q) satisfying

—,‘f!ﬁ=fand%=00nfg.

Proof. The first point (i) was proved in [D1] by using the structure of the
coefficients of a. Statement (ii) follows directly from (i). The third statement comes
from a direct application of the Lax-Milgram theorem. []

Remark 2. From the coercivity condition on the coefficients, we deduce that for any
relatively compact subset w =< €, there exists a constant ¢, > 0 such that for all
(Zl E] ZZ) € ]RE’

2 2 2 2 :
AppZi + 200,7122 + appz; Z ¢ [2] + 23]  ae. in o.

That means that % behaves “locally” like a non-degenerate operator. So, using the
Agmon-Douglis-Nirenberg regularity theory, we derive the following result: If
JeLi(Q, p). 1 <5 < + oo, then the solution e H} ,(Q) of —%y =f belongs to
W %s(). As a matter of fact, this regularity result also holds globally since the
transformation (19), (20) leads to a regular Dirichlet problem on the ball Q to which
we can apply standard results (see, ¢.g., GILBARG & TRUDINGER [GT]). In particular,
if fe L*(Q, p), then the solution e H} o(Q) of — %y =1 belongs to L*(Q) and
there exists an universal constant Q, > 0 (independent of ) such that

!',[’|L-‘(Q) = Q0|=g)'//|z,n»

If'in addition fe L*(£), p) for some s = p* > 2, then e W *(Q) and there exists
another universal constant @, > 0 (independent of ) such that

Wiwrey < 01 LY, .

4. Decreasing and relative rearrangement on weighted spaces
We start by introducing the weighted decreasing rearrangement.

Definition 1. A function 6: Q — R, is a weight function on Q if (i) o(p, 0) > 0 for
almost every (p, 0)eQ and (ii) o € L*(Q) (for simplicity).

1T a(p, 0) = p, we simply denote this weight by p. If E is a measurable subset of
Q {in the sense of Lebesgue), we denote |E|, = {zo(p, O)dp do.

Definition 2. Let ¢ be a weight function on Q and let w: @ —» R a Lebesgue
measurable function. Then the distribution function of u relative to the weight ¢ is
defined by

my(ity=|u> 1, = | alp, Oydpdo

{(p,0)eQ2:u(p, 0)> 1}
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for telR. (If no confusion is to be feared, we simply set m°(f) = my(r)) The
generalized inverse of m§ is called the weighted decreasing rearrangement of u. That
is the function u3: 10,|Q|,[ = R such that for se0,{Q,[, uf(s) = inf{zeR:
m°(t) < s} and ul (|Q],) = ess infq i,

Remark 3. uZ has the same properties as the usual rearrangement (see [CR, S, M]).
In particular, u and ug are equimeasurable, that is, |ug, > t|, = [u > t|, forall zeIR.
We set Q% =10, |Q|,[. Later we shall need some results on the regularity of the
first derivative of ug. For this, we need some additional assumptions on .

BDefinition 3. Let ¢ be a weight function on Q. Given 1 < p £ + cc, we define the
space

W EP(Q, ¢) = {ue WLH(Q) such that (u, Vu)e L(Q, 6)’}

Given g > 1, we say that ¢ belongs to the class Q(€, q) if there exists a constant
¢ > 0 such that

inulg(lu —tly0) Ec|Vuly, forallue W, o).
1e

Here, | v}, , is the natural norm of L#(€, ¢). The following results are shown in [RS]
(see also [S]).

Lemma 4. {a) If o(p, 0) = p, then 6 Q(C), $). (b) If o, is a weight such that ess
infogy >0, thena; €0(Q,2). () IfoeQ(Q, g)and o, isasin(b), then 10 Q(€, g).

Definition 4. A weight ¢ is admissible if either 0 € O(€, g) for some g > 1 or there
exists g, €Q(Q, g) such that ¢, = o a.e. in Q.

Lemma 5. Assunie that o is admissible. Then there is a constant v, > 1 such that for
each re[1,v,[, there exists a ¢, > 0 such that for all ue Wi =(Q),

a
dug

e WhE), | —

= | Vuli=(en.
Lr@3)

Remark 4. The proof of Lemma 5 uses the Nirenberg translation method as in
RAKOTOSON & Temam [RT] and [R2]. A slight difficulty comes from the Sobolev-
Poincaré inequality, inf,[u — £}, < c|Vuly o

To conclude our iterative method we need some strong convergence of the
sequence of the first derivatives duf,/ds. To do this, we borrow some notions
introduced by ALvcren & Lies [AL]: Let ue W L) For te R we set

w5 (6) = m,o(0) = | {(p, ), ulp, 0) > t, V(. 0) = O},
m(t) = mg, ((£) = m(t) — my o{t) = m° () — mifL).

Notice that m°, mj, m§ belong to BV (R).
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Definition 5. u is a co-area regular function if the Radon measure (m§ o) is singular
with respect to the Lebesgue measure on IR.

Remark 5. This definition means that in the Radon-Nikodym-Lebesgue decompo-
sition (my,of = — h A dt — v, the absolutely continous part is 1 =0

As we shall see in Section &, using a Federer-Sard theorem and a Lusin-type
approximation as in [R3], we can prove

Theorem 2. Ifue W LP(Q) for some p > 1, then uis a co-area regular function (and so
is the same for any weight ¢, @ — R?).

The proof is sketched in Section 8. Another simple condition to get a co-area
regular function is given by

Lemma 6. Letue Wi (Q). Ifmeas{(p, ) Q, Vu(p, ) = 0} = 0, then u is a co-area
regular function.

Proof. Indeed, in that case, mf o =0. [

The relation between the notien of co-area regular function and the conver-
gence of the derivative of a sequence uf, is given by

Theorem 3. Let ¢ be an admissible weight and let u be a co-area reguiar function in
W -2 (). If u; is a bounded sequence in W (Q) converging to u in W+ L(Q), then
a

G
duf,

ds

converge to in LYQJ)

Jor 1 =g <, (r, is as in Lemma 5).

Remark 6. The assumptions on the regularity of u and u; in Theorem 3 can be
weakened. These assumptions are essentially made for the applications. A sketch of
the proofis given in Section 8. It follows essentially the same ideas as in ALMGREN
& Lies [AL].

Now we introduce the relative rearrangement on a weighted measure space. Given
a measurable function v:Q — R, we denote P(u) = {(p, HeQ:|u = u(p, )} > 0}.
Here, [u = u(p, 0)] is the Lebesgue measure of {1t = u{p, #)}. It is easy to see that if
o is a weight function, then P(u) = {(p, 0): |u = u(p, 8)|, > 0} is at most countable
and does not depend on . If uf is the generalized inverse of m” = mZ, then we
define D = {teRR, |u% = t| > 0}. If se QF = [0, |Q[,] is such that u%(s)e D, then we
set

P() = P, = {(p, )€ u(p, 0) = ul(s)}.
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Consider ue LY(Q, ¢) and ve L7(Q, o) forsome 1 < p £ 4+ . For seﬁz, we define
the function

s—u>ui(s}e

wisl= | ulp.0c(p.0)dpd0+ | (l2)i)dx.

1> (s5) G
Here ©|p is the restriction of v to P, = {u=ul(s)} and (v )% is the decreasing
rearrangement of v p_ with respect to the measure ¢ dp d0. The following theorem is
proved in [S] {see also [MT, RS, M, MR]).
Theorem 4. For 2> 0, let wi(s) = j
o]
L"(Qg) weak if 1 <p< + o,
in { L™(Q7) weak-star if p= + <,
G(LYQg), L2QL) i p=1.

(1 + Av), — ug

1 (t)dt for se QL. If A — 0, then

dwl  dw”
—

ds ds

Furthermore,

dw®
ds

= ol -
L)

’(I

. . .odw . .
Definition 6. The function is called the o-relative rearrangement of v with

respect to u and is denoted by
. A

Ugn = ds .

This function possesses many properties (see, for instance, [S, MR, MT, RS]):

Lemma 7. Let u, vy, v, be elements of L'(Q,0). () If vi v, ae in L, then
v, < 03, e inQ% =10,1Q|,[. (i) IfkeR, then (v, + K)o, = ..+ k. (i) If
Fy: IR — R is a Borel function such that Folu)e LY, o), then Folu)g, = Fo(ud).

Now we define the mean operators ot integral transformations.

Definition 7. Let ue L' (Q, o). and let g: Qf — R be an integrable function. We
define the ( first-category) mean operator M,(g): Q@ - R by

glm(u(x)) if xeQ\P{u),

Mn(g}(x) = l | = u(x)|,

- f g(r)dr otherwise.
| =u(xXNe ju>u,

(Here x = (p, ) Q)
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Lemma 8. M, (g) is well defined. Moreover, [, M, (g)(p, @) a(p, 0)dp df = v[_Q;g(r) d,
and M, LP(QF)— LF(Q,0) is a linear and continuous functional with norm
[ M| = 1.

Definition 8. Let u, v be two functions of LY(Q, ¢) and let g: Qf - R be an
integrable function. We write

Puy =) Plw), P = {(p. 0):u(p, 0) = 1}

neD

and v; = v)p ( = restriction of v to Pi(u). We define (the second-category) mean
operator M, (g): @ = R by

glmu(x)) if xe Q\Plu),
M, (g)ix) = . :
ol ) {Ml,i(h,-)(x) il xePiu)
where h: (0, Pi(u)|,) — R, his)=g(s + |u>1],) and M, is the first-category

mean operator associated with v;.

Lemma 9. The operator M, (g} is well defined and

(i) fo M.,o(9)(p. 0) o(p, O)dp O = [o g(c)dr,
(ii) M, ,: LPQ3]) — LP(Q, o) is linear and continuous of norm 1 for any pe[1, + owo].

The link between the g-relative rearrangement and those operators is sum-
marized in

Lemma 10. Let ue LY(Q, 6) and ve L7 (Q,0), | £ p < + w. Then
. 1 ]
[ v20a(5)ds = ([M.,(9)2]p, O(p, 0)dpdd for any geLF(@2), 2+ L 1
[+13 a P p

Corollary 1. If the assumptions of Lemina 10 hold and if furthermore meas (P(u)) =
then

| vidstg(syds = | g(m®(u(p, O)v(p, O)a(p, 0)dp do.

[£34
=

Let us introduce some applications of the mean operators which will be uselul
later.

Lemma 11. Let ue L'(Q, 6) be such that ul e C(Q3) and meas (P(u)) = 0. Let Fy:
R — R be a Borel function such that Foluye LY, ). If be L™(Q), then

[Fo(l[)b] ey — FG(“ )blu

Proof. Let ge C(QF). Then from Corollary 1 we have
[ g@[Folmb]gu(s)ds = jg(mﬂ(u(p, ONLFo(u)b1(p, B)a(p, Oydp 40

| jﬂ%w»mWM)MWﬂMM@@M'
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(since ©g being continuous on Qf, uf, (mf (1)) = t for t e{ess infy u, ess supq ). Again
by Corollary 1, we have

J g(s)[Fo(w)b]5.(s)ds = j g(8)Fo(us(s))blu(s)ds ¥ geCQ,)
if [Fo(u)b]S, and Fo(u3)b%, are in L1{0Q3) and the conclusion holds. []

Remark 7. {a) The assumption that meas{P{u)) =0 can be removed by using
a different proof. (b) It is shown in [S] that if ue C(Q). then v is in C(Q%) (for
Q connected) and that if uf e Wik, (QF), then u§ € C(Q).

Theorem 5. Let u,, ut be in LY(Q, ¢) and assume that u, converges to u in L'(Q, o).
Then for all ve LF(Q, o), for some 1 <p 5 + oo we have
(U avpoo)in, — (UXo\P )

weakly in LP(Q2) if p < + co and weak star in L*(Q5) if p = + oo. Here, zz denotes
the characteristic function of the set E.

Proof. LetgeC (Q—i) and set w = v¥q p- From the mean-value operator property
(Lemma 10), we have

j g W *u dS = j [Mu,,. w(g)UG] (P« 6.) dp de. (23)

P

One can check easily that

lim M, .(g)(p, 8) = glmi(ulp. O = My, .(g)(p: 0) for (p, O)e2\P(u).

So, if we take the limit in relation (23), we get

lim j g(s)wa.u( )d.S‘ = IEA/IUY“.(Q)TV](;), Q)G(p. g)dp do

n—++ :DQ,

= [ gs)wi(s)ds (24)

Q

*

(again by Lemma 10). Since |w, |pmow = |[V|ing.«. relation (24) leads to the
result. O

5. An equivalent problem involving the relative rearrangement

As we announced in the Introduction, we show that for the given smooth
function u satisfying the relation

[ [F)F () + usb]{p,O)pdpd0 =0 forallte [infgu, supg u], (25)

>t
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we can determine F explicitly in terms of u (in fact, the expression for F is obtained
so that relation (25) holds). In this way, we reduce problem (2, ) to a problem of the
form (with only one unknown)

(f]’ ) —Zu= H(p, H)Fu(pr 0) -+ }'Li+ {b(ps 0) - bf;:u(mp(u(pa 6)))] in Q’

OH
= 0 on FUJ

i — }7Eﬁ;,0(9)nﬂfl”"‘(§2), 3

where F, will be specified later. For simplicity, we use the notation p(f) = $4t2.
Given (p, )€ Q, we set

mf (usp, 0))

172
E,(p,9)=[F3-2 " Lo (s)b':..(s)ds],

m?{0}

and for te [, M], we introduce the function
1/2
F(n)= [F“ -2 j P ()B4, (m" () dT:I .
.‘.

Here, rit = infp v and M = supg u. The weight o(p, 8) = p is simply denoted by p,
m? is the distribution function of u with respect to the weight p and uf, is the
generalized inverse of m”.

Proposition 1. Let ue Wt-=(Q) be such that

,-\

a(P,)« (0. 0) = } 0.

meas {( p, el

Then,
Fp,0) = F(u(p,0)) for all (p,HeQ.

Proof. Since meas {(p, 0): Vu(p, 8) = 0} = 0, the Federer formula (see [F]) ensures
that the map e[, M] —m*(1) = [,.,pdpd0 is absolutely continuous. Further-
more, since ue W' *(Q), the inverse of m” (that is u4) is then in W 1(QJ).
Introducing the integral J = fop('c be(m(1))dr, we can make the change of
variable T = uf, to derive

mi(t.) 7] mP{e,)

, dut,
J = _“ P (u:pk(s)) (l_.: (S) b;.u(s} ds = J‘ T p(lli(s))bi“(s) ds.
m*(0) m(0)
This gives the result. [
In order to prove the equivalence of (£?,) and (#,), we need a few lemmas.
Throughout this section, ue W =(Q) and satisfies
meas{(p, 0): Vu(p, 0) =0} =0.

o= infqu, M = supgu, and F and F, are defined as before.
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Lemma 12. Assume that min{F(¢), te [, M1} > 0. Then
{) Fewh»=(1m, M[),
(1) F(OF' () + p (b2, m” (1)) = 0 for almost every te]m, M[. (26)

Proof. The function b4, is in L*(Q4). Thus the map

ty

i j p (D) b (mP(0)dt

is in W**(f, M). From the assumption that min{F(z), t€ [, M1} > 0 and from
the previous results we deduce that Fe W (i, M). Then FleW (i, M) and
4p2 _ JFF'in 9'(ih, M) and almost everywhere. If we differentiate

[

FXry=F7 =2 [ p'(n)blu(m®(x))dr
o
we easily find that
2F(F(1) = — F*(t) = — 2p'(0)b4.(m” (1) ae in [, M]
(notice that p'(1) = 0= F*>(®)' if t £0). [

Lemma 13. If N is a null set of [, M ], then the sets
{p,Me, ulp,HeN}, {peQf:ul(p)eN}

are also of measure zero.

Proof. By equimeasurability, we have
Hip, 0eQ: u(p. )eN}|, = [{seQf: u} Ps)eN}.

Since m” is absolutely continuous (remember that the set {(p, #)e €, Vu(p, ) = 0}
is assumed to be of measure zero), meas {m”(N)} = 0. Observing that {seQil:
i (p)eN} = m”(N), we get the conclusion. []

Corollary 2. Under the assumption of Lemma 12,
D Flu(p, OVF (u(p, 0) + p'(ulp, O)bL.(m" (u(p, 8} 8y) = 0 for almost every (p, 0)eQ,
(i) F{ul(s) F'(u?(s)) + p'(uh(s)b4(s) = O for almost every seQf.

Proof. Consider the set N:= {te[r, M such that (26) does not hold}. Then
meas(N} = 0, and from Lemma 13, the set N = {(p, 6)€Q: u(p. He N} is also of
measure zero. If we take (p, #) e Q\N, and replace ¢ by u(p, 0) in (26), we get (i). The
same argument holds for N = {peQf: uf(p)e N}. Since m(ui(s) =, putting
£ = uf(s) in (26) with 5, \N ,we get (). O
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Lemma 14. Assume that min{F(t), te [i#, M]} > 0. Then

[ [F)F () + p'@d](p, Opdpdd =0 Yic[m M].

u>
Proof. Consider the [unction

w,(s) = j [F)F (i) + p' ()b (p, B) p dp dO, SEQ_(,;,

> ul{s)

and set v(p, ) = [F)F'(u) + p'(w)b](p, 0). We can see that ve L=(Q). Since u “has
no plateau” (ie., meas(P(u)) = 0), by Theerem 4, we know that w,e W 1> <(Q%) and
£ w,(s) = 14, By linearity, we can write

d

— w o (8) = LF ) F'(u)]5.(s) + [P ()b ]4.(s) ae in 0.
From Lemma 7, [F()F'(u)]%, = F(uf)F’(u?), and since u‘j:eC(Q_f;), Lemma 11
implies that

L ()b]5, = p'(uh) bl

The last three relations combined together imply that

d
75 Wols) = FU) F' Q) (s) + p' (i (s)Prus) = 0,

where we used Corollary 2. Since w,e W' *(Q), we have w ,(s) = constant
= w,(0) = 0 for all seQ2%,, whmh means that

[ vlp,Opdpdd =0 Vielm M]

>t
Conversely, we have

Lemma 15. Let ue W =(Q) be such that meas {(p, 0):Vu(p, 0) =0} =0 and as-
sume M=infou 0. If Fe W' (i, M) is a function satisfying F: [, M] >R,
F(ty=F,for t =0, and

§ [F@F () + pw)b](p, D pdpdd =0, Vie[m M],

u>i

then, necessarily,

F{ty= [F' -2 _[ p(z bi,,(in"(r))dt}l/z Vie[m, M].

Proof. From the relation {,_ [F(u)F (1) + p'(u)b]p dp d6 = 0, we deduce that

O=w,(s)= | [FF(u+pwhlpdpdd VscQr.

u>uf (s)
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Thus, 4 w,(s) = 0. Using the proof of Lemma 14, we have
F(uf (N F'(uf(8)) + p' (uh(s)Dhu(m” (G (s)) = O (27)

for almost every s€Q? (we have used the fact that s =m’(uf(s)). If we set
N, = {se(¥, such that s does not satisly relation (27)}, then meas (Ny,) = 0. Since
il € W1 1(Q2) (see Lemmas 4 and 5), meas (u(Ny,.)} = 0, which implies that the set
{te [, M1, teuf(Ny,)} is also a null set. Setting t = u” (s) in relation (27), we then
have

FF' () + p'(6)be(m?(t) = 0 (28)

for almost all re[f, M. Since F is in Wi, M), it follows that F?isin
W l-=(@h M) and
d

S P20 = 2F()F () = — 20/ (Ol () 29)

Integrating relation (29) from 0 to £, = max(t, 0}, we obtain

1

Ft,)—F¥0)= =2 [ ()b (r))dz (30)
0

(notice that infpu <0 implies that [0,7.] < [ M]). But F?*(0)=F 2 and
F2(t.) = F2(¢) by the assumptions of F). Thus relation (30) is equivalent to

172

F(t) = [Ff _af p’(’c)bﬁm(m”(f))d'c] . O
o

.
We now arrive at the main result of this section:

Theorem 6. Let ue W1 =(Q) be such that meas {(p, 0): Vu(p, 0) = 0} = 0. Assume
that if = inf u < 0 and F{p, 0) > 0 a.e. in Q. If (u, F) is a solution of (#4) such that
F:R R, FeWho(i, M)and F(f) = F,fort < 0, thenu is a solution af (#5) and

1. 1/2
Flt) = [F.% —2 ] p @)l m(@) dv:] , (31)
o] +
Conversely, if u is a solution of (2, ) and F is given by relation (31), then the pair {u, F)
satisfies (#,), and Fe W (fi, M).

Proof. Suppose that (u, ) satisfies (£). Applying Lemma 15, we derive the
expression of F in terms of w. Proposition 1 shows that F,(p, 8) = F(u(p, 0).
Thus the assumptions that F,(p, @) >0 and ue C(Q) imply that min{F(f):
te[#, M]} > 0. The conditions of Corollary 2 are then fulfilled, allowing us
to get

F(u(p, O)F (u(p, 0) = — p'(ulp, ) bL.0m" (ulp. D). (32)
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We thus obtain

a(p, O)F () + FOF (u) + p'w)b = a(p, O)F.(p, 0) + p'(u)[b(p, 0) — bLu(m? ()],

and u satisfies the first equation of (&, ). Conversely if u is a solution of (#,) with
F given by relation (31), then F(u(p, ) = F.{p, 0) > 0, which implies that
min {F{t), te [, M]} > 0. We then apply Lemma 14 to derive relation (3) of (2,).
On the other hand, Corollary 2 gives the relation (33), and thus the first equation of
(#,) holds. [

6. Solving problem (£,)

The main difficulty in solving problem (#,) is that the terms b4, and
bhu(m” (u(p, 8))) do not possess any good continuity property with respect to u. So
our first approach consists in finding a suitable approximaticn of these quantities.
This is the purpose of the next lemmas of this section. We assume that bp is an
admissible weight. (If, for instance, ess infg b > 0, then using Lemma 4 we deduce
that bpe 0(£2,3))

Lemma 16. Let ue W' *(Q) be such thar meas {{p, 0)e Q: Vu(p, ) = 0} = 0. Then

(i) (Ju > ulp, B)|,)
W) (lu > u(p, 8)1,)

Jor almost every (p, 8)e Q. Furthermore, (ut)'{|u > u(p, Nlpp) <O ace. in Q.

billu > u(p, 0)1,) =

Proof. Let us denote by o the weight bp or p. We set Qg = {(p, 0)eQ: Vu(p, §) = 0L
Using the Federer formula, we deduce the following facts:
() For almost every te [, M ], H (u™*()\nf) = 0 (H, is the Lebesgue measure
on IR which is aiso the 1-dimensional Hausdorff measure).

f o(p, O)dH, (p, 8)

(ii} The map 7 — A%(1) = [Vu(p, 0)]

belongs to L' (i, M), and

{p, Bu(p,0)=1}

AM
JALn)dr = I} a(p, Hdp do.
i1 {0, 0:Vu(p,0)+ 0}

In particular, m” is absolutely continuous on (1, M) and thus AL (u%(s)) and
AR{us.(s)} are finite for almost every se Q. Since ue W =(Q), ul e W - 1(Q2). This
regularity allows us to apply the chain rule and to get the identity

Y
i AbP(r)dr =

ds ds

u{s} 1= ug (s}

duf b(p, 0)pdH (p, 8)
- (S}J Vulp, 0) G4
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for almost every s € QZ. Again applying Federer’s formula and the definition of utf,
we have
M
[ Arfyde= | blp.O)pdpdd=s
i (s) > nk (s}
for any s Q. Taking o = bp in relation (34) and differentiating this last relation,
we easily obtain

dub? B 1
s 9= J oo di, ) S Tl (35)
[Vu(p, 0)]|

u=ulr(s)
for almost every se Q)" From relation (35), we want to deduce that

dul? 1
S (u > ulp, O)]) = [t ()

1 (Z: Z)
IVu(z, 2}i

{tz. 2z 2y =ulp,0)}

for almost all { p, 0) & Q. We can take s = |u > u(p, #)],, in relation (35), but we have
to check that the relation we get is true for almost all (p, 8) € Q. That is, we need to
prove that if N* < Qf7 is a null set, then {{p, 0)e 2 |u > u(p, 0)|n, e N*}is also of
measure zero. Indeed,

{{p, O£ |u > ulp. B)lsyeN*} = {(p, 0) ulp. O)eul(N*)),

but meas{??(N*)} =0. We can apply Lemma 13 to deduce that
meas{(p, Dulp, Det?(N*) =0. Thus {(p, e |u>ulp, Nip,eN* is of
measure zero. Taking N* = {se )} such that relation (35) does not hold}, we find
that meas(N*)=0. Thus relation (36) holds for (p, HeQ\{(z. ') ju>
u(z, z')|p, € N*}, that is, almost everywhere on Q. A similar argument justifies the
following computation: Taking ¢ = p in relation (34) and replacing relation (26) by

M

| AP(yde= | b(p,Opdpdd Vsel

uhls) u>ul, (s}
we get from the definition of bf, that

N bip, 0)p dH(p. 0)
b*u(s)_ - ds (S) J {VH(,O, g}l (37)

w=u’(s)

for almost all seQf. Taking s=|u>u(p, 0}, in relation (37) with
(g, e N{(z, 2): Ju > ulz, 2’} ,e N*} and N* ={5eQf such that relation (37)
does not hold}, we deduce that

J b(z,z'YzdH(z, £')

38
|Vu(z, 2'}| (38)

dul,
b > ulp, O)l,) = — = (lu > u(p, Ol,)

{z.z'nu(z.z)=ulp.0)}
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for almost all (p, #)e Q. Combining relations (36) and (38), we have

i)' (Ju > ulp, 0)],)
@Y (lu > u(p, O)]y,)°

bl > ulp. 0)],) =

Corollary 3. Let u be in WS QW =(Q) for some s > 1. Then

+ bp aH- p

d:t* (Ju > u(p, B)],,) < —

— (ess infb) (!U >u(p, 0)],)

dhubp
g ‘lb;w (|“>”(Pa )]bp)
ds
dut j+ybe
or almost all (p, 0)e Q. Here —F qnd “ denote the right derivatives of v’ and
P ds ds 9 *

bp
ub?,

Proof. Consider u,, a sequence of W *(Q) such that u, converges to u in W 1! Q)
and such that meas {(p, ) Q, Vu,(p, 6) = 0} = 0. (This holds if, for instance, u,, is
analytic in Q.) Since ess inloh < b7, < ess supq b, Lemma 16 applied to u, implies
that for almost all (g, 8),

drul? d‘L r;'f
- bi [ (i“n > ”n(ﬂ: O)fbp)/O\P(uJ(ps 0) = “”n > Un(P: 9)|p)/Q‘\P(zl)(pa 0)
d+ l,,
- (l“n > “u(p: O)Ip)KO\P(r:)(ps H) = - ib!x T (l“n > urz(ps 9}'1)]))
X Lol £5 ), (39)

where b; = ess infg b.

Before finishing the proof we need the following fundamental convergence
result:

Lemma 17. Let ¢ be equal to p or bp. Then, there exists a number 1, > 1 (depending
on o) such thar

[!-Fo' + g

Ly 13 .
= (l“n > Uu(ﬂ, O)ia’)/ﬂ\}‘(u)(p: H)M - dS I (|l£ > “(P’ H)|U);’:Q‘\P(u)(p’ 0)

weakly in L'(Q, o) for any re[1,r,[.

Proof of Lemma 17. Since u, and u are in W (), we know from Lemma 5 that
for o = p or o = bp there exists a number r, > 1 such that for each re [1, r,{, there
exists a ¢, > 0 satisfying

dug,

g Czl Vun | L=y - (40)
Lragy

ds
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The same relation holds for . But u is a co-area regular function (because u € Wis
and becanse of Theorem 2), so we deduce from Theorem 3 that uj, converges
strongly to ug in W 1(Q2). Now, consider ve L*(€) and set w = vjo\poy- Applying

the mean-value operator property (see Lemma 10), we obtain

d*rul,
j 5 L, >, (p, 015, )5 0. O)dp 0

a
atul, d ud, . .
= J‘ Mu,l.w ( ds ] ) “j(pr H)G(p: 9) dp dth = '[ ——ds_’}‘(s)“j:i:u,,(s) ds.
Q 24
drul, dug,

Since converges to

ds
w2, in L=(Q3)-weak star, by Theorem 5 we deduce that

+ .0

It 4t N
lim Jf s (e, (5)ds = | 2 (s)Wou(s)ds = T.
" ds " ds

Q3

@

Again, using the mean-value operator, we have

S

ds

Q

Thus, we have shown that

, dus,
im [ (> . Ozl O D O
n o

ds
Q

- d*ug, d"ul, :
J= 1M, w{p, Na(p, Bdpdl = y {lu > ulp, )|, )wodp db.
)

drul
=J B (i > ulp, Ol xawrwlp. Ov(p, Bo(p, 0)dp d0

strongly in L'(QF) and since wg,, converges to

(41)

for any veL*(Q). Lemma 17 will be proved if we show that the sequence

d* g,

using the equimeasurability property, we deduce that

arus
(&3
* (;un > un(p: O)EG)}{Q\P(H)(IO: G)
5 L'(Q,a)
d us,
< |—= < ¢,| V| 1 < constant.
s |rran

The same argument shows that

d*u,

(|u > ulps Ol rarwlps 6) belongs to L', o), 7€ [1, 7,

(|lu, > (P, Ot pe{p- ) Temains in a bounded set of L"(Q, ¢). Indeed,

(42)
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To end the proof of Corollary 3 we need a simple result:
Lemma 18. Iff,, g, are measurable functions on Q such that (i} 0 < f,(x) < g,.(x) for
almost every x e Q, {ii) f, converges weakly to fin L'(Q, ¢}, and g, converges weakly to
g in L'(Q, bp), r > 1. Then 0 Z f(x) £ g(x) for almost every xeQ.

The proof is easy so we omit it.

Completion of the proof of Corollary 3. We apply Lemma 18 with

i d ug
.fn(pa 0) = - dS % (iun > ”n(p’ g)fd)xQ\P(u)(p, g)bi:
‘+ ba
gn(p> 0) = - dS"* (l“n > ”n(p: g)lba)xsl\}"(u)(pa 0) }b| o -
Relation (39) implies that
0= f(p, 0) = gulp, 0) for almost every (p, 9)eQ. (43)

Lemma 17 implies that f, converges weakly to fin L'{(), p) and g, converges weakly
to g in L"(Q, bp). Here, we set

druh,
f(P: 0) = - bl' dS (|M > “(Pa 9)}?’0)%(1\}’(“]([): 0):
tubp
g (p) B) = - Iblm dS* (llt > ll(ﬂ, G)Iba)xﬂ.‘\f’(u)(p: 6)‘

We then have 0 = f(p, 0) = g(p, ) for almost every (p, #)eQ. This inequality
shows that inequalities of Corollary 3 hold for almast all (p, 0) e Q\P(u). Since
d¥ul
ds
the staternent remain true on Plu). O

{lu>u(p,6});) = 0ae (6 =p oro=hp)for (p, 8)e P(u), the inequalities of

From now on, for u measurable on & and (p, #) € we define

(e) (u>ulp, 0,) . ., , .
EPY (1 > u(p, 0)],) i Q@) (Ju > ulp, O)ls,) = O, "

b,(p, 0} =
b{p, 0) otherwise.

We easily have

Proposition 2. Let ue WU =W 5HQ) for some s > 1. For almost all {p, ) e,

(i) essinfy b < b,(p, 0) S esssubg b and by, ,(p. 8) =b,(p, O)VyeR.
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(i) If furthermore meas{(p, 0)eQ: Vu(p, 0) = 0L =0. then b(p,0)= DblL.(lu>
u(p. )],

The proof is a consequence of Lemma 16 and Corollary 3.

The idea of the existence proof relies on an iterative process. We first derive
a key theorem concerning the weak selution to the ploblem (2,).

Let us introduce the first eigenvalue 4; for - 2 on Hp o(Q). Let iy be the
associaled eigenfunction, i.e, — L = Ay, 4 eH!,.U(Q) and A; = nf{a(y, )
faW?(p, O)pdpdl =1, 4 eﬁ,, o(Q)}. We remark that in fact ¢r; > 0 on Q since the
transformation (19), (“’O) reduces the study to the standard Dirichlet problem on the
ball Q. We set p(t) = 42t7 for teR and oscq b= esssupg b — essinfg b.

Theorem 7. Let A oscob < Ay. Then there exists a function ue WEL N L2
Jor all pe[1, + ol and two fimctions Bp_,,e L™(Q5), E,,_I,EL‘”(Q) satisfying

n i {p. 0 1/2
— ZLu=alp, 0)[&2 — ICAINGTEANE )dSJ
mr(0) -

(@3) -+ p ”(p 9))[’)(p 0} p xr(p: 0}]

3 EH,) D(Q), ﬂ@ = on I,.
Furthermore, E,,.,, and Bp_,, satisfy
(1) bp u(g)el: b/Q‘ P(u)).z'u(s} (b/Q\F(u)) ku(‘;) -+ €88 sup b:|

P(u)

for ahmost every seQf (with the convention that ess supg b =0 whenever
meas(P(u)) = 0).

(ii)
- {
b,..(p. 0) = b(p. 0) for almost all (p, 0) e, = {}\EQ ‘

+ bp

ds

Uu>uumg#o}

Definition 9: A function u satisfying (#%;) with (i} and (ii) is said to be a weak
solution of (#,).

Corollary 4. (i) If the solution u found in Theorem 7 satisfies
meas {{p, 0)eQ: Vu(p, ) =0} =0, (45)
then u satisfies { %), that is,
by.u(5) = D) ae. in QF,

lp u(pz ) - [qu(l” > “(Ps 0)]1)) a.e. in Q
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(ii) If essinfq|a| > 0, then there is a constant A > 0 such that if A|bl, < A, then
condition (43) is fulfulled.

It is clear that Corollary 4 implies Theorem 1.

Proof of Theorem 7. Step 1. Consider a sequence (u:J)J) o of A o(Q) defined by

() w'= —yand wt'efl} (QNW ()W ES(Q) for any s > 1 satislying
() a(w/ ™Y @) = (aG’ + J, ), VopeH! Q)
where
D+ 3> (w4 34 (5,0)1, 112
G'(p, 0) = I:Fuz -2 le+Jw:>m Collw? + 9511 (9) *“,(S)dsJ ;

Ji(p, 6) = p'(w’ + 7)(p, OB (p, 0) — bu(p, O)1.
We need some a priori estimates:
Lemma 19. Assume that A oscob < A,. Then there exists a unique solution w** of

problem (P1). Furthermove, the sequence (w!); 20 remains in a bounded set of
WL Q) AW P for all pel, + w [, and

cUalsFy + A lpIHQy > -
Ay —/o(s)cb )

(46)

W 49,

Proof of Lemma 19. We use an induction argument of Lemma 3. Assume that
we WS W -=(Q) for all se[1, 4+ oo [ is constructed. It suffices to show that
fii=aG’! + J7is in L}(Q, p) and then to apply Lemma 3. Indeed,

0 <|a|G'(p, 0) = lal.. F, @7)
| F(p, )] < 7 ( osc b)uwf +7)(p, 0)l. (48)

Relations (47) and (48) show that ffe L*(Q, p). Thus there exists a unique
wi ¥ 1 EH,, ol€) such that
aw L 9) = (f% @), Yeel) Q) (49)
We take ¢ = w/™ ' in (49). With the help of relations (47) and (48), we deduce that
Ly JIw? o, ) pdpdl < \al, F, § 1w/ (p, O pdpdf
Q

2]
+ ;“(O(S)C b)"‘lj+lt2,/)|wj+ q/"l,ﬁ‘ (50)
Using the Cauchy-Schwarz inequality, we find that (50) implies that

Awl T, S a) L F Q7 + A(ogc b)lwf I (51)
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On the other hand, we have that
W™t pla, < I, + IR (52)
Relations (51) and (52) lead to
Alw T4y, , = /“»(Ogc b)lwf o, + AlyHQUNP + lal o Fol Q1,2 (53)
/(0sch) 5:(IalmFmL/'LIE}'I)IQI,J”2

/LI }Ll
equality {53) can be written as

and a; = |w’/ + 7| ,, so that in-

We set g =

ajer Sea;+0, j20,a0=0. (54)
Th;:n ;1 < 0/(1 — ¢} for all j = 0. Replacing o and ¢ by their values, we get
bw? + 7|2, < u. Again using the estimates (47) and (48), we deduce that
I.fjll‘p é |ﬂ| va|Q|é/‘2 + )L(OSSZC b>|u]j + ylz,p g [t (55)
where ji:= |al, F.|Q|Y? + Aosce b)p. Next, we show that w’ remains in
a bounded set of W ®(Q). Using the coercivity condition on a, we derive
| wt E @ S a(w! T wl Ty = (L w T, S lw T e, (56)

With relation (55), relation (56) leads to
ji+12 ﬂ 2
[w! 11&;(9;2;(# + 1112172 = py (57
It follows from the Poincaré-Sobolev inequality given in Lemma 2 that for all
pe[l,6[, there exists ¢, > 0 such that
i <S¢, foralljz0. (58)
Relations (47) and (48) then imply that /¥ = aG/ + Jf = — £w/*! remains in

a bounded set of L#(Q, p) for 1 £ p < 6. From Remark 2 there exists a constant ¢,
such that if p > 2, then

I/ ™ yinig £ 04 Lgw/tt,,20f vjiz0. (59)

Again by relations (47) and (48), we deduce that ¥ remains in a bounded set of
L*(Q). Since — % is coercive in any open set relatively compact in Q, the
Agmon-Douglis-Nirenberg regularity theory can be applied to witt and thus it
remains in a bounded set of W (Q) for all se[1, +oo[. O

Step 2. Passing to the limit. The above uniform boundedness allows us to derive the
existence of a function we W 1"’3(Q)r\Hj_O(Q)mWﬁf(Q) for se[1 + co [ such that

w!—w  weakly-* in W 1*(€), (60)
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w!l = w  strongly in W¥(Q) for all se[1, + oo [, (61)
wi = 1w in CO*Q)NCLHQ) for some 0 € o < 1, (62)
w/ > w  strongly in A} (Q). (63)

The convergences (60), (61) and (62) come from standard results, while the conver-
gence (63) comes from the fact that the sequence (w* !);., o is a Cauchy-sequence in
Hj, o(Q). Indeed, since a is coercive on H) (Q) and | f;| =) < constant, we have

aw? T — WIS Clw It -t g - 0,
From now on, we set
w=wlty, jz20u=w+ry. (64)
We notice that
s = by, By= D, (65)

Step 3. Convergence of bf,.. Since |b%,.i,, = |b|,, we can assume that b4, con-
verges to a function b, , in L™ (Q%)-weak-star, From Lemma 7, we deduce that

essinfb = b <esssup b implies that essinfb < b5, < ess sup b.
Q Q a el

Thus

essinfb < E,,'u(s) < esssup b. (66)
Q 0

We need a more precise result:

Lemma 20. For almost all seQf,
Bp, u(S) E[(bXQ\P(u))i(S)r (bZQ\P(u))iu(S) + ess Sup b:l
P(u)

with the convention that esssuppy,b =0 if meas(P(u)) = 0. (Recall that P(u)
= {(p, HeQ:=u =u(p, 8)] > 0} and that Xonpw 18 the characteristic function of the
sei Q\P(u).)

Proof of Lemma 20. Almost everywhere in Q,

byaralp. 0) Z b(p, 0) £ byo\pau(p, ) + esssup b.
Pu)

From Lemma 7 we know that

Broren)iw & bhw = bionpey)iw +esssupb  for almost all s Q5. (67)
F(u)

Applying Theorem 3, we find that

E%H (bXQ\P(u))iuf = (bxg\P(u))'g}:u in L=(Qf) weak-+.
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Thus inequality (67) implies that

(Brorm) i < Bpu S (Drowpa) b + esssup b in 2°(QF)
P

and thus also almost everywhere. [
Step 4. Convergence of a;(p, 0):= 5:;":8; @D pe (s p[u’]47] (s)ds. We need

Lemma 21. For any admissible weight o,

d dus,  dwg
wie converges to ——t = —*
a’.s( i g ds ds

d, .

—(')i =

ds
strongly in L' (Q5).

Proof of Lemma 21. Since ue W25(Q) for some s > 1, Theorem 2 implies that u is
a co-area regular function. But / is a bounded sequence in W ' (Q) converging to
yin W), Thus Theorem 3 allows us to conclude that

d dut, .

— )l = o strongly in L*{€}).
ds

(Note that u%, = w3, + 7 and (/)3 = (w5 +y) O

From the estimate of Lemma 3, the sequence (1)}, remains in a bounded set of
W (QZ) for some rell, r,]r, > 1. Then, from Lemma 21, we easily have

Lemma 22. For any admissible weight o, there exists a number v, > 1 such that

(Q-iu:) fUT any re [L ].ﬂ]'

In order to study the convergence of afp, 6), we introduce the following
intervals:

F(p,0) = [|u’ >l (p, O], ! > 01,1,
Jolp, 0) = [Ju 2 us(p, 0)] . [u > 0|, 1.
Ji(p, 0) = [lu > u.(p, Oy, v 2 0[,1.
J3(p.0) = [l > uslp. Ol 1u > 01,1
We again denote by y, the characteristic function of a set 4. Since

fu > 0], < liminf|u’ > 0}, < lim sup|u/ >0, £ luz0,, (68)
4 J

> s (p, O)o £ liminflud > vk (p, 0)], < lim sup|u! > ul (p, 0},
i i

= luZus(p, ),
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we deduce that

Lot (8] £ !im nf ypigp,0(s) < lim sup L8] 2 21 pals) Tor all seff.
i i

(69)

But for i = 1, 2 and for almost every s Q2% we have
L2218 0s) = Lpi2)] 005D (70)
lim [p[w15] = [p(uf)]  strongly in L'(QF). (71)

Thus, from (68)-{71), we deduce that
[P[“j]{ﬂ’kﬂ(p,m converges to [p(uf)] xs.p,0 strongly in LYQ%) (72)
when j goes to infinity. Finally, defining

aj(pa 0) =2 j. [p {“j]ﬁ‘ ’(S)xﬂ(p,ﬂ)(s)bgzuj(s) dS:

Q

we see that the strong convergence of relation {72} and the weak-star convergence
of b4,; to b, , imply that

a(p, ) — 2 J', [PW) () 2r.0p,0(8)Dy, () ds (73)

J“TCO
for almost every {p, )€ Q. But the expression for G'(p, 0) can be written as
GI(p, 0) = alp, OLF? — as(p, 1Y (74)

Thus, the convergence (73) shows us that if j — + oo, then
Gip.0)»alp. OLF =2 | Lol Bl 1Y = @G 6 (75)
>0,
The estimate (47) (ie., |GI(p, 0)] < |a| .F,) implies that
G/ converges to G in L5(Q) for all se[1, + o ]. {76)
Moreover, from Proposition 2, we know that

essinfb < bl(p, B) L esssuph
0 9]

for almost every (p, 8)e Q. Thus we can assume that b, converges te a function by
in L=({{)-weak™®. By the continuity of p, we get that

Ji=p Wb —byl-J= panlh — Ep:,.] in L= {0)-weak-* (77)

Step 5. Convergence of the rest of the terms of the equation. From the convergences
(76) and (77), we easily have that ue W2 (Q)nW > =(Q) is a solution of

51 o . G
(#5) —Zu=aG+JinHoQ), u—yeH) ), a% =0 onT,
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with G given by relation (75) and J = p'(w)[b — b, . It remains to give some

information about the function EM. For this, we have the following strong
convergence result, which completes the proof of Theorem 7.

Lemma 23. Let ¢ = bp or o = p. Then there is a number v, > 1 such that

At
gi{p, 0) = 5 (lu! > W {p, Hlatarw(p, 0)
converges strongly to
d*ug,
glp, ) = s ([ > u(p, N Dxarus (P )

in L7(Q, ¢) for any re[1,r.[.

Proof of Lemma 23. From Lemma 17, we know that g; converges to g weakly in
L7, o) for any re[1,r,[. By equimeasurability, we deduce that

d* (),

o < . 78
lgilen = ds . (78)
From the strong convergence of Lemma 22, we have
d* (ul)s, dt(u?,
Jim |45 _ | (79)
i dS Qs CIS L7(Q2)
Again by equimeasurability, we also have that
d*uf,
e . 80
g1 r@.0 s | @ (80)
From relations (78)~(80), we conclude that
1i§nigjir,6§|g|r,v' (81)

Butifre]l, r, [, then L7{Q, ¢) is uniformly convex, so that the weak convergence of
g, to g and relation (81) imply that |g; — g1 .o converges to zero. For a subse-
quence (still denoted by g;), we can assume that g i(p, 6) converges to g(p, ) a.e. in
Q. We set 0 := {(p, 1) e Q: g;(p, 0) converges to g(p, 0) for ¢ = bp and o = p}. If

o
druy?

(p, 0)e QY is such that (Ju > u{p, 6)],,) = 0. then we deduce from the expres-

sion for b, that

(g} (lu > u(p, O),)
ot () (lu > ulp, O)li,)

Since b, converges to 5,,4“ in L= (Q) weak-star, we obtain that E,,!,,(p, 8 =gip, 0)
+ . b

d* ol
ae. on y, = 1(p. HeQ: dl;* (|lu> ulp, O)p,) <0} [

= g(p, ).

buj(ps H)
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Proof of Corollary 4. Assume that the function found previously as the solution of
(#5) satisfies the condition (45), ie.,

meas{(p, 0)eQ: Vu(p, 0) =0} = 0.

Then the cenditions for the application of Lemma 16 are fulfilled, and thus §,, = Q
(modulo a null set) and b, (p, 0) = bi,(|u > u(p, 0)|,) for almost every (p, f)e Q.
Furthermore, condition (45) implies that meas (P{u)} = 0, and thus, from Lemma

20, we deduce that

bi(s) = Bp‘u(s) a.e on QF.

To show part (i) we must give a condition ensuring (45). To do this, we need an
a priori bound for maxg|u(p, 6)|. We set

0.,(&)) = sup { }!}Tim i— Pw=FfweH] Q) and fe L*(Q, p)}. (82)

Due to the properties of #, Q. () is finite. Let y be given by (46) and assume that
A osc b<l.

From now on, we consider u to be a solution of (#;) found by the preceding
iteration method.

Lemma 24.

max |u(x)| = 7] + [/ (Ogc b)# + [ﬂlvalQiéﬂ]Qm(Q): M.

Proof of Lemma 24. From relation (46} of Lemma 19, we deduce that
luls,, < 1 (83)
From relation (47) and (48), we derive that

4G + J12., S lalu F|QIY? + J(osc b)|uiy, . (84)
Then, from (83), (84} and the defimtion of Q. (£) we obtain that

max [4(x) — 71 £ 0w (Q)14G + J11,, Qm(ﬁ)[mummuﬂ +a (ogc b) H:l,
(85)

and thus we get the result. [

IMZIbl,

= If v< 1, then G(p,0) = (1 —v)'*F, > 0.

Lemma 25. Let v :=
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Proof of Lemma 25. Since |5, ,(5)| < |b|,,, we have

[u>u, (p,0}], -
20T BT $)bpa(s)ds £ 20blid (p, 0) £ AbLME = vFE. (86)

lu> 0},

Thus, we get

’ fu>u, (p, 0], ~ 172

G(p. 0) = [FZ -2 EP(UQ")]’(S)bp,”(S)dSJ (1 —w2F. 1 (87
{u>0|, +

Lemma 26. Assume that a*™:= essinlpa® >0, % =v<1l and

Fy

. Then, meas {(p, 6)eQ: Vu(p, 0) =0} =0.

2m
] a1l —v
Alb] . <——( )
Y

Proof of Lemma 26. Suppose that meas{(p, f}eQ: Vu(p, ) =0} > 0. Since
ue WEPQ) satisfies — Zu = aG + J in Q, we deduce from Stampacchia’s the-
orem that Pu = 0 ae. on Sy = {(p, ) eQ: Vu(p, 0) = 0}. Thus

- )‘“u—i-(pn B) [b([), 0) - Bpu(p7 0)] = [l(p, H)G(p: 0) a.¢. on SO' (88)

We have
|/lll+(,0, H)Eb(p7 0) - Epu(p: 9):” é )"Mmlbl o3 (89)

and from Lemma 25,
a(p, 07 G(p, 0)* z a®"F} (1 — v). {90)
From relations (89) and (90), we then deduce that
EMGIbIZ, Z a®F (1 —v). (91)

Using the definition of v, we find that A|b|_v = a*"(1 — v), which contradicts the
choice of A|b| .. O

Proof of Theorem 1. Under the assumptions of Lemma 26, we conclude from
Corollary 4 that u satisfies the problem (#,), that is, ue W= () W () for all
rell, + o[ and

fuzu, (p, N},

— Zu=alp,O[F7 =2 [ [p)](9)-Phu()ds]

lu>0|,
+ p'(ulp, ) b(p, 0) — b (lu > ulp. O)],)].

cu

u—yeH) o(Q), Ei DonIy.

Furthermore, F,(p, 0) = F(u(p, 0)) > 0. Moreover, if 7 =0, then i = infpu £ 0.
Finally, since the conditions of Theorem 7 are fulfilled, we conclude that a solution
u of (#2,) is also a solution of (#;). O
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Remark 8. This proof based on an iterative process can be replaced by a standard
Galerkin approach as is done by Diaz, Pabiai & RakoToson (“Mathematical
treatment of the magnetic confinement in a current carrying Stellarator”, submit-
ted) and by RaxoTtoson (“Galerkin approximation, strong continuity of the relative
rearrangement map and application to Plasma Physic Equations”, submitted).
This Galerkin approach presents many advantages: For instance, the proof of
existence now becomes shorter and the numerical implementation seems to the
much easier than in other approaches,

7. Some qualitative results

We start by establishing a condition for the existence of a free boundary. Let
be the first eigenfunction associared with A, for the operator & with a Dirichlet
condition, ie., ¥, € H}, &) and — Ly = Jyf; on . Thanks to the identification
(19), (20), we know that i, > 0 on Q. Moreover we can rencrmalize i such that
AifaWip, O pdpdd = 1.

Theorem 8. Assume that

—y<F,Jalp,0)i(p, 0)pdpdl:= —yo.
2
Then any weak solution of (#5) saiisfies u, = 0.

Proof. The proof relies of the identity

Ay Sy pdpdf —y = [ aGrypdpdd + 4 [ sy [b(p, 8) — B, (p, 8)]p dp db.
0 [ o]
92)
Recall that p'(u) = duy, J == p’()[b — EM} and that u satisfies — .Zu = aG + J,

ie, a(u —y,v) = (aG + J, ), for all ueﬁj‘o(ﬂy We choose v =, Since a is
symmetric, we then have

a{ty, 1 — )= (aG + J, 1), (93)

By the definition of a, we have a(ify, u — 9) = 4, [, (), (2 — 7)p dp dfl, which reduces
to
Q. —7) = As [ Yrupdpdd — 3. (94)
£
Combining relations (93) and (94), we get identity (92). We complete the proof of
Theorem 8 by arguing by contradiction. Assume that u, = 0. Thus, relation (92) is
reduced to

Ay fubyipdpdd =y + F, [ pdpdb. (95)
o o

In this case, 4, [quf,pdpdf <0, so that relation (95) implies that —y >
F,[qaf, pdpdf. This relation contradicts the choice of y. [
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As a second qualitative property we estimate the quantity

lu=>0[,= | pdpdb.

w>0

One way to estimate this from below relies on the simple inequality

im,(p, Npdpdd <iu>0l], max .

(96)

But we already have an estimate for maxgu s < M,, (see Lemma 24). So (96) gives

1
lu> 0|, gﬁj‘m,(p, A pdpdo.

w0

Now we estimate the Lj-norm of u,. We use identity (92). First, we write

u = uy — u_, so that relation (92) becomes

Q

j[aG g T pdpdl +y = [ wupp [A — A(b — Ep,t,)] pdpdo,
)

from which we derive

v+ F, [ aypdpd0 + [alG—F I pdpdl
Q O

<[4 + Alb| o] maxyry (us pdpdl.
Q Q

That is,
v+ F, f apr < (A + Alb| o) (max ) | us + o] | (F, — G)
Q Q Q
We have
lu>u. (p,0)], R 1/3
Fv - G(P 0) é [/“ [ [(Ui+)2]'(5)bp,u(ﬁ’)dp] y
|1 0O,
ie.,
F,—G(p, 0) £ /AIbl s (p, ) for (p,0)eld

If we set

L(2):= (s + Alblo) max gy + VAb  [afrs] s
Yo = _ijalf/b
Q

then a combination of relations (99) and (100) implies that

';;_

\.

é Jus(p, Opdpdd.
4

Thus we have demonsirated

o7

(98)

(99}

(100)

(101)

(102)
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Theorem 9. Let u be a weak solution of (25), and let M ™ (y) be an upper bound for
maxg tte < M (v). Then

¥ — Yo
0], =——"2_ 103
>0l = v L (103)

where L(4), vo are given by relation (101).
Another way of estimating m*{0) = |u > 0|, from below is to use the Holder

inequality

Juypdpdd = [m?(0)] ”p'( { u’i)lm (104)

Q

with 1/p 4+ 1/p’ = 1. Then one needs to estimate [,u%. If p =2, we know from

Lemma 19 that
1/2
1)

Theorem 10. If 1* (y) is an upper bound for [, u%., then

, {y — 7o)’
ORI G

_ ’alaon + )‘lh’l
Ay — 2 osch
Q

1A

|| 212, (105)

u ,

Thus we obtain

provided that v = vq. In particular,

2

o (7~ 70)

m"(O) = W

8. Proofs of Theorems 2 and 3

Proof of Theorem 2. Let o be a weight on @ = IR? and let ue W A(Q) for some
p > 1. We want to show that (my ) is purely singular. We begin with the case when
ue C*(Q). The argument now is the same as that in ALmGREN and Ligs [AL]. For
any set U < R, we have

(my(U)y= | alp, 8) dp do. (106)
{0 p e Uknilp, MeQ:Vulp, 6) = 0}

If we set B = {{p, 0)eQ: Vu(p, 6) = 0}, then (106) shows us that the support of
(m; o) 1s included in #(B). But by the Morse-Sard-Federer Theorem, we have
meas (u(B)} = 0. So meas (support (m5 o)) = 0, and this means that (s} o) is purely
singular. In the case where ue WZ(Q) for some p > 1, we use a Lusin-type
approximation given in [Z, page 159]. We conclude that u can be changed on a set
of arbitrarily small measure to become a C*(Q) function on €. It follows readily
from the C2(0) case that (m] )" has no absolutely continuous part. [
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Proof of Theorem 3. Let ue W' ™(Q) be a co-area regular function and u; a
bounded sequence W !-(€Q) such that

tj = in W11Q).

Without loss of generality, we may assume that u = 0 and u; = 0. Indeed if a = IR is
such that infpu = o and infpu; = o (V), then u; — o = 0 converges to u — o in
W Q) and (u; — o)} = ufy — @, uh — o = (u — )%, so the result on u; — & and
u ~ o implies the result for u; and u. The proof now follows the same argument as in
ALMGREN & Lies [AL]. Let ¢ be an admissible weight and recall that

mg () = niy 1 {t) + my ot} = f a(p, O)dp do,

1>t

i olt) = J o(p. O)dp do.

{p, MeQuulp O > Vu(p, ) =0}

Functions mg, mJ , and mj ; are in BV (R). We write their Lebesgue-Radon-
Nikodym decomposition as

(mS)y =3 (6} A de — v, (m, ) =g )0 A dt — vy, (] o) = (w7 o) (t) A dt — v,

Since u is co-area regular, the absolutely continuous part of (] o)'(¢) is identically
zero. The measures v, vy, v (i.c., the singular parts) are then in M (R} (the set of
bounded Radon measures on R). We now need some auxiliary results:

Lemma 27. There exists a sequence still denoted by (1;} such that for almost every
telR,

lim inf [(my, ) (O] = (1) (O]
j—=+aoo

This lemma is even true for u not necessarily a co-area regular function and for
any weight ¢. The proof closely follows Theorem 3.5 of [AL], so we omit it.

Lemma 28. If u is a co-area regular function, then

lim inf |(my ) (O] = [(m5) @) for almost every te R.
J

Proof of Lemma 28. If u is a co-area regular function, then the absolutely continu-
ous parts of the measures (mg)’ and (mj, ;) are the same, i.e., for almost every iR,

(m)'(2) = (w7 1) (£}
From Lemma 26, we then have

|(mi)' @O = [, Y ()] = Tim inf {5 ) 1. (107)
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But
lim inf {(my 1) (1)] < lim inf'f (mg ) (£)]. (108)
J J

(Indeed, [(myp)"(0)] = — (mj,)" () = — (my o) (£) — (n, 1)/ (8) = |5 o) ()] + om0
for almost every t.) Thus combining (107) and (108) we get the conclusion. [

One of the main ideas of ALMGREN & Lres [AL] is the use of the notion of arc
length associated with a nonincreasing function.

Definition 10. (see [AL]). Let /: R — R, be a monotone nonincreasing function.
Consider the Lebesgue-Radon-Nikodyn decomposition of the measure df:

df = {6y dt — dv

where /(1) is the a.e. derivative of f(the absolutely continuous part) and dv = 0 the
singular part. The length of fover a bounded interval [o, ] 1s defined as the number

Lup(H:= [ ST+ 0%+ [ dv.

[2. 8] [a, B}

The following result is the same as Theorem 8.3 given in [AL]:

Theorem 11. Let (f}); 2 o be a sequence of nonincreasing functions from R into R ...
Consider the Lebesgue-Radon-Nikodym decomposition

af; =1 0dt —dv;, j=0,1,....
Assume that

Lminf|fi @) = | fo(t)] Jor almost every IR, (109)
J

|fi=fol =0 in Liy(R) as j — oo. (110)
Then,

lim( Jo1+f0%di+ | o dvj) = o /145 de + | pdvg
4 R R R

R

Jor all @:IR — IR continuous with compact support.

We shall apply Theorem 11 with

fi0y=mi(0), folt) = mi(0).
‘We have to check that the conditions (109) and (110) are [ulfilled. First, Lemma 27
ensures that (109) is satisfied. For {110), we have

Lemma 29. (1) himymg (1) = my(1) a.e. in R, and {(ii) |niy, — g Freya 0in LE.(IR).
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Proof. For any te R, we have
ml(t) = lu > t], £ liminf|u; > t|, < lim sup my (6) < |u 2 t], (111)
j i
(recall the notation |u; > t|, = mj (1)) We know that the set D = {teR:|u=t|, >0}
is at most countable. So if te R\D, then lim;m{t) = m{(t}. This shows (i). The
statement (i) is a consequence of the pointwise convergence (i) and the Lebesgue
dominated convergence theorem. [

Corollary 5. For any reals (o, f), o < §,
lim | /14 @) (0di+ | dvy= [ ST+ my@de+ | dv
o mm [z 4] fa, 1 . 8]
Here, dmj = (m)'(t)dt — dv;, dmy = (my (6ydt — dv,dv; 2 0 and dv 2 0.

Proof. This is a consequence of Theorem 11 applied to my, and my. O

The second important property of the arc length is its conservation under
reflection. So if f has a generalized inverse, then the arc length of the generalized
inverse is the same as the arc length of f. In particular, from Theorem 8.5 of
Armoren & Liep [AL], we can state

Lemma 30. Let ve L®(Q). Set m = ess infp v and M = ess supg v. Let my = v >t|,
= [,.,0(p, 0)pdpd0, the distributional function of v with respect to the measure o,
and let v5, be its generalized inverse, i.e.,

0 (s) = inf{reRmi(t) = s} if se[0 QL
R P ifs=19l,.

Consider the Lebesgue decompositions of dmg and dv:

dm = (m2)' (1ydt — dp, vl = (03)'(s)ds — dv.

Then
1. M
[T+ Pds+ | dv= [J/L+m)y@de+ | du
0 {0,190:] m [m, M}

In order to complete the proof of Theorem 3, we reproduce again Theorem 8.7
of ALmaren & LiEe TAL]:

Theorem 12. Assumne that v, vy, Us,. . . are nonincreasing absolutely continuous func-
tions mapping [0, b] into an interval with
b
lim [1]v;(s) — v(s)|ds =0,
+ow g X

J

b b
Tim {1+ oj(s)2ds = [ /1 + 02 (s) ds.
frtmg 0
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Then for any (&, f) such that 0 Sa < f £ b,

8 s
Jim (/1 +wj(s) ds = { /1 +v'(s) ds,
ST -3

b

lim | {vj(s) —v'(s)|ds = 0.

jrtewy

Completion of the proof of Theorem 3. We apply Theorem 12 to v; = uj,, v = uj,
and b = |Q|,. If ¢ is an admissible weight, we know from Lemma 5 that uf, and
us, are absolutely continuous on Qf. Furthermore, since by assumption u; con-
verges to u in L'(Q) (and thus in L*(Q, 6)), we deduce that

u7, converges to ug in L'(Q3). {112

From Lemma 29 and the convergences of Corollary 5, we easily deduce that

1Qy, 10,
_HIP [ VI + W) (0 ds= [ J14+ i) (s)*ds.
JTTo g 0

All the assumptions required for the application of Theorem 12 are fulfilled, and
thus we have

122/,

lim  § (1) (s) — (%) (s)|ds = 0.
0

Jjr+ o

With the help of the estimate of Lemma 5, we get the conclusion, that is,

Q]

j}j{gl [ l@gy () — @) (9)|*ds =0V ge[Lr,[. O
“ g
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