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. Introduction

The magnetic confinement in a Stellarator can be modeled with help of averaging
1sthods and Boozer vacuum coordinates {see [1,2]). This leads to a two-dimensional
Frad-Shafranov type problem for the averaged poloidal flux function. So, we as-
ume that (p, pf, ¢) are the Boozer vacuum coordinates system: ie. p=p(x, y,z} is

function which is constant on each nested toroidal and positive except for the mag-
etic axis where p=0;0=20(x,y,z) is the poloidal angle (i.e. 6 is constant on any
sroidal loop) and ¢ =@ (x, y,z) is the toroidal angle (i.e. constant on any poloidal
ircuit). By averaging in ¢ and adding a free boundary formulation to the Grad-
‘hafranov type equation, the problem can be stated in the following terms (see [3]): Let
2={(p,0):0<p<R,0€10,2n[} and define 82 =T, UT, Uy by means of Tz ={(p, 8):
'€10,2a[}, T, ={(p,0) or (p,2n):p€]0,R[} and Lp={(0,0):0€]0,2x[}. Given
>0,F,>0,a,beL®(£2) with infg |a|>0,b>0 and y< R, find

u:3—R and F:R—R,
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such that ue Wh=(Q)NW2P(Q), p>1 and F € Wh(inf u,supu), F(s)=F, for al
5 <0 and (u, F) satisfy

—Lru=al(p, OF () + F)F (1) + ib{p, N p(u) in 2 (1
wy, =y u(p,0)=ulp,2x) for p€10,R[. (1.2

Here —% is a suitable second order elliptic operator (see [4]). Coefficients a anc
b are explicitly known in terms of the components of the metric associated to the
Boozer coordinate system. The unknown u=u(p, ) represents the averaged poloida
flux, F(u) is the covariant toroidal coordinate of the magnetic field and the constan
F, is the covariant toroidal coordinate of the magnetic field in the vacuum region
Function p(u(x)) represents the pressure and it cannot be obtained explicitly fron
the magnetohydrodynamic system. Thus, p is given as a constitutive law. Usually
p(s)= ’%(34_)2 where 5, =max{s,0}, s €R and 1>0. The plasma region is defined a:
{(p,8) € Q:u(p,0)>0} =0 and the vacuum region as {(p,#) € R:u(p,0) <0} =0°
Thus, a free boundary arises as the boundary of the set {(p,8) €&2:u(p,8) =0} (sex
[3, 4]). Notice that if (p, 8) € £2” then F(u) € F,.

It is necessary to add another condition typical of any ideal Stellarator to con
ditions (1.1) and (1.2). It expresses the zero net current within each flux magnetic
surface and can be written as

f [FOOF! (u) + Ab(p, 0) p'(u)]pdpdd =0 Vie {inf 1, 5up u} . (1.3
{u>t} 2 o

Problem (1.1), (1.2), (1.3) has been treated in [3]. In practice, this condition doe:
not hold and some known current arises at the interior of each magnstic surface
Some studies on the stability of the equilibrium configuration for the fixed boundar;
formulation are already in the literature {Cooper et al. [5]). In those works the curren
is assumed to have the form

J(s)=J(1)(45% — 3sH (14

within the flux magnetic surface corresponding to the parameter s (i.e. {(p,0) €211
(p,0)=s5}) and where 2rJ(1) is the total current (toroidal). In [5] it is also assumer
that the constitutive law for the real pressure function P is

P(s)=P(0)(1 —3s* +25°). (1.5

Notice that in such a formulation it is assumed that the magnetic axis corresponds &«
5s=0 and that s =1 corresponds to the free boundary.

We point out that the presence of a positive total current is a typical phenomeno:
of Tokamak devices (see e.g. Temam [6, 7], Berestycki and Brezis [8], Blum [9]
Friedman [10], Mossino and Temam [11] and their references). In such a case, thi
global condition is formulated as

fﬂ LF G () + 2(p, 0) p' (w)]pd pd 8 =T
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here 7>0 is the total current. For an exposition of the important differences between
e mathematical formmlations of the magnetic confinement in Tokamak and Stellarator
svices see the paper {3] (see also Remark 1).

The main purpose of this paper is to extend the results of [3] to the study of the
»ove type of Stellarators (the so-called current carrying Stellarators). To explain how
place (1.3) by a new condition, we need to translate assumptions (1.4) and (1.5) in
rms of the formulation used in [3], where the boundary of the plasma region were as-
mmed corresponding to the level #=0 and the magnetic axis to maxg 1= ||u+||z=(q)-
5, we define the following change of variable involving |uy||ze(n)y with u verify-
g (1.1) and (1.2): Let

£
gi=(1-c—7" Vi [infu,su u} . 1.6
(- ftm) RSP (1)
hus,
{s=0} = {uy. =|luyllpeo(ny} (=the magnetic axis),
{s=1}=0{uy =0} (=the free boundary).

wthermore, if we fix a current J(s) (as, for instance (1.4)), by the change of variable
ven in (1.6) we obtain a new expression

()= j(ty, ||iel zoocay)

terms of the new variable ¢ € [infq u, supq, ]. Analogously, we will have P(s)= p(z,
t4-||z==(ey). Here, and in what follows, we shall assume that

JEFRXxRT), j(o,0)=0 forall 60, (17)
JEBMT xRYY and n:=sup{|j{ro)|: (o) eRT x R*} <+oc. ’

¢ shall always use j/ to denote the derivative of j with respect to the first component
e. ji:=3). The assumptions on p are the following: p(t,0)= p(¢) with peEF(R)
ch that

p0)=0, 0<p'(t)y<ir. and |p/(t)— p'(s) < Ljr—s|* (1.8)
r some A>0,L>0 and 2 €]0,1[. Notice that p(¢)= %(t+)2 satisfies all the require-
:nts. Finally, the new condition for current carrying Stellarator can be stated as
/ [F)F () + p'()b(p, 0)lpdpdl = j(t,, luy |oomy), tE [inf u, supu] .
{u>1} Q o

(1.9)

v the sake of the exposition we shall assume that % =A (the Laplace operator)
d we replace (p, ) by the associated cartesian coordinate x € £ C R%. Say the main
rpose of this paper is to prove the existence of a couple (u,F), solution of the
flowing problem (£)

— Au=aF )+ F(u)F' (1) +bp'(1) in Q, (1.10)
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u—y € Hy(Q), (1.11
/ [F@)F (u) + bp' (u)]dx = j(t: iy ||eoy) € [i?zf u, sup u] . (112
{u>t} £

Before stating our main result, we introduce the following useful convex cone:
V() ={veH'(Q): Ave L>(Q),v)50 < 0}.
Theorem 1. Suppose that i];l)f |a| =0 and y < 0. Then there exists A>0 such that |

ABllzeee) + <A

there is a couple (w,F),u€V()) and F € W-(linf u,supul) solution of (1.10°
(1.11) and (1.12) satisfying also that meas{x € §2:Vu(x)=0}=0 and that F is en
tirely determined by u.

Inspired in [12] and [3] we will reformulate problem (£) in terms of a new probler
{#.), of nonlocal nature, where we eliminate the unknown F by a term involving th
function u, its decreasing rearrangement and the relative rearrangement of b with respec
of u. However, the lack of regulasity of the derivative of the decreasing rearrangemer
makes it difficult to solve directly problem (£ ). A family of problems {(£.) are the
introduced. Using a Galerkin method (of interest also for the numerical approach
we will find a solution of {#,). Finally, thanks to a result on the regularity of th
derivative of the decreasing rearrangement (Lemma 4) we shall obtain a sclution o
(#.) by making ¢ — 0. The equivalence of the problems (#.) and (£} (under a suitabl
condition} proves that this solution is also a solution of (#). Finally, in Section 6 w
give some qualitative properties on the solution.

2. Preliminary results

In this section we recall the notion of relative rearrangement and some useful proper
ties of it. Let £ be a bounded measurable set of RY, N > 1. For any measurable subse
E of 0, we denote by |E] its Lebesgue measure. Given a measurable function #:$} — [
and any value r € R, we denote by {u =1}, {u>¢} and {u > 1} the sets {x € Q:u(x)=1]
{xeQ:u(x)>1} and {x € Q:u(x) > ¢}, respectively. Their measure will be indicate
by |lu=t|, [u>t| and |u > ¢|, respectively. We will say that u Aas a flat region a
the level ¢ if fu=1] is strictly positive. It may exist, at most, a countable family o
flat regions P(1;) = {u=1}. We denote by P(u) = Urep £(#:) the union of all the fla
regions of u.

Definition 1. Let u:{)— R be the Lebesgue measurable function. The distributiol
function of # is defined by

my(t):=u>¥f| for any t€R.
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he generalized inverse of m, is called the decreasing rearrangement of u and is de-
oted by u.. That is the function . : 10, |Q2{[— R such that u,(s) =1inf {t € R: |u>1| <s}
ith 1,.(0) =esssupg w and u.(|Q2]) =essinfq u.

emma 1. Let (v,)p>1, vE€LP(Q) such that meas{x€Q:v(x)=¢}=0 for all teR
wd v, — v strongly in LP(Q) and ae. in Q. Then

|ty > v (X} — o> (x)] ae xefl
roof. One has the following chain of inequalities
o> v (x)| <lminf |v, > 0, (x)|
00
< Hm sup |0, > vy (x)]

A OC

<|p>uoilx) ae xci.

ow, since by assumption v has no flat region, we have that [v=1.(x)|=0 and by
€ above inequality we get the conclusion. [J

We denote by (2. the interval ]0,|Q|[. Later on we shall need to use some properties

" the decreasing rearrangement. In particular, we shall use the following classical
sults.

smma 2. Let v and v be measurable functions in Q. Then

For all se (2*, we have my(u.(s)) < s.

If w has no flar regions, then m, is continuous and m,(u,(s))=s Vs € {1,.
u and u. are equimeasurable, i.e. |u.>t|=u>t| Vic R

Let ¢:R— R be a Borel function such that o(u) € LY(Q), then

[ otutnar= [ otutsyas
Q Q.

If u < v almost everywhere in Q, then u.(s) < v.(s) Vs €§,;
Let @:R—R be a nondecreasing function. Then p(u.(s)) = p(u).(s) almost ev-
erywhere s €§),;
The mapping u— u, applies LP(Q) into LP(£.,)
(1 < p < +4o0) and it is a contraction, ie. ||u. — v.[ren.) < [ — ]| oy
(1< p<+o00) Moreover, |lul ooy = ||tl|Lr@.y.

The proof of this lemma can be found, for instance, in [13-15].

We shall also need some regularity results on the first derivative of u,. More pre-
iely we have;

mima 3 ([16,17]). Let Q be an open, bounded and connected regular set of RM.
ue€ Whe(Q) for some 1< p<+oo, then:
D) u, € WP,
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(i) There exists a constant Q= Q(QY) only dependent on Q such that if we de
. 1 t

Sine k(s)= lamm{s]_ﬁ,ﬂm — ) WIS € Q. then one has ||k ||,y < [|VullLe

1< p< oo

(iii) Finally, if N < p<-roo, then u, € WHI(,) with 1 < q< =1

NP
STEw and

dit,
ds

< ClVi|re
LS.

Jor some C=C(NM, p,q,f2). O

Making p— +oo in (iii) of Lemma 3, we obtain

Corollary 1. Ler {1 as above and u € Whoo(Q). Then u, € WH(Q,) for all 1 < g<
]TJ.]E_I and u, € €{(§2,). O

duy..

The following lemma shows some additional regularity on == under suitable as
sumptions on ¢ when N =2,

Lemma 4. Let Q CRE: Then, for all we V() one has

: | Aw]| oo gy
i < Al
) 1 [y 4

.. 0
(i) ws @, < AW,

(iif) ‘%WJ,*(|W_,.>W+(x)1)I < Bvl=e o yeq

dw,y,

ds

Proof. Let we V({1). Then
/ Awl(wy — t)+dx:/ Aw(w, —t)dx for all >0 (2.1
Q {wy >t}
since (wy — 1), € H(R), integrating by parts, we have
//_\.w(w+ —t)+dx:~f |V, |*dx. (2.2
Q {wy>r}
By classical arguments (see, for instance [13]), we have

i Aw(w, — ), dx=— / Awdx. (2.3
de Q {we >t}

Combining (2.1}, (2.2) and (2.3), one has

d

s le+|2dx————f Awdx < [|Awl|zooy [y >1]. S (24
dr {1y >t} {we>r}
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vrguing as in Talenti {14] and using the De Giorgi isoperimetric inequality, we get
rom {2.4)

d d
4 < | _ - = 2 .
Wy > 1] < ( dt|w+>r!> ( 5 AW>G [V dx)

d
< (=it ) el Awlioce 23)
or a.e. t €]infq wy, supy we[. Thus 41 < (——%[M > )| Awllfee (). Now, by standard
rguments (see [13, 14]) we obtain (i), ie.

| Aw|ir=(0y
47

ince we know already that w,, € Bl (€.), (2.6) infers that w,, € W5°(Q,) and an

itegration leads to ||[wy ||zse0) =wia(0) < %[]Aw}hm(g) (since wy. (|©2])=0), i.e. (ii).
et us show (iii). From the equimeasurability, we obtain that

PR
2\Pw) 2P )

i all pe[l,4cof. Thus, letting p— +oo, from (2.6), we deduce that

— EW+*(S) < ae. in £, (2.6)

d Wy

ds

(we >wy(x)))

Wik (5)

poF
e ds} 2.7

drw,,

AW e ()
25 (o> ) < V20

4

a.e. in \P(wy).

esides, as w,, is right-continuous,

d $;+*(|wv+>w+(x)|)=0 for x € P(w,)

W (iii) holds. O

To pass to the limit in the iterative method that we shall use later we will need the
rong convergence of the first derivatives d%un*. To do that, we will use the notion of
varea regular function (see [18]):

efinition 2. Letu e Wlé’cl(ﬂ). Fort e R we set my o() :=|{x € 2 :u(x)>1 and Vu(x) =
Hoand n, 1 (1) := ny(t) — my, 0(¢). We will say that u is a coarea regular function if

e Radon measure (m,,0)" is singular with respect to the Lebesgue measure on R.

Now, let us recall two conditions to get a coarea regular function obtained in [19]
ee also [3])

emma 5. Ler  be an open set of R? and ue W2P(Q) for some p>1. Then u is
coarea regular function. 0

More in general, if {2 is an arbitrary open set of RY, we have a simpler statement.
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Lemma 6. Lefuc PK;;I(Q). If meas{x € Q: Vu(x)=0}=0 then u is a coarea requia
Sfunction. O

The relation between the notion of coarea regular function and the convergence o
the derivative sequence u,, is obtained from an important result due to Almgrem an

Lieb [18]:

Lemma 7. Let u be a coarea veqular function of WHP(Q), 1< p<4oc and lei O b
a bounded regular open of RY. If u, is a bounded sequence of W“P(Q) converging t
u in WHYHQ), then a%u,,* converges o d%u* a.e. in 2. Furthermore, if p>N %u,,
converges 1o d%u* strongly in LI(QL,) for any 1 <g<g.= F}f_:"%" O

The proof of Lemma 7 has been presented in [19].

Now, we recall the notion of relative rearrangement of v with respect fo w. Le
ve L'(), we define a function w in Q. by:

( ) f{u>u*(:r)} D(x) dx if |lf-=ll*(S)i =0,
ws)= . s— 1>, )
S uny 7 dx + g = (s)!(l’if’.,(ru(s)))*(ﬁ)dﬁ if |u=1,(s)|#0.

Here 5)p(u,(5)) denotes the restriction of v to the set B{u.(s)) and (v|p (. (o))« it
decreasing rearrangement. The following lemma was proved in [11,20].

Lemma 8. Let uc LY (Q) and v € LP(Q)) for some 1< p<-4oo. Then we WHP(L1,
and || flor.y < olleoey O

Definition 3. The function % is called the relative rearrangement of v with respec
to the v and it is denoted by

ﬂ
ds’

Uy =

This function has many properties as we stated below {see, for instanc
[11,15,20,217):

Lemma 9. Consider u,vi,vy three elements of L'(Q0). Then:

L If v; <uvp ae. in Q, then i < U ae. i Q..

2. If @:R— R is a Borel function such thai (1) € L' (1), then (014 ©(10) ey = 170q
@(uy). In particular, if we take o=k constant, then (v + k)uy = Uiy + k.

3. The mapping v— vy, applies LP{Q) into LP(§1.) for any 1< p<+oco and it is «
contraction. In particular

oallirm.y S ollzegy  for any v€LP() and e LY(Q). O

We shall be interested in expressing the function {p'(u)b]., in terms of u, and b,,
To do that, we need the notion of mean operator introduced in [11].
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Yefinition 4. (Second class of mean value operators). Let u,vcL'(Q), and geL1(Q,).
.et us define .#, ,(g) as the function

gy (u(x))) ifxeQ — Pu)

s S 2 g(o + lu> ) do if x € Pt

;> (x|

Ay (g)(x) = {

.. x €8 where v =V|p, i,y the restriction of v to P,(4).
In particular, we will use the following lemmas (see [11, 19, 22]).

emma 10. The operator 4, ,(g) is well defined and one hus
) if ge L), then #, (g) € L (KY), besides

/ g(S)ds-——/,/Z{u’v(g)(x)dx,
. Q

1) My is a linear continuous map with norm one from LP(Q,) to LP(Q) for any
I<p<+ea O

We need also the following result which gives a relation between the relative rear-
ingement and the mean value operators:

emma 11. Let ueL'(Q) and v LP(Q), 1< p<+oo. For any geL? (Q,), % +
r=1, we have

/ D)9y ds = / M o(§))0E) .
[ 93

1P =0 the last equality is reduced to

/ Pra(5)g(s) ds = / gomu))p(s)dr. O

.

Using the last two lemmas, we have

emma 12 {[3]). Let uc LY(Y) and such that u., € 6(Q,). Let Fy:R— R be a Borel
metion such that Fy(u) € LY(Q). Then, if b€ L®(§) we have

[H)(H)b}:ku = FO(”*)b*u- O
Since we shall use later an approximate method, we shall need to know the behavior

" the relative rearrangement of a fixed function & with respect to a sequence of
netions u, converging in L'(2). In that sense we have

emma 13 ([3]). Let u,, u be in LY(Q) and assume that u, converges to u in L'(2).
hen, for all v & LP(Q) (for a given p, 1< p<+oo) we have

(U}(Q\P(u) Doy — (UZQ\P(u) )
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weakly in LP(02.) if p<-too and weakly* in L=®(Q,) if p=+oo (by yr we denoie
the characteristic function of the set E). O

Under some additional regularity conditions it is possible to improve the abowt
convergence:

Lemma 14 ([23]). Let veL?(Q) with 1 < p<+4oo and u, u, € Wh(Q) such tha
meas{x €}: Vu(x) =0} =meas{x € }: Vu,(x)=0}=0. If u, converges fo u ir
we(Q) for some g >N, then Uan, — sy Strongly in LP(,.). Furthermore, va, (|t >

u()]) converges to v (|lu>u()|) strongly in LP(Y). U
As a direct consequence of this lemma, we have the following result

Lemma 15 ([23]). Let veLP(Q) with 1< p<+oo and let (L, ¢}y be the se-
quence of eigenvalues and eigenfunctions of —A on § with Dirichler conditions,
ie. —Apr=2Xor @r€Hy(Q). Consider the finite dimensional vector space V=
span{@y,...@u} (the vector space spanned by (i ¥t.,). Then, the maps given by

1€\ {0} = 0w €L7(R) 1< p<too
and
ne V,,,\{O} - u*,,(|u>u(<)|) eLf(Q) 1< p<too

are strongly continuous over LP(,) and LP(Q), respectively. [
As a complement of Lemma 7, we have the following useful result.

Lemma 16. Let u,, u € W"2(Q), 1 < p < +oc and Q be a regular open subset of RY
such that

meas{x € : Vu,(x) =0} =0=meas{x € Q2 : Vu(x) =0}. (2.8
Then, if w, converges to u in W-2(Q) for some p>N;
) (|tn > 1)) converges strongly to wl(|u>u(-)|) in L9(Q)

forall 1<g<§:=q7—r. U
i

The proof of this lemma is included in the proof of Lemma 14,

3. An equivalent formulation as a nonlocal problem

The main goal of this section is to show that if ¥ satisfies the family of conditions
(1.12), ie.

/ {Fa)F'(w) + p'(u)b}dx = j(t.,u.(0)) Vie {i%f %, sup Zt] (3.1)
{u>1t} Q
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then it is possible to express F in terms of # decoupling in this way, the equation
of such a family of conditions. This fact gives us the key to reformulate the problem
(1.10), (1.11) and {1.12) like a nonlocal problem where we can eliminate the unknown
function . In this way, we reduce the original problem to the simpler problem (22.)

—Au(x) = a(x) F(x) + p'u(x)[b(x) — buu(|tr>u(x)])]
+ (e () e (O, (lu> ()] in (3.2)
u—y€HH(Q), (3.3)

where now v is the unique unknown and function %, is defined as follows:

) Ji =14 (x)]
Fulx) o= |F2 =2 / P )] (5)ba(s) ds
|1e>0]
|ozw () , , . %
-u[ O ) | (3.4)
>0

7 order to prove the equivalence between problems (£) and (#.), we will need
some few lemmas. Their proofs are easy modifications of the corresponding lemmas
n [3]. Here, we shall only show the significant differences. In all this section, we set
fi=infqu and M = sup, v which are justified since u € L%(£2).

Given u € WhHo°(0), we define the function 7 : R — R, by

3/7(1)—_“ !:Fg — 2/'+ p’(S)b*zf(ill>Sl)dS
0

tal—

+2 /l Fsen (0, (Ju>s])ds| (3.5)
0 +

Chen, we have

_emma 17, Ler uE_Wl’cO(Q) such that meas{x€:Vu(x)=0}=0. Then Fix)=
F(u(x)) for all x€ L.

>roof. Simiiar to Proposition 1 of [3]. O

-emma 18. Ler u € V(1) such that meas{x € Q: Vu(x)=0}=0. Then

| Az
4z

—dgﬁ(ngn < for ae. t. (3.6)
hy

roof. It suffices to show (3.6) for r&]infqu, supg uf. Let p (1, +ool. Making the
thange of variables r =u,(s) we have

supq i 19
[ W pirar= [t o as
i [

nfgz H
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From Lemma 4, we then have for all p&[1,+oof

1

s L A
([ e} <20,
Jinfgu (Am)ts

Letting p — 400 we obtain (3.6). O
Lemma 19. Assume u € V() such that meas{zx € Q: Vu(x)=0} =0 and min{F (¢) :

i€m,M]}>0, mi:=infou, M :=supqu. Then (i) F c WL=(Ji, M[) and (i) jor
almost every t € [, M), we have

FOF(0) + p'(Obsllu>1]) = ji{trupn (0l ([u> 1]).

Proof. Since b., € L2(52,), p € €'(R), then, the map

iy
t— f po)bu|u>0c|)de
0

is in (T, M[). From the assumptions on j’ and Lemma 18, we deduce that the
map

Ly
t—,\f Jilos,up (O (Ju>o]) do
0

belongs to W1-°°(a, M[). Finally, proceeding as in [3, Lemma 12], we obtain the
conclusion. [

Lemma 20. Let uc V(D) such that meas{x € Q: Vu(x)=0}=0 and ler & given by
(3.5). Assume that min{F (z), t €[, M1} >0. Then, for all t € [m,M]

f{ AFGF )+ 000} s =e1,00.(0)).

Proof. By Lemma 19, if we set N={rc[mM]: 7 ()T (1} + p({t}b.(ju>1t])#
Jite,uen (0, (Ju>1])}, it has zero measure. Then {x € Q:u(x) e N} and {5 € Q:
1:(s) € N'} have zero measure (use equimeasurability, that {s € Q,: u,(s) EN} C m, (V)
and that m, is absolutely continuous). Therefore,

F(u(x))F ((x)) + p'(u(x)) b >u()]) = fiy (), 120Dl (> 0(x)])

a.e. x €. Integrating on {u>>1}, one has
/ {Z (uCNF (w(x)) + P/ () bau(lu>u(x)|)} dx
{u=>1}

- f{ (O () e (3.7)
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By equimeasurability

/‘ ), O () = ]{ J1 0t () 1 ()il (5) .

. >t}

If >0, one has ! (s)=u'(s) for almost every s¢& {u,>1} since meas{x€
Vu(x)=0}=0 and u € F(2). By the change of variable 6 = u.{s)

sup .,

fate > 1}
/0 J1(4a(8) 14 (02, (5) ds = — / Ji(B,u . (0))dE

I3

= =Ht2 (0} (O + (1 ua(0)). - (3.8)

Moreover j{u4.(0),4:.(0)}=0 by Assumption {1.7). Thus, frem {3.7) and (3.8), for
all t >0

/ [F(w)F (w)+ p' ()b ju>ulx)|)dx = j(t,,u.(0)).
{u>i}
Let < 0. From relation (3.7)

/ [FaOF' (u) + p' ()b (Ju>u(x)]) dx
{

u>t}

= [ s O ()
{u>0}

@O (> d (3.9)
{r<u<0}

‘notice that the last integral is zero). By the same change of variable as before

Supg 1y
| a0 ) = [ a0
{u>0} 0

= J(0,11.1(0)) = (tts (0), 12 (0))
= j(0,114.(0)). (3.10)
“rom (3.9) and (3.10), we have

/{ FOOF ) P 0bu> 1)) i =011 (0)= [t 0))
u>t
or t<0 and the conclusion holds. [

Lemma 20 shows that, given w, the function 4 defined by (3.5) satisfies the original
stellarator condition (1.12}, ie. (3.1). Let us prove a result in the reciprocal way:

Lemma 21. Let u€ V() such that meas{x € : Vu(x)=0}=0. If F € W=}, M[)
5 a function satisfying F:[m,M]— R, F(t)=F, for all <0 and for all t €{m,M]
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the relation (3.1) holds, then, necessarily F(£)=%(¢) for all { € [m, M| with F given
by (3.5).

Proof. We follow the same type of arguments as in [3]. From relation (3.1) we deduce
that j{u . (8), 1.(0)) =w(s) = f{m”*m}{F(u)F’(u)—{—p’(u)b} dx for all s € Q,. Thus,
differentiating with respect to s this relation and using Lemma 12, for all s € Q.

i (90 s (00, (5) = F((8))F (a(5)) + P/ (1)) Bua()

since §=|u>u.(s)| (because |[P(u)|=0). The rest of the proof follows as
in [3, Lemma 13]. [

From the above lemmas, we can obtain the main result of this section:

Theorem 2. Let u< V{(Q)) such that meas{x€{}: Vu(x) =0} = 0. Assume th= infou<
0 and ,(x)>0 a.e. in Q. Then, if (u,F) is a solution of (#) such that F: [m,M]— R*,
FeWb=(m,M[) and F(t)=F, for all t<0, then function v is also a solution of
(#) and necessarily F=% with & given by (3.5). Conversely, if u is a solution
of (&) and F is given by (3.5) then, the couple (u,F) is a solution of (P) and
F e Wh=(]m, M]).

Proof. If (u,F) is a solution of (&), then thanks to the assumptions, F is defined neces-
sarily by relation (3.5). Now, by Lemma 17, one has that #,(x) =F (u(x)) for all x£QQ.
The assumption %,(x}>0 and the regularity € %¥( ) imply that min{F(¢):¢€ [, M1}
>0. Then, the conditions of Lemma 19 are fulfilled and sc

FOF' (1) + 2 Obalju>t]) = jj(te, 144 (0 (ju>1])

for almost every r€[#,M]. In particular, we deduce that u satisfies (3.2) and so u
is a solution of (#). Conversely, if u satisfies (%) with & given by (3.5), then
Fu(x))=F,(x)>0, x by Lemma 17. Then Lemma 20 can be applied to get the
relation (3.1) of (#). Equation (1.10) is verified by u thanks to Lemma 19. O

4. The approximate problem (Z,)

Here and in what follows, we use the notation:

I(v(x),0):= X[iﬁ>u+(x)],|u>0|](0') g€Efl,
(4.1)

(the characteristics function of [|o> v.(x)|,|v>0|]),

Fi(x,v,bﬂ):xw/Q T(6(), ) p(0: )] (5)b4y(5) ds, 4.2}

f‘;,z(x,v)fz—/ H{u(x), $)he(v)y (8))7;(044(5), 02+ (0)) ds, (4.3)

»
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Fy(t,0,bay) = [F2 — 20,0, b.y) + 2Fa (5, )] (4.4)
H(0(), bay) 1= P (0B — bagl(p>0(0)], (4.5)
Toe(x)) = &ty ([0 > 5 (0] (05 (), 54 (0)), (4.6)

lways for a.e. x€(Q and for any function v€H](§2). Here, we used the truncation
unctions

12 t

llg(t) Tsl[i.

Ce(t) = (4.7

1+ &2

Ve shall adopt the notation F :=Fp2 and J :=Jy (for e=0) concerning problem (3.2)
nd (3.3): that is

o> 0, 00|
F(x,0):= Fpa(x,v) = fl \ (0, V() (050 (5), 03 o(0)) ds (4.8)
nd
J(0) = Jo(0) = ' ([0 04 ()0 (), 2 (O)). (4.9)

Now, let us consider the following approximate problem (4,) for any fixed > 0;
nd u® such that

— A =aF(x, 1", By Y + H(u boye) + (1) in Q, (4.10)
W —yeHg (DN W (Q); Vp= 1. (4.11)

‘o simplify the boundary condition we define w®:=u* — y. In order to prove the
xistence of w® we shall use a Galerkin method as in [24]. First, we shall find a
olution wf, of some auxiliary problems (Z,,). We shall search wi €V, where ¥,
; a finite dimensional space such that ¥, C ¥y C H(82). Later, using appropriate
stimates on the solutions wi, of (%, ,), we shall pass to the limit when m goes to
finity and so, we shall find a function w* such that w® 4y is a solution of (Z,;).

. The Galericin method. Existence of solution for a family of finite dimensional
roblems (Pgw)

Consider (A, @) )i >1 be the eigenvalues and eigenfunctions associated to —A on 0
7ith Dirichlet boundary conditions, i.e.

—A(pk :Ak(Pk, Or EHOI(Q)

et ¥, =span{®@1,...; @n}. On ¥, we deﬁne the scalar product by [, w] =3 5, vFwf
‘here v= 31, o* @ and o= 31 whey. Let |[oly, :={v,v]? the associated norm.
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Now, for y <0 fixed, we consider the operator T%: V,, — ¥,, defined as

[Tiv, ] = / Vo-Vodx — / aFy(x,0 4+ 3, baquasn) )@ dx
0 Q

- [ Hnbods— [ A6+ neds Vo pek, @12
JQ Q

We shall prove that this operator attains zero for some wé € F,,\{0}. It is clear that i
P p

m

w, satisfies TJwi =0 in ¥, then wf satisfies the finite dimensional problem (%,
m m'Tm n ]

given by
_A(wf::i + '}’) = P"” [CZF;(X, wrfx + ¥ b*(W,Z'H‘)) + H(W;, -+ 7 b*()v,f;+}')}

+ (Wl +7)] inQ,
"V)fz E Vm:

where Py, is the orthogonal projection operator from L*(Q) onto ¥;,. To prove that T
has a zero in F,,\{0} we shall use Lemma 4.3 of [25]. We need to check that T? i
a coercive and continuous map. We notice that [T20, ¢p]=F, fn ap dx #0 for some ¢
provided that a=0.

Proposition 1. If

by = Aoscb>0 (413
then

Tl; , -

. o] fofl s 00

In pariicular, T} is a coercive map.
Proof. Let y<<0 fixed. We shall estimate
[Tiv,0]= /ﬂ Vol dx — /D afy(x, 047, bagoyyy)udx — /QH{U + 7. by )0 dx
—/QJE(U—F‘/)UCLY Yucl, (4.14)

term by term. Let us start with ffz H{(v+ 7y, begpsyy wdx. Then,

/ H{v + 7, bty v dx
193

<A Gscb/ v?dx (4.15)
22 Q

where we used the assumptions 0 < p'(s) < Asy, 4>0 (see (1.8)) and that y <0. It is
also clear that

/Jg(v + y)vdx
Q

i
g;/ﬁ}ﬂdx (4.16)
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hanks to (1.7) and that function &, is bounded by 1l/e. Let us estimate the term
}]aﬁg(x, v + 7, by v dx. Dropping nonpositive terms and using the same argument
s above,

. % 2,
/ aF;;(X,U + 9, b*(v.;_},))l) dIS HaHLm(g) [F;Q ] |Q|:l / |UE dx, (417)
Q o
ince || < 1/e. Using the above estimates, we have
[Tiv,v] > / [Vo|* dx — C/ |odx — Z osc bfvzdx (4.18)
Q Q Q

rith Cy = ||af|ge @y [F2 + #|Q[]V2 + 1 and for all v ¥, Applying Young’s inequality
) [ o] dx we get

9}
/]v]dr< /v dx "f—% YK >0.

‘hoosing K? = % and Cys5 = C’:i}ol, we obtain that
[(Thv, 0] > 11/ uzdx—('S/ vzdx—C85~ﬂ.oscb/ vt dx
It 0 5 0
={i—-d-2 o(s;: b)/ Pdx — Cys YoeV,. (4.19)
0

rom the Assumption (4.13) we obtain the coercivity of operator ¢ assumed we take
small enough. [

roposition 2. 77 is a comtinuous map.

roof. Since (g )7 | is an orthogonal base of (¥, [~ ])
Mlowing way

, I7v can be expressed in the

m
Tiv=""[Lv, oilon. (4.20)

k=1

o, the continuity of T2 on V,, is equivalent to the continuity of the application
P q Y PP

Vadv— [0, 0]

here @ €14, 1s an arbitrary function. We shall prove the continuity of the different
inctions appearing in Definition (4.12} of TF once ¢ is fixed. In the following, we

biid

1all take a sequence of functions v, € ¥,\{0} and ve€ ¥}, such that
Up—0 in K.

/e need a previous lemma.
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Lemma 22. Let (vy),>1 be a sequence of V,\{0} and let v be in V,\{0}, such that

Up— v in V. (421
Then one has

tw — v strongly in EH(QWEeNU{0}, (422

Ons — Da strongly in €( ), (4.23

Ui vl v, strongly in L(0,)V1 < g < oo, (4.24°

Ty ([0 > 02 () - Vo(lo>o())  strongly in LIV < g <oo. (4.25°

Proof. On ¥, all the norms are equivalent and since ¥, C%>( ), we have (4.22)
As 1 is connected and v, €€ (), then v, and v, are contimmous in 2. From the
contraction property and (4.22) we get (4.23). On the other hand, since any elemen
of V,\{0} is coarea regular (notice that it is analytic in ), one has, from Lemma 7.

do,. do
J* * . q Q ] 4- N
e SE L@, vgell2] (4.26)
So,
A0y dige
121?‘_} S II(QL), Wgell,2[. (4.27)

Moreover, as the functions v, are such that Unlsn =0, they belong to 77(2). By (4.22)
v is also in F(2) and we know that |A(v, — U)|‘6’(ﬁ) — 0. Thus, from Lemma 4,
=400

we have

dvn+*

< ”AUHHL‘”(Q) <
ds

< constant independent of #. {4.28)

L@y 4n
We easily conclude from this estimate and (4.27) that
dvp _doys

ds ds

Finally, the last statement comes from Lemma 16 and (iii) of Lemma 4. [

in LP(2,.), Vpel[l,+oal

Proof of Proposition 2. Conrinuity of the map
oz [ H b o d (4.29)
0
It is equivalent to prove that the following equality holds

S [ g5 (4 DN = bl + 7> P

= fﬂ @(x) P'((0 + PYENBE) = bagorpy(lo + 7> (v +y)))] dx (4.30)
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for all pel,. We distinguish the case v#0 from the case v=0. Since any ele-
ment of #,\{0} is an analytical function (recall that ¢; are analytical functions), then
meas{x€Q: Ve(x}=0} =0=meas{x€: Vu,(x) =0} and by Lemma 14, we get

b*(u,,-i-}’)ﬂ“n + >, + 'V)()D rz:—c—':c
Dagrepy(j0 + > + X)) strongly in L9(Q) (4.31)

for all g > 1 since b is in L™((?). By Assumption (1.8) we obtain, from the convergence
Lemma 22, that

P(oa+7) — pv+y) strongly in L'(Q) (4.32)

for all »>1. Now, by the convergences (4.31) and (4.32) we obtain (4.30) when
v# 0. Finally, if v=0, the L'(Q)-strong convergence of p'(v, -+ 7) to 0, the uniform
boundedness in L(§2) of by, (|vn + 7> (v, +7)(-)]) and the weak convergence in
LP(Q) of buuan([n+7> (5 + 7)) 10 buuim([o-+9> (@ +7)()]) (see Lomma 13)
imply (4.30). Thus, the map defined by (4.29) is continuous.

Coniinuity of the map

Vadv— / J{v+ e dx. {4.33)
)

Following the same steps as before we verify that

lim A Eel(vn + Y ullon + 7> (0 + 2D JH(0n + 1)), (00 + 7D (0))pdx

H—rO0

= [ & eallo 472 @+ D@+ D G+ 7)1 (0
(434)
for all p&¥,,. Since by Lemma 22
by +y —> v+y stongly in €F(Q) YheNU {0},

we have
(Un + '}’)+(X) n“:";o (L’ + ?)+(A) Yxe2

and
(Vn + 7)+0) = (0 + V) [l2ooeny =2 1@+l = (0 4+ )00,

The continuity of 7/ in R¥ x RT and the above convergences give
JiC + ) G (00 + 1 50(0)) = i+ D)4 (2,0 + 7):.0)) VwEQ.

Applying again Lemma 22, the Lipschitz continuity and the boundedness of function
£, one has

Ea@n + )y alon + 7>+ DOD) =2 Lo +)eullo+7> 0+
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strongly in L9(1} with 1 <g<co. The above convergences and assumption (1.7), lead
to the conclusion.
Continuity of the map

V20— /aF;(x,u—F}f,b*(Uﬂ))qadx. {4.35)
0

As before, the first integral which appears in the definition of £ (see (4.4)) converges
to

[v7> (o7 ()] ,
2 /I‘ {p((v + 7)* )] (S)b*(y»f-y)(s) dS

v+y>0f

from the strong convergence of Lemmas 22, 1, 14 and assumption (1.8). The conver-
gence of the second integral to

ley > (o-+7)4- )]
2/| J((@ + D)) (0 + P (0)2e(0 + 7)) (9)) ds

p+7>0|

is obtained in the same way by using the continuity of ;..
The above steps show the continuity of the map 7,?. [

Theorem 3. Assumie (4.13). Then there exists at least wl € ¥, solution of problem
(Pre.m ). 1.0, satisfying Yo T,

[Y;;W;:z’ QD] = / VW,?I'VQJ dx — / CIE;(X, ]'v;;i “+ 7 b*(“’.ﬁ'*‘?))(p dx
JG Q
= [ HOG b dr - [t +moan=0. @36
Q 9]

Proof. From the coercivity of 7;% and the continuity of 7F given by Propositions 1

and 2, we can apply the Brouwer Fixed Point Theorem (see ec.g
[23, Lemma 4.3, p. 55]). [

4.2. A priori estimates on solutions of (P m)

In this section, wf, is assumed to be a solution of (Perm). Taking ¢ =wf, from
(4.18) and (4.36), we have

0=[Thw: wil> (21 —- 4 ose b— 5) / [we 2 dx — Cs.
2 Jo

Thus, choosing ¢ small enough, one has that
”szzHLz(Q) < (4.37)
and from (4.17), we deduce

/ [Vwnltdr<C, (4.38)
Q
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for some positive constant C, only depending of e. From estimate (4.37) and using the
same arguments used to obtain estimates (4.15), (4.16) and (4.17), we get

| Awpy 20y < laFaCuwy, + 9 bapusan) ) iy + 1H Wy + 95 bagws ) 2200
+ vy + 2@
1 i
2i oL . Q2+
< lallmey |72+ 2] 101 + ogepwillo + 2 <
(4.39)

where C, also denotes a positive constant only depending on & Thus, by standard
regularity results, (w5 )y»1 is uniformly bounded in ¥>2(Q2) with respect to .

4.3, Passing to the limit m — oco: Existence of solution of (P.)

By the above estimates, there exists a subsequence of {wZ}, which we also denote
by {w:}, and w® € W>2(Q) such that

£ I . 2,2
wy, — w' weakly in W=7(Q),
m—oG

and so,

w, — w" strongly in whe(), Ypell,cof, and in €(£1).

Our next step is to verify that 7®w®=0. Here T%:Hj(02)— H) () is the operator
defined by

[T, p]l= -/Q Vo Vedx — ]Q aF(x, v+ 7, buipay))@

~ [ B+ pbuepods — [ oo ds (4.40)
Q Q

if v, € H} (). As before we have
“aﬁ."(-"; 1"';, + 7. b*(n-'jj,-?—‘f))”!.m(ﬂ) <C;, Vm. (441)

Let us show that

F(oe, w4 9, Dagiys 1)) and Alx,w® + %3":) a.e. in £
where

Bagivs ) mi—*m B weakly-star in L%(f2,)

due to the uniform boundedness ||bip:inlize@.) <||blli=(). Indeed, as in [3], one
has

lim 100500+ 7,0 (0w, + 1T (0) =T(w () + 3, )P0 +79))1(0)
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a.e. in (.. Thus, by the strong convergence of [p((wg + 7).)] to [p((w® + )} in
L'(Q,) thanks to Lemma 7 and the continuity of 7', we deduce that

Tow(x) + 7, ) p((v + 1)1 () Fawt Iwo ) + 3, ) p((w* +711()
strongly in L'(£2,) and since buy+yy — b we then obtain
B, wpy 4 7, Bagwr y) e Flx,w®+ 7y, B”) ae. in Q.

By the same argument applied to F; »(x,w(,), noting that, first,

m

Hm  7(w,(x) + 9, Yhe (o, + 7 CD =T ) + 7, )h((W + 7)0()

M—+00
a.e. in £, and later, strongly in Z}(€),), we obtain that
Foa(x,wy +9) 2 Falx, wh 49} ae. in §
Thus, we have (for some subsequence) that
FGowy + 1obatugan) = Fow® +3,5%) weakly® in (). (4.42)

Analogously, one has that ||b.qe (Wi + y> (0 + VO D=y < 18|10ty and
thus, for some subsequence, there exists a function #° € L>(£}) such that

atwg in(Wh +3>(wh +9)O)|) = B*  weakly-star in L(£2).
As before, p'((wf, +)(-)) converges to p'((w* 4+ y)(-)) strongly in L'(2) and thus,
H(x: Wi?] + ¥s b*(w,f[

weakly® in L=(Q).

. . o
Finally, since w},,

(i 7> = D@D) = Hww' +y,54))

converges in L'(£2,) to w¥ (see Lemma 22) we have
Je(wi, +y) > J{w® +7)  strongly in L'(£2),m — oo,

Then, w* verifies the weak formulation of the following problem
— AW = aFy(x, w* + 9,5°) + p' (W' + V)b — bl + J,(w + ) in £, (4.43)
wh e Hi ()N w>2() (4.44)

for any e>0. To obtain a solution of (#..), we only need to identify F(x, w® + 7,5%)
as Fo(x, w4 9, baqweryy) and b° as bygeripy(Jw® + y>(wE &+ v)(x)|). In this sense we
have

Proposition 3. I/ meas{x €Q:Vwi(x)=0}=0 then »*= Bupwesyy 10§y and b*=
bapweayy([W® + 9> (W8 + 9)(x)|). In particular, w® is a solution of (#.,).

Proof. Use the analyticity of w), and Lemma 14. O
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Next, we want to obtain a sufficient condition on the data in order to have the prop-
erty meas {x£{l: Vw*(x)=0} =0. After that, we will let e— 0 getting a solution u
of (#.).

5. Condition on the data in order to get meas{x € Q: Vw*(x)=0} =0 and the
existence of solution of (#,)

From the above section, we already know the existence of w® € W>2(Q) N HL ()
verifying (4.43) and (4.44) for y fixed. Then, setting u®:=w® + v, function »* verifies
that

—Auf =a[F? — 2F (x,u®,b%) + 2F, 5 (x, u*‘)ﬁ +H@, Y+ L) inQ, (5.1
ut — vy e Hy () nw>2(0), (3.2)

We recall that F;, F, 2, H and J; were defined in (4.2), (4.3), (4.5) and (4.6}, and the
truncation functions /, and £, were defined in (4.7).

Let us start by giving a condition on the data in order to have meas{x € : Vw®(x)=
0} ==0. We need the following technical resuit:

Lemma 23, Ler {u®} verifying (5.1) and such that u® — y € W," ()N W>(Q). If
1
V= [2”%;1/2;Q|1/2naﬂmm + AQloschb+7{<1 (5.3)
4 a
then

=y
HAfmwm>s&ﬂﬁ§?—. (5:4)

n particular

|2 llz=n B0 _

4n(l — v) S (3-3)

2% ooy <
uniformly in e

Proof. We need some a priori estimates. Let £>0 and let #* be any solution of (#,,).
The function

Fu, %) = [F? - 21 + 25,511

vith F and £}, defined by (4.2) and (4.3) is bounded in  because the integral F
s positive and F,, is bounded since [£,|<1/e and |j}| <# (see (1.7)). In the same
way, the term J,(#*), defined by (4.6), is bounded in Q and finally H(x*, 5°), given by
4.5), is majored by A|jul ||z oscq b. So, Auf € L>®(Q) for any & Now, applying
-emma 4, we have that

| Ae®|| 7o (02

0< —uf (5)< ym

(5.6)
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Thus
0
T e . (5.7)

Our following task is to prove that Au® is bounded in L°°(£2) uniformly with respect
to the parameter ¢. As before, using (5.7), we have the following estimates:

bity)

0 <R u, b)Y < B ooyl f zomgery < 4_TZE“b|!L°°(Q)I|A“8“Lm(ﬂ)a (5.8)
|]Au“|{%m(m

Foo(x,u®)| <y —F2, .9

st <alOf e (59)

IH(H b )l<)oscb||u+||Lcc(Q)<Aoscb1 i HAL{ HLoc(Q), (510)

We(u®)| < Ellﬁusllw(m- . (5.11)

Then

1
| Aaf|| ooy < lellzooenyFy + — o

0sc b+ 11| [|Au® |z,
We obtain the conclusion from assumption (5.3) and the above estimate. O

In order to get a solution of problem (#..), we need to verify the assumption
meas{x € Q: Vu*{(x) =0} =0. Indeed, by Proposition 3 we would have that

B*=b.e in LYSL)
and
B (x) = b (et >u">(x)])  in L($2)

and so u® would satisfy (#,;) thanks to (5.1). The following theorem gives a sufficient
condition for this property.

Theorem 4. If A||b||1e<(qy and n are small enough, that is

[SIE

2178

elme + Sk

} S < inf la] {F‘ 22|1bligoeyS — (5.12)

162
then
meas{x € Q: Vui(x)=0} =0
In particular, u* satisfies problem (#,,).
Proof. We argue by contradiction. Suppose that
meas{x € : Vu'(x) =0} £ 0. (5.13)



J.I Diaz et al. | Nonlinear Analysis 34 (1998} 857887 881

Then, from the equation (%)

1

0=alF? — 2R (x,u®,b%) + 25, o(x, u®))2 + H(u®, B) + J,(u%)
ae. on {x€:Vu®(x)=0}. Using the estimates (5.8), (5.9), (5.10) and (5.11), we
get that

AS ose b> |H(u®, 09| > irfx)f lal[F? — 2R (x, 4%, %) + 21<';72(x,ue)}§_r — J(u®),

1
, 2 S2 z
{zosc b+ Ifrl_]!} S infal {F — 2A)1B | ceyS — I’]Ti K

This contradicts assumption (5.12) proving the lemma. O
Now, we have

Theorem 5. Assume infg |a|>0, yeR™ and that 2||blj=) + <A for a suitable
A>0. Then there is u solution of (#.). Moreover uc V().

Proof. Our aim is to let ¢—0. By the uniform estimate on ||Au®|ze(n) given in
Lemma 23, there exists some subsequence of (1°) (which we will again denote by u*)
and a function o € L%({2) such that

Au® o weakly® in L2(Q).

—0
By standard regularity, »* belongs to a bounded set of W%2(2), for all p<[1,+o0f.
Then, we have (for some subsequence) that

u* — o weakly in WP(Q),

e—
u® e strongly in €'(Q).
£—

In particular, o= Ay, AucL™(f), e V() and the estimates (5.4) and (5.5) of
Lemma 23 remain true replacing u* by n. Then

< lalli=@F

|Au]| L0y < T, (5.14)

lallzoo () F51€2]
, - < —_——aa D e
et [fzoe ) < 4l =)

S. (5.13)
New, by Lemma 9, we have

18Nz ) < [Bllemiy  and 1B |uoeqa) < [1B]lzos oy
wnd so, b i\ﬂf) weakly* in L°°(€),) and b° _j-}DB weakly® in L°°(Q1). Furthermore, one

1as

W, — i, in LP(QL) Vp € [1,4-o0] (5.16)
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{Lemmas 4 and 7). From this convergence, we easily have:
ho(uf ) —>(u¢*) in L{Q ) Vge[l, +oof.

Thus,
T (), Yo (D) = (o), )ad, VP

In L2(2,) for all g€ [1,+oc] and ae. in x. We get for all x€ Q2

lie> ()]

Fé’g(}f, uﬁ) 5 }72(_7(, Ll) = [u;*(()')]zji{ll_{_*(ﬁ), u+*(o)) do

Ju>0j

{(because j; is continuous on R™ x R*). Since |F 2(x, 115)|<1]|1Au|l£m(m\ﬂ| from
Lebesgue’s theorem we have

F2(,u®) -—0> B(,u) inLP(Q) for all p< +c0.
£—

With respect to J(#°), we first obtain from Lemmas 4 and 23

[l (Juf >l ()] < %ﬁ‘m@ < |§2;
Since |E(uf, (Ju > 1’ ()71l (x), w2 (0))] < nl’}ﬁm"fﬂ < ;7%} by Assumption (1.7)

and again by Lemma 23. Then, we may assume that
S (| >, (D V(1 (%), ui (0)) ~ — * i), 1004(0))

weakly”® in L%(2) for some £, € L=(2). Thus « is a solution of

~ Au=aF? — 2F(x,u,5) + 2Fo(x, )12 + pl()lb — B) + 4 jitt4 (), 11.4(0))
(5.17)

with ||£ ]|z < IY’iS and | p'(w)[b — b)|<Aoscq blluy | L(Q). Arguing as in Theo-
rem 4, but now using equation (5.17), then if

28273

: 2
] S< l?zf |a| [F 2)\.Hb||L9<—‘(Q)S Iﬂl

2180y +
{ 70|

we obtain that meas{x € Q: Vu(x) =0} = 0. Thus, we deduce &*(u7, (ju° >u+(x)|))6—0>
wh, (Ju>uy(x)]) ae xe (see Lemma 1) and then 4,(:)=u (ju>u,(-)]) a.e. in O
proving in that way that

Sl > DV S (), w00 — el (> e D/ e (- ) g (0))

strongly in L7({2)Vp €1, +ocl. Applying Proposition 3 we can identify Z)(x) = b.(lu>
u(x)]) in §2, b(s)=b.,(s) in Q. and, in conclusion, u is a solution of (#,). [
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The main result of the paper, stated in the Introduction, is now an easy consequence
f the above result:

roof of Theorem 1. By Theorem 5 there exists u solution of (#,) such that u € ().
Toreover, the assumptions of Theorem 2 are fulfilled and so the couple (u, %) is a
slution of (#). O

. Qualitative properties

In this section we shall give some qualitative properties on the founded solution u
f(#). They are the following: a condition for the existence of the free boundary, an
itimate on the measure of the plasma region and an estimate of the L'-norm of u.

Let ¢; be a normalized eigenfunction associated to the first eigenvalue A; of
© operator —A on Q with Dirichlet boundary condition, i.e. ¢ €H(Q) and —Ag; =
o1 on §2. We know that ¢; >0 on (. Besides, we can renormalizate it such that
jﬂ QD;d)C =1.

heorem 6. Assume that
~1<F [ e dz=—,
)
en any solution u of (2.) satisfies uy =0.

roof. We argue as in [3, Theorem 8]. The proof relies on the identity
b [umar=y= [ azioiars [ Hbaedrs [swmas )
0 o Q 0

here F(x):=[F? — 2Fi(x, 1, b)) + 2Fs(x, z:)}jiL (see (4.2), (4.8) and (4.9)). Recall
at u satisfies the equation (3.2), i.e. —Au=a, + H(u,b,,) +.J(u) and then

/(u—y)Vvdx:/ac%udx +f H{u, b*u)vdx—}-/J(u)vdx Y € Hy ().
o Q Q Q

1o0sing v =g and using that [, V(u—7)Vp, dx= Jou—y)X~Ap)dx we get (6.1)
ym the above identity. To end the proof of Theorem 6, we argue by contradiction.
ssume that zy =0. Thus, (6.1) reduces to

1.1/ u(pldxzy—i—}';/ aqp, dx (6.2)
Q Q

e Fi (X3t buy) = H(tt, buy) = Fa(x,u) =J(u)=0 if u, =0 (see Definitions (4.2),
5}, (4.8) and (4.9)). In that case, the first integral of (6.2) is nonpositive, and
us relation (6.2) implies that —y > F, jQ aqy dx. This relation contradicts the choice
0

7.
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Now, we shall estimate the measure of the plasma region
|22>0] = / dx.
{1u>0}
This quantity can be estimated in terms of fﬂ uy dx by using that
/u+ dx < |u>0| max ..
Q Q
We already know that maxg us. <§ (see (5.5) Lemma 23). So, we have
1
>0 > < [ u.dx (6.3
S Ja

In order to estimate the L!-norm of #, from below we use the identity (6.1). If w
write u=wu, —#_ we obtain that

[+ dordx + = [ o1t = 20 = b= u e, dx
Q o}

—/J(u)(pldx. (6.4

Q
From (6.4), estimate (5.11) and the Lemma 23 we deduce that
r= 10+ | AR - Bloi) dx < s + 2ol o
x/udr(x) dx + 7S||@1||zeo).- (6.5
o

Now, we define % by

FN@) = [F2 — 2F(x, 1, ba )12,

Then, it is clear that

f a[F, — F)p) dx= f al %, — Fllgrdx + f alF) — Fips dx.
Q Q Q

We estimate the last two integrals:

/ dF) — Elp dx
0

1/2
< YY1 ol /ﬂ uy dx

and

< 222 10P 2 al oo @1 i

/ ol F, — F g dx
Q
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hus, we get to

j ol 7, — FJoy dx| < 2 )b

L
{iw(g)HaHLW(n)[)zq dx

1 1 3
+2252 Q2 |al| L=y [f1 | 2o )-

he last inequality and (6.5) becomes
Y=o < L(/U/n e dx + 08ll@illzqmy + 220 2 10PP al| ooy [ @1 |zeo)  (6.6)

ith L(A):=[4; + Aoseq b+ .11/2”bﬁéfi(mHaHLm(n)]”(p[ l|zes(0y. From (6.6) we obtain

7 — 70 — O(n'?) /
LA W S B e g '
768 s/ uy(x)dx

. conclusion (combining this estimate and (6.3)) we have shown

heorem 7. Assume the hypotheses of Theorems | and 6, Let (1, F) be the solution
“(P) obtained in Theorem 1. Then

— oy — 172
|‘L:’>O{ 2 y_nw =0
SLCD)

n is small enough. 0O

emark 1. The miodel that we studied here concerns the case of a Stellarator ma-
ine. Other models related on the magnetic confinement in Plasma Physics are
vived for Tokamak machines. Most of these models have a different formulation.
evertheless, the guestions raised by those machines are just the same. For the sake
" completeness, we provide here a few references on Tokamak machines that can
tide the reader: Description of the Tokamak machine and derivation of the model
26-291); Existence, uniqueness and Control theory for local models ([6-9,30-35,2]).
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