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1. INTRODUCTION: THE PROBLEM MODEL

Given (2, open bounded regular set of R, N > 1, we consider the model
>hlem

b(w) — div Az, u, Vu) + gz, uv) = f(t, ), t>0, =ze,
(PYS u=h, t>0, zedq,
b(u(0,2)) = b(uo(z)), seQ.

‘ore making explicit the structural assumptions on the data b, A, f, h and ug
us mention some important special examples. Perhaps the simpler example
1e linear heat equation

u — Au = f. (1)

b(s) = s, A(z,u,&) =€ and g =0. This is a typical example of linear par-
differential equation of parabolic type usually considered in undergraduate
rses (see, e.g., John [31]). A modern treatment starts by introducing the
ion of weak solution or by its reformulation as an abstract Cauchy problem
a Banach space

)+ Ault) = £(0),

’U,(O) = g,

Partially sponsored by the DGES (Spain), project REN2000-0766.

303



304 J.1. DiAZ

(see, e.g., Brezis [17]). It is well known, that one of the main results of th
stabilization theory is that if

mwamM}%th

R{(t,z) — heo(x)

in some suitable sense then the solution of the linear heat equation w(t,=

verifies that
u{t,z) — uco(x) as t— 00

in some functional space, with ue, satisfying the associated stationary problen

{—/_\uw = fulz) in 9 , (

Uoo = hs on Of2,

[R]

(the linear diffusion equation). Notice that problem (2) is also included in th
formulation (P) by making b=0, A{z,u,&) =&, 9=0,f = foo and h = heo
More in general, given a choice of b, A, g, f,h and up leading to a specia
formulation of (P), the choice of choice of b =0, A and g as before leads &
the formulation of the associated stationary problem. In this way (P) includ
also stationary problems. In order to present some nonlinear examples, it 1
useful to read (P) as a balance of different phenomena

b(u)y —divA + g(z,u) — f(z,t) = 0.
—_ ) —— ——

(D) (I1) (III)

Let us make some comments on the accumulation term (I}. It arises, for in
stance, in thermal processes when the heat capacity of the medium depends o1
the temperature. This is the case, e.g., when water and ice are simultaneousl;
present and then b{w) is a strictly increasing function having a discontinu
ity at u = 0. This special case (called Stefan problem) requires a delicat:
mathematical treatment.

In fact, as a general rule, the assumption b : R — R nondecreasing i
absolutely fundamental to formulate (P) in the class of problems of paraboli
type since otherwise the problem becomes ill posed (as, for instance, —u; -
Ay = f; the backward heat equation).

This type of accumulation term (I) also arises in the theory of filtration o
a fluid in a porous media. In that case

b € C°(R), b nondecreasing,
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see, e.g., Bear [10]). Now wu(t,x) is not a temperature but the humidity of
1e soil. Different choices are possible: in the study of unsaturated soils b is
ssumed to be strictly increasing, as, for example, b(u) = lu|* Ly, In the case
- partially saturated soils, b(w) is not strictly increasing but becomes constant
ru > ul, for some u! > 0. Notice that, in this physical framework, u > 0
1d so the values of b on R™ are not relevant. The, so called dam problem,
rresponds to a limit case in which b is the Heaviside function. This choice
“b also arises in problems of a different physical context, as, for instance, the
ele-Shaw problem or some problems arising in Jubrication theory (see, e.g.,
ayada and Chambat [9] where many other references can be found).

Let us refer now to the diffusion and convection terms involved in (I1).
he dependence of A(z, u, Vu) with respect to Vu (resp. u) leads to diffusion
rms (resp. convection terms). Some examples of relevance in the applica-
ms are commented in the following. The, so called, nonlinear heat equation
ises when the Fourier law fails and the thermal conductivity depends on the

mperature (case of many gases, lubricating fluids, etc). Then the diffusion
heat leads to the expression

’ 5
div (k(u)Vu) = Af(u) with F(s) := / k(o)da.
0
most of the cases J(u) grows like a power

Blu) =" u with m > 0.

¢ above second order operator (sometimes written as —Ay™) also arises
the study of filtration in porous media (D’Arcy law) with m > 1 and in
sma physics when 0 <m < 1.

A different class of examples of nonlinear terms A(z,u, Vu) arises in the
dy of non-Newtonian fluids. The study of one-directional flows of some
clal fluids (as, for instance, polymer melts, suspensions, paints, animal
od, honey, shampoo, etc.) leads to nonlinear diffusion operators of the
e

div (]Vu[P"*Vu), (denoted by Agu), for some p> 1.

dce that if p = 2 then Ay = A (the linear Laplacian operator, arising in
study of Newtonian fluids). The case 1 < p < 2 corresponds to pseudo-
stic fluids (as, e.g., gasoline, lubricating oil, etc.) and p > 2 arises in the
sideration of dilatant fluids (as, for instance, the polar ice and glaciers,
sano lava, etc.).
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The above two operators may become degenerate since
Ay™ = div (mu" V) = ™ A 4 m{m — 1)u™ | Vul?.

So, if m > 1 the coeficient of Vu vanishes on the set {(t,z): u(t,z) = 0}
Analogously,

Apu = div (|Vu|p_2Vu) = |VuPPAu+Vu-V (|Vu]p_2)

and when p > 2 the coefficient of Vu vanishes on the set {(¢,z): Vu(t, z) =
0}. Due to this reason the qualitative behavior of solutions of (1) may be ver;
different (according the assumptions on the data b, A(z, u, Vu) and g) to th
one of the solution of the linear heat equation. In fact, to show such kind o
differences is one of the main goals of these notes.

We also mention that another relevant choice of nonlinear terms A(z, u
Vu) arises in the study of transient minimal surfaces, i which case the secon
order diffusion operator is given by

Vu
div | ———= | .
V14 |Vul?
Concerning the transport or convection terms, we mention that they aris

very often in Fluid Mechanics. Usually they appear formulated in terms of a
additive term, as, for instance, in the case of the temperature in a fluid

—Af(u) + w-Vu
S— —
diffusion convection

If the fluid is incompressible (case of liquids) then divw = 0 and so we get
—div (k(u)Vu — uw), ie., A(z,u,§) = k(u)é +uw.

Nevertheless, sometimes the convection term is not an additive term bu
appears in a different form.

div (®(Vu + K(b(u)e))
where
() =[P ? £,e e RY and K € C'(R: R).

This situation arises, for instance, in the study of turbulent How of a flui
through a porous medium (with e the vector indicating the main filtration di
ection). For a general exposition on different examples-of diffusion-convectio:
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erators, containing many other references see Dfaz [20] and Diaz and de
welin [25].

The expression (III) represents the absorption /forcing term. The presence
the term g(z, w)~ f(t, x) is very typical of many problems arising in reaction-
fusion problems in Biology, Chemistry and other contexts. By writing

g(z,u) = g1(z,u) — ga(z,u),

th g1 and g2 nondecreasing functions, we can distinguish the term of absorp-
n gi(z,u) (which contributes to make |uf smaller than if g; = 0) from the
2 of forcing gs(z,u) (which contributes to make |u| bigger than if gs = 0).
In most of the cases

g1(z, u) = Mu|9 u, A >0,
'h g > 0 (the order of the reaction). Notice that if 0 < g <1, g is not a
schitz function.

Returning to the structural assumptions on the data, in the rest of the
rosition, we shall always assume that

b:R — R is continuous and nondecreasing, 5(0) = 0, (3)

A OxBRxRYiga Caratheodory function
(i.e., measurable in = and continuous in (x, £)),

dp > 1 such that [A(z,u, &)} < C(lulg’% + £}, VueR, (4)
Ve e RY with p/ = pfl, p* = NN—fp and

(Alz,u,8) — Az, u,8%)) - (€~ €7) > 0,V6, £ e RY £ £ €7,

[ g is Caratheodory function and (5)
U lglz,w)] < (Jul)(1 +d(z)), d € L) and v strictly increasing,

"= [+ fa, A ELP(O,T: WY, fa € LN(0,T) x ),9T > 0, (6)
he LP(0,T: WHP(Q)) N L°((0,T) x Q),¥T > 0, (7)
Ug € LOO(Q).

“or. the sake of simplicity in the exposition, we shall deal merely with
nded (weak) solutions
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DEFINITION 1. We say that u is a bounded weak solution of (P) if u—h
LP(0, T : WHP(Q) N L=((0,T) x ), VT > 0, and we have:

blu )75 € LP’(O T WP (€)) and
()5 Jo b, v)yrs ol wdt - Jo Ja(b(w) = b(ug)yvddt = 0
Yo € LP(O,T: Wy P () N Wh0,T Ll(sz)) with o(T,-) =0,

and

fOT<b(u)t, vydt + fDT Jo Az, w, Vu) - Vudadt + fDT Jo 9z, wvdzdt

(14) = fDT<f1,U>dt + fDT Jo favdadt,
Yo € LP(0,T: WaP(Q)) N L=((0,T) x ), VYT > 0.

The above definition is adapted from Alt and Luckhaus [2].

In the rest of this exposition we shall consider different qualitative proj
erties of solutions of () arising according the nature of the nonlinear tern
b(u), Az, u, Vu) and g(z, ). Our plan is the following: Section 2 will be d
voted to two comparison principles which will be important tools in our stud
Two qualitative properties are presented in the rest of the exposition: the i
nite extinction time property (Section 3) and the finite speed of propagatic
property (Section 4). In both of the above sections we shall apply the tw
comparison principles as well as some energy methods.

It is clear that the above presentation is far to be exhaustive. Problen
like (P) have attracted the attention of many specialists in the last forty yea
(perhaps the earliest mathematical paper on this subject was [38]). In co
sequence, many other very interesting qualitative properties are today avai
able in the literature. The present notes only pretend to be an elementar
introduction.

2. TwoO USEFUL TOOLS

2.1. InTrODUCTION. The study of several qualitative properties for soh
tions of model problem (£) will be carried out thanks to some useful tool: th
comparison principles.

The most popular comparison principle has a pointwise nature and usuall
holds for elliptic and parabolic second order equations {as well as for first orde
hyperbolic equations). A first statement of such a principle is the following:



NONLINEAR PARABOLIC EQUATIONS 309

THEOREM 1. (Pointwise comparison principle) Let (f, h, ug) and (f, R, o)
two set of ordered data, i.e., such that

F<F h<h and up <,

their respective domains of definition. Let u and U be (any) solutions of
) corresponding to (f, h,ug) and (f,h,Uo) respectively. Then

u(t,z) <U(t,z), foranyt>0andae. zc Q.

In the case of linear problems, this property is a trivial consequence of the
ximum principle (in fact, it suffices to assume (j?, h,up) = (0,0,0) and so
2 0). The first (general) result for linear equations seems to be due to Paraf
1892 (later generalizations where due to Picard, Lichtenstein and, finally,
of (in 1927) (see details in the book Gilbarg and Trudinger [30]).
It is clear that for the nonlinear case some conditions on b, A and g are
ded (notice that the pointwise comparison principle implies the uniqueness
olutions}. This topic is still under investigation (see the series of works by
Benilan, J. Carrillo and others). Here we shall recall a particular result
a short proof) stated in terms of an estimate for a suitable expression.
T'he second tool refers to another comparison principle, but this time, of a
arent nature. We can call it as the symmetrized mass comparison principle.
: process of symmetrization need to be carefully presented. We start by the
'metrization of the domain Q: Given Q, an open bounded set of BV . the
metrized version of € is the ball centered at the origin having the same
sure than {2. Let us call O to this ball. The condition m(Q) = m(§2*) has
lation with the isoperimetric inequality '

-
L> Nol AT (8)
re L is the lenght of 99 (or m(80)), A is the area of Q (or m(Q2)) and
wy s the area of the unit ball of RV (ie., wy = m(S"1)).

3) the equality holds if and only if Q is a ball. This was a first noted by
» de Cartago (850 B.C.) (in R? the circles are the domains with fixed area
ng a longer perimeter). Rigorous proofs of (8) are due to Steiner (1882),
varz (1890) and Schmidt (1939).

The second step of the process of symmetrization consists in the
metrization of data f and ug. We shall use the notion of the decreas-
symmetric rearrangement of a function introduced by H.A. Schwarz in



310 J.I. DIAZ

1890: Given a function h : Q@ — R, h € L1(0), we define the decreasi
symmetric rearrangement of h, h*, as the (unique) function A* : Q% —
such that h* is symmetric (i.e., h*(z) = A*(Z) if |z| = |Z]), A" decreas
if |z| decreases and the level sets of h and h* are equimeasurables (i.
m({z € Q: h(z) > 8}) = m({z € O : B*(z) > 6}),¥0 € R). A mo
systematic definition of A* can be introduced as follows: we first define t
distribution function of h by

piR =R, w(@):=mi{zefl:hz)>0}.
Then we define the scalar decreasing 1‘earraﬁgen]ent of h by
B (0,m()] — R, 7(s) :=inf{f € R : u(0) < s}

(notice that h(s) ~ u~1(s)). Finally, we define the symmetric decreasing 1
arrangement of h, by

R = R, b () = h{wy ]z,

Notice that, since h* is symmetric, we can write h*(z) = H{|z|) with H : R -
R. Nevertheless H # h since H(r) = h(wnr"). Notice, also, that assum
h > 0, by construction, we have that

h e L'(£) implies that h* € L'(Q*) and

f h{z)dr = / h*(z)dx (the Cavalieri Principle)
Q 0* :

and that

h e L*°(£)) implies that h* € L™(Q") and

eSS SUp zeq Mz) = esssup e« A7 ().

The third step of the process is the symmetrization of the second ord
operator. -We must replace the diffusion operator div A(z, v, Vu) by anoth
isotropic diffusion operator, i.e., with the same behavior in any direction 2
Several possibilities arise. Here we shall consider, merely, a special case. A
sume that condition (4) holds and that, in addition,

Alz,u, &) £ | 'vg e RY.
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en we shall define as symmetrized operator of div A(z, ¢, Vi) the one given

Apu = div (|VulP~2Vu)
tice than if we take A*(z,u,&) = [£]P~2 then condition (4) holds with the
wality sign instead the inequality one).

We also must introduce an isotropic absorption by assuming (besides (5))
: condition

glz,u)u > glu)u ae ze€f

for some continuous function 7:R — R.

(9)

Summarizing, we say that the symmetrized problem of (P) is the following

PROBLEM. (P*): Find U : [0, 00) x 2" — R such that

WU) — AU +G(U) = F*(¢,2), t>0, z e F,
(P*) ¢ U=h* t>0, xe€dr
b(U(0,2)) = b (up(x)), zer.

e f*(¢,-) and ug(-) are the decreasing symmetric rearrangements of f(t, )

up, respectively. For the sake of simplicity in the exposition we shall
1ume now that '

h=h"=0. (10)

Let us make some remarks on the statement of the symmetrized mass com-

ison principle. The first one is that some pioneer authors finding different

tions between u and U where Saint-Venant (1856), Poya and Szego (1951)
Weimberger (1962). The inequality

v {z) < U(z), z € QF, (11)

first proved by G. Talenti, in 1976, for the case of the stationary problem
wut absorption term (i.e., b = 0 and g = 0). Unfortunately, this (point-
1) comparison fails to be true for parabolic problems (i.e., b # 0) or/and
oroblems in presence of absorption terms (g 7 0). In those cases we only
compare the distribution of the mass of w and U

PHEOREM 2. (Symmetrized Mass Comparison Principle (SMCP))

f w*(t, z)dz < / Ult, z)dz, vVt > 0,Yr € [0, R],
B(0,r) B(0,r)

med that Q* = B(0, R).
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Notice that this comparison can be, equivalently, expressed in termns
scalar decreasing rearrangement as

s s
f it 0)do < / T(t, 0)de, ¥t > 0, ¥s € [0,m(S)].
0 0

The SMCP has many applications (as we shall see in other sections). The ma
philosophy of the applications is that function U/ can be easily estimated
many cases and thus, thanks to the SMCP, properties for U can be extended
similar properties for u. Some books dealing with the symmetrization proce
are the ones by Bandle [6], Mossino [35] and Kawohl [33]. The proof we sh:
present here follows the memoir Diaz [21] (see also Diaz [22]). A different (a1
very original) approach is due to Abourjail and Benilan [1]. The first rest
in the literature for degenerate parabolic problems was Vizquez [41].

2.2. PROOF OF THE TWO COMPARISON PRINCIPLES.

ON THE POINTWISE COMPARISON PRINCIPLE. We present here a pa
ticular version of this principle (more general results will be indicated late
for the special case of the diffusion-convection operator arising in the stuc
of turbulent flow of a fluid through a porous medium. More precisely, v
consider the problem

b(u)s — div (¢(Vu + eK(b(w)))) + g(z,u) = f(z,t), t>0,2 €L,
(Psr){ u=nh, t>0,z &0
b (u(0,2)) = b(uo(z)) : z €,

where ¢(€) = €]P7%¢, p>1,e € RY and K € CP(R, R). Besides the cond
tions made explicit in Section 1 we shall made some extra assumptions:

( { there exists C* >0 such that
b ~ " ~ — —
P gCom) — gl m) = —C* (b(n) — (@), Vi >7, 1,7 €R,

(notice that (H, ;) trivially holds if, for instance, g(-,n) is nondecreasing in
or if g(-,n) :== g{-, b(n)} with g(-, s) Lipschitz continuous in s),
K (b{n)) is Holder continuous in 1 of exponent v > ;—j' ifl<p<?2
(Hr)§ andy > 5 (b + 5 =1 ifp>2, ' '

[K(b(m) = K@) < Clnp—7a", vnieR,

(notice that condition (4) is now trivially satisfied).
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THEOREM 3. Let (f, h, ug), (f, E, un) be such that f < f, h < h and ug <
on their respective domains. Let u, % be two bounded weak solutions of
s, ) associated to (f, h,up) and (]‘A, E, Up), respectively. Assume, in addition,
it u and U are strong solutions, i.e.,

blu)e, b(T) € LM ((0,T) x Q), VT > Q. (12)

en u < U on (0,T) x Q. More in general, if we replace the ordered data
umption by the simpler condition h < h and f; < f, then

(blu(t, ) — b(u(t, '))]+I|L1(Q) < Bc*t‘l[b(uﬁ) - b(’ao)]+f|L1(n)

T - 13
+]0 TN fa(r, ) = Falm el ey -

any ¢t > 0 (C* given in (Hy,)), where ¢, = max(p, 0).

Proof. We take as test function the following approximation of the si gnaL (u
» function: we start by defining ¥s(n) = min(1, max(0, 1), for 6 > 0

Al Then we define v = Ts(u — ). Notice that v € Lr(0, 7 : W{}'p ()N
((0,7) x Q) ,¥T > 0, and that

_1_ . . =
Ty — V3(u—1) lfO<L’L U <9,
0 otherwise.

n, since f; < f5, defining the set

Ag={(t,2) € (0,T) x 2 : 0 < u(t,z) — U(t, z) < §)

ret,
]0 . [z (b(w), — b(@),) Ws(u — B)dwdt + I, (8) + I (5)
+ [ 0t gt s -
< /OT/Q (£2= B) Ws(u — B)dadt,
N¢

T 7
00 = 5[] 10 (Fur Kow)e) - 6 (v + KG@)e) -
AVu 4+ K(b(u))e — Vi — K (b(0))e}dadt,
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T
ne) = s /D fA (6 (Vu+ K (bw))e) — ¢ (Va + K(b(@)e)} -
A{~K(b(u))e + K(b(w))e} drdt

(here T is arbitrary but fixed, 7" > 0). Applying the Young inequality, afi
C(E)p_lodp + €p’_1ﬁp’, we see that

uo(alsé—uf/wmw( (1)e) — 6 (Vi + K (p@ne)l” dodt

| (b(w)) — K (b(2))?) dzdt == I$ + IZ.

As

We shall only consider the case of p € (1,2) (the case p > 2 is similar ar
even, easier). We need an algebraic inequality

LEMMA 1. (see, e.g., Diaz and de Thelin [25]) Let ¢(£) := |£P72% w
p > 1. Then, there exists C > 0 such that

/ 1__2

cloe) - @[ < {(@©) 0@ -8} {Is@F +10@F}
witha=2ifl<p<2anda=gp ifp>2
Using Lemma 1 we obtain that
151 < O 6),

for some C' independent of §. Moreover

k< %j) / (Clu — @|)Pdzdt < Cle)m(Ag)5%P
JA;

for some C (¢) > 0 independent of 6. Then
() + I(8) = [(8) — |1o(8)| = (1 — eC)YI1(8) = C(e)m(Az)8%P 1.

Taking ¢ small enough (so that 1 — eC > 0) and using that I;(5) > 0 we ha
that :
%113(11(5) +1(8)) =20

and so

(b(x) — b(@))edzdt + / (9(z,u) — 9=, @) < 0.

Ju>a

wUSU
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om assumption (H,,) we deduce that

f (bfu) = bt < / () — b(T))derdt,

7 u>n

that

/0 . fQ max{b(u) - b(8), 0}dzdt < /O‘T /p maxc{(b(xe) — (7)), 0} dxclt,

d, finally

. T
max{b(u(T, z)) - B(@(T, z)), O}dzdt < / / max{ (b(u) — b(@)), 0}dudt,
2 - Jo Ja
en, by Gronwall inequality
b(u) < b(@) a.e (t,z)€(0,T) x Q.

» is strictly increasing this implies that v < @ and the proof of the first
iclusion ends. In the general case (i.e., when b is merely nondecreasing) it
1ains the consideration of the case in which A; C {b(u) = b(u)}, for any §
all, (since otherwise the above arguments apply). In that case I1(6) =0

slies that 71(4) = 0. But from Lemma 1

NL{5) > Cé/T/ [Vs(u—B)° dodt = >0
0 L2 {|Vu+ K(b(u))el’ + |V + K(b(T))e|P} 5

U(u—u)=0ae on(0,T)x Q which implies that % < 7 on this set. The
of of the case p > 2 and inequality (13) follows the same type of arguments.

Remark 1. It can be proved (see Diaz and de Thelin [25]) that if b is a
schitz function and ug is regular enough then any bounded weak solution
strong solution (i.e., b(u); € L'(Qr), Qr := (0,T) x ). The proof of the
tence of strong sclutions under more-general conditions on b is a delicate
¢ (see the recent results by Benilan and Gariepy [13]).

Remark 2. The (pointwise) comparison principle can be obtained for
ker solutions by using more complicated arguments and other selected.
ons of solutions (entropy solutions, renormalized solutions, good solu-
5,...). See the works by Benilan and Touré, Benilan and W ittbold, Carrillo,
Dy
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Remark 3. The quantitative inequality (13) is a typical consequence
the application of abstract results (the T-accretiveness of the operator). £
illustration of how this theory can be applied to the concrete case of proble

(Ps.%) (when h = 0) is due to Bouhsiss [16]

ON THE SYMMETRIZED MASS COMPARISON PRINCIPLE. We recall th
this time we assume the additional conditions

A(m,u,f) ‘EZ iglp’ (1
g(z,u)u > gluju for some Ge C(R:R), (1
and, for simplicity, (10). Here we also assume that
f=fa € L},e(0,00 : L'(Q)).

We shall only consider (for simplicity) the case in which w and U are nonne
ative functions.

THEOREM 4. Assume that § is nondecreasing or locally Lipschitz and th
the function

w(n) =g~ ()

is well defined and can be decomposed as
=1+ P2 (1

with 1 convex and s concave. Then

5 8
/ b(ii(t, 0))dor < f BT (t,o)de Vs € 0, m@) Ve 0,00). (1
0 0
Idea of the proof. First of all we point out that conclusion (17) is stal
by approximations of the data (f,ug,b and A) leading to the convergence
solutions in LY(0,T : L}(£)). Due to that, we can assume the data regul
enough (and, in particular, that v and U are strong solutions b(u): € LMy
b(U); € LYNQ%), @% :=(0,T) x Q and that b is strictly increasing.
Step 1. The radially symmeiric problem. We define

K(t,s) = /D s b(U(t,0))do
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here U(t, -) is the scalar decreasing rearrangement of U(t, ). First of all, let
s prove that U(t, z) decreases when |z| increases. By the symmetry of the
iba (and the uniqueness of solutions, implicitly assumed) we deduce that
(¢, ) = U(¢,|z]). Moreover U, := arU(t r), 7 = |z| verifies that

G WO~ & (UP20,) +FO) = F 1 (0,T) x (0,R),
Up(t,0) =0, Ut R) <0, te(0,7),
U(0,7) = Upr(7) r e (0, R),

were QF = B(0, ), Up(r) = Go(wnr?) and F(t,r) = f(t,wNTN). Then by
e maximum principle (here is possible to apply classical results since U, can
assumed to be smooth), as F;(t,) < 0 and Upy,(-) < 0, we deduce that
(t,-) £0, ie., U(t,r) decreases when r increases. In consequence, Uft,) =
“(t,-) (the function coincides with its decreasing symmetric rearrangement),
d so _
Ult,z) = Ult,wnr™), +=|z.

aking
s = wpyr'’ (s € (0,m(2)))
get that
oK . au L na 8U
‘a?(t, S) = b(U(tl 5)), "a—’r = IVWA; 8 ‘(%
» deduce that K satisfies the parabolic (fully non-linear) problem
( OK |P7* 8 _| 8K
V| =—b" —p =
{ ( ) Bsb ( Js I+
i oK
1 _ s € (0,m(Q))
N7) fo (b (G U))) o= | Fwoyin, [E 0T
K(t,00=0, K{,m{Q)) =0, te (0,7,
s
K(0,) = | biio(o))ds s € (0,m(Q)),
0
are

a(s) == [Nw}\{Ns("_l)/”} g

Step 2. Study of the rearrangement ofu. Given 1, -) (the scalar decreasing
rrangement of the solution v of (P)), we define

k(t,s) = /05 b(u(t, o))do
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The main goal of this second step is to prove that &(t,s) is a subsolution (
(FFN*) in the sense that it verifies all the conditions but replacing the full
nonlinear equation by the inequality

% ot | 2 (BV 2 (%)
+ [a (v (%(m))) o< [ ftt.odo

s € (0,m(82)),t € (0,7). The proof of this inequality is quite long and tecl
nical. This process can be also divided in several steps:
(i) Define the function T 5 : RT — R given by

(1¢

Trn(s)=0 f0<s <,
Ton(s)=s—t ift<s<t+h,
Top(s)=h  ifs>t+h

We take v = 1., (u), as test function. Passing to the limit, as i | 0, we deduc
that

we)y n(8)
—E/ |Vu|Pdz S/ ft, S)ds—f §(€Z(t,s))ds—/ ab—(u)d:::
08 u> 0 0 uz>f ot

where we used the assumptions (14) and (9) and where u(¢) denotes tk

distribution function of w(t, ).
(i1) We have that

' 1/p
Nc,ul/N (9)(N~1)/1V E (__‘u'(g))l/p <—a£/ |V’U,|pd$)
t u>f

(this is a classical result in the rearrangement theory: the proof uses the, ¢
called, Fleming-Rishel formula, the isoperimetric inequality and the notion «
perimeter in the Giorgi sense).

(iti) the following identity holds

ab(w) . M9 ab(E(t, o) Ok
/u>9 5 dm—fo — do = N — (t, u(6})

(although a first proof of this formula already appears in the book by Band
[6] a more general, and rigorous, proof is due to Mossino and Rakotoson [36]
An easy manipulation of (i), (ii), (iii) leads to the wanted inequality for .
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Step 3. Comparison using the fully nonlinear equation. First of all, notice
at the comparison

K(t,s) < K(t,s)  ¥te[0,T], Vs e (0,m(Q)),

incides with the conclusion of the theorem. The main difficulty now is not
sociated to the very complicated diffusion operator but with the nonlocal
ture of the zero order perturbation term. The key idea to obtain the result
that, by assumption (16),

o(r) — o) < (B)(r) + Gh(®) (r —7)  WrFeR

se for instance, Taylor formula, the convexity of @1 and the concavity of
}. Then

[ e -aato]a < [ [ho@eon - soweo)]

: [b(ﬁ(t, o)) + b(ii(t, o) )] do
< Crlk(t 8) - K(1,5)]

+C5 max k(7 0) — K(1,0)],
7€[0,T],0€[0,s]

some positive constants Cy and C5. The comparison is now a consequence of
classical pointwise comparison principle also related to the T- accretiveness
he complicated operator, but this time in the space C%(Q), (details can be

nd in Diaz [21]: see also other references indicated at the Introduction of
i section).

Remark 4. Thanks to a result due to Hardy, Littlewood and Polya in 1929
4 e.g., [6]), the comparison

f b(T(t, ) do < / Wl o)do s € [0,m(Q)], vt € [0, 00)

0 0

lies that

[ (T '
(@t de < [ @0 ¥ [0,m(),vi € 0,00
0 _ oL , , S

ay convex nondecreasing funiction @, In particular, if

b is a concave function
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we get

8 s __ 7
/ A, o)do < f Tit,o)do Vs € [0,m(Q)], ¥t € [0, 00),
0 i ’
which is the conclusion presented at the Introduction of this section. Notic
that a different application of the above result by Hardy, Littlewood and Poly
is that
oCu(t, oy < 16U Dz

for any ¢ € |1, 00). Indeed, it suffices to use ®(r) = |r[? and that
m(2) B
f b(i(t, 0))|7do = / b (8, )P = / b(ult, 2)) | d.
0 o Q

3. THE FINITE EXTINCTION TIME PROPERTY

3.1. INTRODUCTION. One of the most natural questions concerning pro
lem (P) is the stabilization of solutions: Assumed that

Flt, ) — fool*) and A(t, ") — hoo(-) as t— +o0

in suitable functional spaces then u(t, ) — uee(-) as ¢ — oo (in some sui
able sense) with u () solution of the associated stationary problem

(P) —div A(z, u_,, Vi) + g(T, too) = foolz), z €8,
o on 890.

A general result, stated in terms of the omega limit set

w(u) = {ue € WHP(€)): 3 t, — co such that
U(tn, *) = Uoo in LP(§)), as n — oo}

jointly with stronger convergence results (but for different particular case
can be found in Diaz and de Thelin [25]. For stronger convergence resul
for one-dimensional particular equations see Feireisel and Simondon (28] ar
their references.

Very often foo = 0, heo = 0 and A and g are such that e = 01is the uniqu
solution to problem (P). In several applications (case of models in plasi
physics and also in some chemical reactions) it is observed that there is a ves
strong stabilization in the following sense: there exists a finite time T >
such that u(t,z) =0,V t > Tp and a.e. x € {). This property is called |
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1e finite extinction time property and has been considered by many authors
. the literature. The main goal of this section is to illustrate the application
“the above two comparison principles to the study of this property. A third
ethod (using energy arguments and so applicable to higher order parabolic
‘oblems and systems) will be also presented.

3.2. THE FINITE EXTINCTION TIME VIA THE POINTWISE COMPARISON
UNCIPLE. A first result proving the occurrence of this property for some
ecial formulation of problem (P) is the following

THEOREM 5. Let u satisfying

(]u|o‘_1 u)t —Apu=0, te(0,00),z€Q,

(FPop) u =0, t € (0,00),z €89,
1 (0,7) = up () z €0,
th
up € Ce(Q), ie., with suppug a compact subset of §). (19)

sume that
(p—1) <a. (20)

len the finite extinction time property holds.

Proof. We assume w in the class of solutions in which the pointwise com-

Yison principle holds (due to the special formulation of (Pap) it can be
own (Benilan [11]) that this is our case for any o > 0 and p > 1). Then if
resp. ) is a supersolution of problem (P, ;) (resp. subsolution) then

u<u <, (21)

if we are able to construct @ (resp. u) vanishing after a finite time this
'perty also holds for u. Inspired in a pioneering paper (Sabinina [39]) we
Al construct ¥ as a separable supersolution, ie., % (t,z) = ®(t)w(z). Since
want to have & > 0 and w > 0, we define

NT = (m;a—l ﬁ)t — A = (DY), wS — FPLA 0,

take @ such that

(9%), = —A®P~L ¢ € (0, 00),
3(0) = M,
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with A > 0 and M > 0 to be determined. Due to the crucial assumption (2
the solution of (22) vanishes after a finite Tp > 0 (notice that ¥ := &% verifi
an ODE with a term which is not Lipschitz ¥; + AP =0 ). Notice al;
that (22) is integrable since it is a first order ordinary equation of separab
variables. Then o
NT = 0P~ (_aw® — Ayw).

In consequence we choose, as w, the solution of the first eigenvalue proble
for the A, operator, i.e., A = A; > 0 and

%)

—Aw = MwP™t on Q, (
w=10 on  Jfl,

(the existence of a unique function w satisfying that w > 0 on Q ar
[lw||peo(q) = 1 was due to Anane (3] and Barles [8]). Then

N = o1 (—Alw“ + )\17‘0;’“1)
= AM@®P Pt (1—we D) >0

since 0 <w <1and a>(p—1).
The boundary condition holds

= ().

ﬂ(t’x)l(O,oo)XBQ = 0wy, =

The comparison between the initial data
up(z) < Mw(z), =&

trivially holds by taking M big enough {(recall the assumption (19} on ug
The construction of v < 0 is similar. B

Remark 5. The above statement can be improved in many different di
ections (but with longer proofs). For instance, in the case of p = 2 tl
homogeneity assumed on b is not needed. More precisely, in G. Diaz and J.
Diaz [18], the finite extinction time property was established for the proble:

b(u), — Au = f(z,8), ©€Qt>0,
=), z e d,t >0, (2
u(0, z) = up(x), z € £,

by assuming

/d—s<+oo (24
o+ b 1(s) ' : ‘
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d the existence of Ty such that f(t,z) = 0, for ¢t > Ty and z € Q. Notice
at now p = 2 and that if b(s) = |s|* !5 then (25) if and only if & > 1,
-, the same condition than (20). In fact, in this paper it is also shown that
ndition (25) is also necessary for the-existence of a finite extinction time.

Remark 6. Notice that the finite extinction time can not be satisfied (in
se of the general formulation of (P)) each time that the strong maximum
mciple holds (see, e.g., Nirenberg [37]) or the unique continuation property
verified (see, e.g., Ghidaglia [29] and its references).

When condition (20) holds, it is said that we have a fast diffusion (in
t, this term is more appropriate when talking on the balance between the
ammulation and the diffusion terms). It is very easy to see that if we assume
) then the conclusion of the above theorem remains true under the presence
1 nondecreasing absorption term as, for instance,

(fu]o‘_l u)t — Apu+ ]u.]q-*l =0

any ¢ > 0. The finite extinction time property also occurs due to suitable
ance between the accumulation and absorption terms. It is the so called
mg absorption case.

THEOREM 6. Let u satisfying

(IUI”_l “)t ~DputuT T u =0, te(0,00),zen,

(Papa) { u= 0, te (0,00), z € 89,
u(0, ) = up(x), xz €8,
h :
ug € L™ (Q) . (26)
ume
>0 and O0<g<a withp>1 arbitrary. (27)

n the finite extinction time property holds.

Proof. It is easy to see that the function @(z,t) = ®(t), with @ the
que) solution of the ODE

((I)a)t -+ [_L@q = O’ t e (O, OO) ) 28
{ () = (28)

ipare it with (22)) is a supersolution once that A > HuoHLm(Q). The
mption (27) implies that ® vanishes after some finite time To. B
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Remark 7. A general survey containing many references on this proper
is due to Kalashnikov [32].

3.3. THE FINITE EXTINCTION TIME VIA THE MASS SYMMETRIZED CO!
PARISON PRINCIPLE. Thanks to the mass symmetrized comparison princig
it is possible to extend the last two theorems to more general equations f
which the construction of super and subsolutions can be very difficult (sp
cially in the case of the first of the theorems).

THEOREM 7. Let v be the solution of (P) with f =0,h = 0,up € C, (&
up > 0 and assume b(u) = |u|* ' u, (14) and (9). We also suppose that o
of the two following conditions holds:

(p—1)<aand
~ 1.4
o) =g(nl="mM =01 +2(n);neR (2
with 1 (resp. y9) nondecreasing and convex
(resp. nondecreasing and concave),

or
{ G(n) = w9 'y with > 0 and 3
g < .
Then the finite extinction time property is verified. More precisely, if we defi
as Ty the first extinction time (in which ||u (To, M1 q) = ) then

Ton < Toax,

where Tp o~ is the first extinction time for the symmetrized problem {P~).

Proof. By the mass symmetrized comparison principle and the result t
Hardy, Littlewood and Polya mentioned in the above Section we have that

116 (u (& Dl gy < 10U & -Dlley
for any ¢ > 0. Assumption (29) (resp (30)) allows to apply Theorem 5 (res
Theorem 8) which proves the result. §

Remark 8. Notice that the general structure of A{z, u, &) may be the orig
of very complicated behaviors of the solution of the associated eigenvalt
problem

—div A (z,w, Vw) = \wP~! in §,
{ w=70 on O
So that the arguments of the proof of Theorem 5 do not apply directly i
problem (P). '
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3.4. THE FINITE EXTINCTION TIME VIA AN ENERGY METHOD. A method
rich do not use any comparison principle can be applied to the study of this
sperty. The following is merely a special version of the method:

THEOREM 8. Let u be the solution of (P) with h = 0,

f € L*((0,00) x Q) such that 3T > 0 with (31)
ft,z)=0ae t>Ty and ae. z € Q,
€ L>(Q), b(u) = |u]” " u, o > 0, A satisfying (14) and
g(z,n) 20 VneR. (32)

sume that (20) holds (i.e., p—1 < a). Then the finite extinction property
ds.

Proof. We take as test function v = |u[*"lu (which we shall write, for
plicity, as v = ¥*) with & > 0 to be determined later. We also write u®
sead of |u|* !u by simplicity in the notation (nevertheless, it is not required

t u > 0). Integrating on the open (bounded) set 2 in each term of the
ation we get :

Ju®

A = uFde = fﬂaeu("‘_lHkutdm

_ a d otk
T la+k)dt (fgu dm)

: justification of the final formula for uw weak solution of (P), i.e., without
condition (u®); € L'(€), is due to Alt and Luckhaus [2]),

“/ div A(z,u, Vu)uFds = k/ A(z,u, Vu) - Vuu1dz
2 Q
> kf [VulPurdz.
Q

using (31) and (32) we get that, if ¢ > T}, then

@ d [ e f k-1
— JAdr+k | [VulPu*'de <0.
(a+k)dt/0“ (=, t)dw Vel T

need the following interpeolation result
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LEMMA 2. Let p > 1 and k > 1. There exists a constant C = C(m(1},
N, k) such tha,t ifw e T,/V1 1(Q) and Jo |VwPlwF~tdz < +oo we have that

pthk-1

(/ |w|® dﬂ?) s_ < Ckp/ [VwlP lw]F1dz
Q

with
1<s< Ml g p <N,
1<s< if p=2N,
§ =00 if p>N.

Idea of the proof of the Lemma. Define z(z) = |w(z)| » sign{w(zx)

Then L p
t—1 3
/ |Vz|Pdz = (L) / (Vw|Plw*~dz
Ja e 0

and the conclusion follows from the application of the Poincaré-Sobolev ar
Hélder inequalities. B

Continuation of the proof of Theorem 8. By the above lemma we have

p+k—1

Zﬁl@% (/ﬂ u;“”Lk(t, (L‘)d-’ﬁ) +C (fﬂ us(t;-"ﬁ)df) T <0

for t > T}. Applying Holder inequality we get

( /Q u‘”’“(t,a:)da:)m < é(n(n)) ( fQ us(t, m)dm) )

(take k=1ifp> N and k > %(af— {p—1))—aif p < N). Then if we defir

Y (t) Z:Lua+k(t,$>d$

we have that

{ Y(t)+ CY#)"<0 on (T,00), v= p++k € (0,1),
Y(Tf) - Yf > 0. -

So, again, Iy > Ty such that Y'(t) = 0if ¢ > Tp and the conclusion holds.

Remark 9. Some similar energy method can be applied to the case «
strong absorption (see, e.g., Tsutsumi [40]). :
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Remark 10. Under some extra decay assumptions on f(t,-), near Ty, it
wossible to show something unexpected: 7h = T (see Antontsev and Diaz

Remark 11. Similar energy methods applied to higher order quasilinear
abolic equations can be found in Bernis [14], [15].

Remark 12. One of pioneering applications of this type of energy methods
concerning the case p = 2 and 2 = RY. In that case the condition for
existence of a finite extinction time is

N
N-2

>

nger than « > 1 correspondent to bounded domains (see Benilan and
ndall [12]).

As a final and global remark we point out that the three methods used
1is section can be also applied to the study of other different qualitative
verties, as for instance, the existence of a finite blow-up time Ty, (such
16(u(E, )lzr@) — +o0 as t — +oo, for some r € [1,+c0]). Obviously,
property requires completely different assumptions on A, b and ¢g. The
ection between the finite extinction time and the fnite blow-up time

erties for a couple of different nonlinear equations has been considered in
ohl and Peletier {34].

4. THE FINITE SPEED OF PROPAGATION PROPERTY

.1. INTRODUCTION. The formulation of problem (P) is very general. It
des not only the linear heat equation

up — Au =0 (33)

nany other cases in which the behavior of the correspondent solutions is
different to the one of the solution of the linear heat equation (remember
emarks concerning the finite extinction time property as peculiar of fast
sion or strong absorption and opposite to properties as the strong max-
1 principle or the unique continuation property which holds for the linear
ton).

nother qualitative property typical of some suitable nonlinear models
rns the finite speed of propagation of disturbances: if the initial datum
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up vanishes on a positively measured set of  (ie., supp (up) C Q) tl
suppu(t, ) C Q, for any ¢ € (0,%*), for some t* > 0.
This behavior (typical of the linear wave equation) fails for the linear h
equation (this can be illustrated in many Ways the strong maximum princiy
the explicit representation formula for {) = RY, ete). It is said that the line
heat equation has an infinite speed of propagation.
When the finite speed of propagation holds then

supp (u(t, ) == [z € & u(f,) Z0) €O

(at least for some small times ¢) and so some hypersurfaces (0, co) x RY)

F=JF), F@) =0(suppult,))— 00

t>0

are formed. Those hypersurfaces are called as free boundaries (since they
not a priori determined) and play a very important role in the study of 1
model (usually is in those free boundaries where are located the singularit
of the gradient and/or the second derivatives of the solutions).

The main goal of this section is to illustrate how the two comparis
principles can be applied to the study of the occurrence of this property.
in the previous section, a third method (involving different energy argumen
will be also presented.

4.9. THE FINITE SPEED OF PROPAGATION VIA THE POINTWISE COMP/
ISON PRINCIPLE. As in the Subsection 3.2, the main idea will be to constr
suitable super and subsolutions (now vanishing locally in some subdomair
In fact, those functions use to be constructed by modifying special soluti
of the equation (so this task is closer to an quantitative study of pde’s tk
the usual approach to pde’s by methods of functional analysis).

To start with, let us consider the nonlinear equation

(!u|“_1 u)t - Apu=0, a>0, p>1L (

Although we remain interested in the Cauchy-Dirichlet problem (Pa, q) if
useful to start by considering the pure Cauchy problem (i.e., £ = RM).
very important family of exact solutions is the one given by

N

+6p'

;7 (p—1)/(p—1—a)
ook ]

1
Uni(t,2) = Y

+
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ch arises when

(p-1)>a (36)
tice that the fast diffusion was (p — 1) < a), where
=L g= o -
p—1"" (a+D)p-N)+{HN-1)p’

A= pnd =Pl
o p

> 0 arbitrary). Such solutions were obtained, by first time, by G. I.
enblatt in 1952 for the case p = 2 (also in the case, they were refound by
5. Pattle in 1959). The case p # 2 was found by A. Bamberger in 1975.
point out that when p # 2 the solution Uyy is not radially symmetric with
ect to the usual Euclidean norm of RY. Nevertheless, it is possible to find
T exact solutions with free boundaries and symmetry (although they are
so explicit as Ups). Many references on this topic can be found in the
eys by Kalashnikov [32] and [42]. We also point out that:

/ Upni(t,z)dz = M, M = M(C,a,p,N),
RN

Ult,:) = M(x),
that the free boundary generated by Uy, is explicitly given by the equation

N

N O
Z !l’ilp = 4P
i=1 k

v simple result is the following,

"HEOREM 9. Let u satisfying

(lu’la_l u)f - A‘Pu = O: le (O) OO): re ‘Q’a

u=0, t € (0,00),z € 09,
u(oi ‘7’.) = UO(H;)’ T €,
ug € Ce(Q?)  such that (37)
suppup C B(zg, Rg) € .
me that
(p—1)>c. (38)

. the finite speed of propagation holds.
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Proof. As in Theorem 5, we can apply the pointwise comparison princi
thanks to the result by Benilan [11]. By choosing A big enough and tha:
to the assumption (37) we have that

ug(z) < Up(r, ¢ — Tp) Yz € £,
for some 7 > 0. Since the function (¢, z) := Up(t + 7, — o) satisfies th

(|ﬁ|o‘_1 ﬂ) —Ai=0, te(0,c0),z €l
t
>0, t € (0,00),z € 082,
(0, z) > up(x) T €,
we conclude that
u(t,z) <u(t;z) t>0,z¢ell

By taking (if néeded) different values of M and 7 we get, simﬂaﬂy that
—Upr(t+7" 2 —Zp) <uft,z) zeQt>0
Thus, at least for ¢ € [0,¢*) with ¢* small enough, we conclude that
Vu,(t, z)=0 a.e. x € ) — B(Tqg, R(t))
for some function R(t) and the result follows. §

Remark 13. Again, the above statement can be improved in many differ
directions. For instance, in the case p = 2 we can replace b(u) = |u|*u b
general nondecreasing function satisfying that

/ L | (
—_— m 0
o+ b(s)

and the finite speed of propagation holds (see Diaz [19]). Notice that if p =
and b(u) = |u|* tu then (39) holds if and only if o < 1, i.e., same condit

than (38). If N = 1 {(and p = 2) it was proved by A.S. Kalashnikov (a
independently by L. A. Peletier) in 1974, that ¢ondition (39) is also necessa

Remark 14. Once that the free boundary exists:it becomes interest:
to study its dynamics: how fast it starts near ¢ = 0 (in some cases th
is a waiting time), how it behaves for ¢ — +oo), the regularity of the f
boundary,ete.). Many of those questions remain still open (see the sur
Kalashnikov [32]). ‘
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When assumption (38) holds it is said that we have a slow diffusion. It
easy to see that if (38) holds then the finite speed of propagation remains
ue under the presence of nondecreasing absorption term as, for instance,

(Ju]*u) — Apu+ plullu =0, p>0,

v any g > 0. The finite speed of propagation also occurs when the balance
‘tween the diffusion and absorption is suitable (called again as the strong ab-

rption case). We can consider, even, the case of nonhomogeneous boundary
nditions.

THEOREM 10. Let u satisfying

(] u) — Apu+ pful?™h =0, te(0,00),z €,
(Papg){ u=Ah, te (0,00),z € 69,
u(0,z) = up(z) z € 0,

th
€ L¥((0,00) x YN LY (0,00 : WHP(R)), h >0 on (0,00) x 90, (40)
ug € L), wup>0on. (41)

sume
>0 and 0<g<p—1. (42)

en the finite speed of propagation holds. More precisely: a) There exists a
sitive constant L > 0 such that the null set of u(t,-) is not empty assumed
it the set

€ — (supp (ug) U (Urspsupp (h(r, ))))

Jig enough, Ie.,
T(u(t, ) ={zeQ:ult,z) =0} >
{2 € 95 dlw, supp (o) | (Ursosupp (h(r, 1)) = L}
any t > 0. b} If we assume, in addition, that
g<a<l (43)
n there exists tg > 0 such tbaf for every t > tg

N{u(t,-))D {'1: € ) d(z,Ursgsupp (h(r,-)) > E}

some L > (.
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Proof. We recall a result of Diaz [20] proving that the function

1
wx(z) = C|z — zo|r-1-1,

Alp—1—4q) rmie
PPV (pg+ Np—1-¢q)

c5 =

satisfies that
—Apwy + )\Iwﬂq_lw; =0,

assumed that (42) holds, i.e., A > 0 and ¢ < p—1. Let us prove a). Let zg € 2
(supp uo |JUrspsupp A7, ), and let B = d(z, (supp up |JUrsosupp i(7,-))
Consider Q(zp) := B(zo, R) N . Then u(t, z) := W,(z) is a local supersol
tion, i.e., a supersolution on £2(xp) since

(2™ ') — Ap+ @ =0 on (0,00) x Qzp),
(0, z) > 0 = up(x), on Q(xzp)
u(t,z) > 0= h(t,z) on (0,00) x Q(xp) N LY,

and the condition
u(t,z) > u(t,z) on (0,00) x A wzp) — 0L,
is satisfied if, for instance,
C R > ||ullpes(oooyxy (2 ult @) ae(t,z)),

ie., if
p—l—g
HUHL"O((O,OO)XQ)} P

Cy

(notice that ||u]|pee((0,00)x0) < 00 thanks to the assumptions on h and up,
we can prove in many ways: for instance by using a suitable global supe
solution). Then by the pointwise comparison principle on (0,00) % £2(wp) %
obtain that

Rz |

0<ult,z) < C’;Im o

and so u(t, zg) = 0 {even if u is not necessarily continuous).
To prove part b) we take as local supersolution the function

w(t, ) = wy g + V(t)
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th V() satisfying

{%(WF*V)+§WH*v:a (4
V(0) = [|uol|Les (o
vw)={mmg:@)—ﬁ%g¥ﬂqfﬁ. (45)

en
-1 _ d
(™ e = (o) + V)TV = 2 (V) Y)
Apﬂ = prH/Q’
Hfﬁiq_l-ﬁ > %Iwu/Q!q_lwu/Q + %|qu_lv s

4 so
(m;“*la)t — AT+ pfEl a0,

IEOVEr
0, %) = wypo + V(0) > [[uol|Z2 oy 2 uo(w).

wally, taking
to

2w a—
= i) Mollze)

get that V{(¢) = 0 WVt >ty and the conclusion follows as in part a). §

Remark 15. The above result is taken from Dfaz and Herndndez [23] where
er, and more general, results can be found.

Remark 16. In the model of chemical reactions, the null set N(u(t,-)) is
ed as dead core. In that model usually h(t,z) = 1 and so N(u(t,-)) only
urs at the interior of .

Remark 17. Notice that if & = 0 part b) shows the extinction in finite
e. Notice also that assumptions (42) (in addition to (43)) implies the
nation of dead core for t large even for A = 1 and ug > 0. This property
a similar nature to the so called instantaneous shrinking of the support
wblished by Brezis and Friedman in 1976, or by Evans and Knerr in 1979,
h for the case of 2 = RY and up > 0 such that im0 uo(z) = 0 (see
rences in the survey Kalashnikov [32]).



334 J.1. DIAZ

4.3. THE FINITE SPEED OF PROPAGATION VIA THE MASS SYMMETRIZE
COMPARISON PRINCIPLE. The above method requires the construction
sophisticated supersolutions. This is possible only for simple nonlinear ope
ators. The application of the mass symmetrized comparison principle sho
us how important is to have symmetry conditions on the partial differenti
equation in order to have solutions with small support.

THEOREM 11. Let u be the solution of (P) with f =0, h =0, yp € Cc(Q
ug > 0 and assume b(u) = |u|* 1w, (14) and (9). We also suppose the followir
conditions

(pm1)>a>

1o
¢(n) =g (lniﬂ ln) =1(n) +pa(n), neER
with @1 (resp. pa) nondecreasing convex
(resp. nondecreasing concave),

and

f bult, ))dz = f bt z))ds, V>0, (@
Q *

where U denotes the solution of the symmetrized problem. Then the suppo
of u(t, ) satisfy
m (suppu(t, -)) = m (supp U(t,-)) (4

for any t > 0.

Proof. By using the mass symmetrized comparison principle, (46) and th:

(@)
/ bult, )dz = / b, o))do
Q 0

we have

/smm) b(i(t,o))do = /ﬂm u(t U))da—/osb(ﬂ(t,g))dg

/D ™ #))do — fo WL, 0))do.

0< Ry (t} < m(Q)
< m(§2)

v

Let
support of ¥ = {O, R, (1))
¢

support of U = [0, Ry (£)], 0 < Ry(t)
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ecall that @ and U are nondecreasing functions). Then, necessarily Ry (¢) >
i7(t) since otherwise we would deduce that

m(s) Rut)
/ b(ult,o))de > / WU(t,o))do >0
R (t) R, (L)

lich is a contradiction. Finally, it suffices to remark that

u(t,-) = [0, m(supp u(t,-))]

ralogously for U) and the conclusion holds. B

Remark 18. Notice that by (47) if supp U (¢, ) = (2, for some t* > 0, then
ppu(t”, ) = Q.

Remark 19. Assumption (46) is satisfied, for instance, when the conserva-
n of the mass holds, i.e.,

/ blult, 2))ds = f bup(z))dz, WS 0.
ol

2

that case [, b(up(z))dz = Joo 8(Us(2))dz = Jou b(U(t,2))dz and (46) is
ified. The conservation of the mass is typical of pure diffusion processes
. when g = §). It can be shown (see Diaz [21]) that assumption (46) is
yverified when, besides the Dirichlet condition u(t,z) =0, ¢t >0, z € 99,
have the additional information that '

g;—i(t,x) =0 for te (G,f), x € Of),

some 7' > 0 (in that case the conclusion (47) holds at least for t € [0, 7).

In the case of strong absorption we can allow a nonzero Dirichlet condition
THEOREM 12. Let u be the solution of (P) with f = 0 and

h{t, z) = h, & positive constant. (48)
ug € L*®(Q) with

0 <aw(n) <h o cae 7. (49)
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Assume b{u) = |u|* 1y, (14), (9) and
G(n) = pln|"tn  with >0 and ¢ < (p—1).
Then the supports of u(t,-) and U(t,-) satisfy that
m (suppult,)) = m(suppU(t,-)) for t>0 (5

Idea of the proof. By introducing the change of variables v(t,z) = h
w(t,z) and V(t,z) = h — U(t,z) we can apply the mass symmetrized con
parison principle to v and V. Finally, it suffices to apply the result by Hard
Littlewood and Polya for an appropriate choice of convex function @ (see Die

21]). B

Remark 20. Estimates (47) and (50) allows to compare the waiting tim
(when arising) for u and 0.

Remark 21. Estimate (50) shows that the dead core has a bigger measu
under radially symmetric conditions. That was first observed in Bandle an
Stakgold [7].

4.4. THE FINITE SPEED OF PROPACGATION VIA AN ENERGY METHOI
The study of the finite speed of propagation (and other qualitative propertie
can be carried out by using some energy arguments which, in contrast wit
the ones of Section 3, now have a local character.

THEOREM 13. Let A satisfying (4) and
A(z,w€)] < CleP.

Let g{z,u) such that
glz,mn=0  VneR.

Assume
a<{p—1)

and let u be a local sclution of the equation

(|u[°‘_lu)t —divA(z,u, Vu) + g(z,uv) =0 on (0,00) x Bz, R)
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or some zg € RY, R > 0) such that
uw(0,z) =0 ae z& Blxzg,pp), po < R.
1en there exists t* > 0 and p : [0,t*] — [0, po] nondecreasing such that
u(t,z) =0 ae x € Blzg,p(t)).

Idea of the proof. By multiplying by u and integrating by parts we get

+1/ lu(t, = ]O‘Hd:L—i—/ Az, u, Vu) - Vudzds
@

g// wA(x,u, Vu) - ndl'ds
0 JaB,

lis can be rigorously justified from the notion of bounded weak local solu-
n). Here B, = B(xp, p). We introduce the local energies

t
E(t, p) :=/ i A(z,u, Vu) - Vudzds
P

0 f
b(L, p) = essSUp 4e(n (a ) /B [u(s, z)la+1dz) .
. p

ng Holder inequality we get that

b+ E <~ (/ /B |u|pdmds) (9§> 3

ere we used that
5 t . '
a—%t,p) = / A(z,u, Vu) - Vudlds.
dp o Jom, ,
need the following

Lemma 3. (Interpolation-trace inequality) For any o € [0,p — 1] there
st C > 0 and 0 € [0,1] such that for any w € WHP(G), G open bounded
of RY, we have

: - 6 -0
Nlwllzay < C (IVwllzr 1wl zenie)” (kollpene) ™
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Applying the Lemma and Young inequality we obtain that

EY < Ot 1 (a—E)
dp

for some exponent v € (0, 1). This implies the result. B

Remark 22. Notice that the result holds Wlthou’c making explicit the bow
dary conditions. It has a local nature.

Remark 23. The first local energy method was due to S.N. Antontse
in 1981. A rigorous justification of his arguments, containing also sever.
improvements, was made in Diaz and Veron [27}.

Remark 24. Other qualitative properties (as the formation of dead core
the instantaneous shrinking of the support, etc) can be proved by this type «
local energy arguments. See, e.g., Antonisev, Diaz and Shmarev [5]. Thox
authors are preparing a book containing many other applications.

Remark 25. For the application of this type of arguments to higher ord:
equations see Bernis [14], [15] and their references.

As a global, and final, remark we mention that the finite speed of propag;
tion, the finite extinction time and other qualitative properties can be analyze
for hyperbolic first order equations of the type

Z - 0i() + 9(@ ) = f(6,2)

see Diaz and Veron [26] and Diaz and Kruhzkov [24].
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