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Abstract

We prove the existence and the regularity of weak solutions of a nonlocal elliptic—
parabolic free-boundary problem involving the notions of relative rearrangement and
monotone rearrangement. The problem arises in the study of the dynamics of a magnetically
confined fusion plasma in a Stellarator device when the dimensional analysis on the
characteristic times suggests to neglect the inertial acceleration in presence of a time dependent
magnetic field.
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1. Introduction

We study the existence and regularity of solutions for the following elliptic—
parabolic problem: given £, an open regular bounded set of R?, and a positive time
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T>0, we seek u : [0, T] x 2— R satisfying the nonlocal problem

d .

5;/3’(1:) — Au = aG(u) +J(u) in |0, T[x&,

w(t,x) =y on 0, T[x 04,
B(u(0, %)) = Bluo(x)) reQ,

where &, J are defined as

(#)

5 Julr) = (1,x)] ) 12
G(u)(t,x) =a {F; -4 / [y (O] (0) (D) (Dbt 0) da |, (1)

() =0| 4
J(u)(t, x) = Aup (8, X)[B(x) = Buny (|u(t) > ult, X)) (2)
and B(r) = min(0,r) = —r_ for reR. The coefficients a,b are given functions in

L™ () such that a0 and b>0 ae. in Q, while 1>0, F,>0 and y<0 are given
constants, Here, u, denotes the decreasing rearrangement of u, b, is the relative
rearrangement of b with respect to u (see Section 2 below for the definitions) and |E|
denotes the Lebesgue measure of a set F.

Problem (#) appears in the mathematical treatment of a bidimensional model
describing the quasi-stationary processes that occur in the magnetic confinement of a
fusion plasma in a Stellarator device. This model is derived [rom the 3D MHD
system by means of an averaging method. The unknown u is called the flux function
and its gradient represents the components of the averaged magnetic field confining
the plasma. Some indications on the derivation of (#’) are given in Appendix A.
Here, we just remark that (#) can be viewed as a free-boundary problem., since the
interface separating the elliptic and parabolic domains (i.e., {u#>0} and {u<0}
respectively) is a priori unknown. Physically, these two domains correspond with the
plasma region, i.e. the region in the Stellarator device where the plasma is confined,
and the vacuum region (i.e., where is present no plasma) respectively. In the first of
these regions the plasma can be regarded as being, at each instant of time £, in
magnetohydrodynamic equilibrium {this can be justified by dimensional analysis on
the characteristic times), while time-dependent diffusion processes take place in the
vacuum region (notice that here, the equation in (&) reduces to the linear heat
gquation).

Two main difficulties appear in the study of existence of solutions of probiem (#).
The first one comes from the nonlocal terms in (#) since they do not depend on S(u)
but on # and moreover, they are only known to be continuous under strong
regularity hypothesis for 1. At the same time, the elliptic-parabolic character of (&)
poses big problems, since we have not information on the time derivative of u when
13=0. Hence, we cannot expect to obtain regular solutions for this problem. Let us
point out the existence of many papers where elliptic-parabolic problems are treated,
most of them appearing in the context of partially saturated flows in porous media
(see, e.g., [4,24,25,37] and the references therein). In this sense, we recall that when
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deducing Darcy’s law for flows in porous media by homogenization methods
nonlocal terms appear, although they are usually neglected by assuming some
hypothesis (see, for instance, Remark 1 in [13]). We shall also mention the important
work of Alt and Luckhaus [1] where a general study for elliptic-parabolic systems is
carried out. As we already mentioned, the main differences between the model we are
interested in and the references above lie in the fact that i is not strictly increasing,
and what is even more important, in the nonlocal character of the nonlinearities &
and J. Also, concerning the nonlocal character of (#), we mention that nonlocal
parabolic problems arise very often in the literature, e.g., in the study of invasion
phenomena in Biology. See, for instance, the works of Alvino et al. [2] or Pazy [32]
and more recently, Chang and Chipot [10} or Antonsev et al. [3]. Finally, let us point
out that the stationary problem associated to (#), describing the stationary
equilibria of a plasma confined in a Stellarator device, has been studied in previous
papers; in particular the existence of solution for that problem was stated in [17]
(see also [16] for the case of a current carrying Stellarator), while the study of the
uniqueness of solution was carried out in [14].

The structure of the rest of the paper is as follows: In Section 2 we state our main
results concerning the existence of global weak solutions for problem (#); earlier in
this section, we shall recall the notions of the relative and monotone rearrangements
of a function, as well as some of their properties. Section 3 contains the proofs of the
main results of the paper stated in the preceding section. Due to the nonlocal term
involved in {#?) a special notion of weak solution for this problem will be introduced
in Section 2. The relation between this notion of weak solution and the standard one
(i.e., in the sense of distributions) will be analyzed in Section 4. Finally, the paper
ends with a section devoted to the modelling.

2. Notations and statement of the main results

The goal of this section is the statement of the main results of this work,
concerning the existence of solution for problem (#2). In order to achieve a better
understanding of these results and of the difficulties underlying their proofs, we start
recalling the notion of the rearrangement functions in () as well as some of their
properties.

Let 2 be a bounded and connected open measurable set of R* (we assume a
2d-setting motivated by the physical modelling but the definitions and results that
follows hold for any dimension N>1: see, e.g., [29,31]). Given T>0 and a
measurable function u: (0, T) x Q— R, the distribution function of u (with respect
to x), i (0,7) x R—[0,]€2]], is given by

p(1,0) = meas{xeQ: u{t,x)>0}.

It is well-known that, for re (0, T) fixed, the function p(f,-) is decreasing and right
semicontinuous, For a fixed (0, T) and 0eR, the Lebesgue measure of the sets
{xeQ: u(t,x)>0} and {xeQ:u(t,x)=0} will be represented by |u(z)>0)]
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(= u(¢,0)) and |u(s) = 0] respectively. We shall say that u(s) = u(¢,.) has a flat region
at the level 0 if |u(s) = 0] is strictly posilive. We recall that given a measurable
function v defined in € there exists at most a countable family D of flat regions
P,(0;) = {v = 0;}; we denote by P(v) = | J;.; P»(0;) the union of all the flat regions
of v. We shall use the notation €, = (0, |€).

The generalized inverse of p (with respect to the second variable) is called the
decreasing rearrangement of u with respect to x and it is defined as the function
i, : (0, T) x [0,1Q]] = R such that

u(t,0) = inf{0eR: lu(t) > 0| <o} (= (u()),(0)).

We want to emphasize that for a fixed re (0, T), the decreasing rearrangement of u(r)
has the same properties as the usual rearrangement of time-independent functions
since  w(f,8) = (u(1)),(6)—when no confusion is feared, we shall set
ui(2, ) = u.(t)—(see, for instance, [29-31,40]). In particular, u.(¢) is decreasing,
u,(f) and u(t) are equimeasurable (i.e., [1.(¢) >0 = |u(f)>40|), and the mapping
ueL’((0,T) x @)—u, e LP((0,T) x £.) is a contraction for 1gp< + w. Also, if
u(#) does not have flat regions, then u(z,)) and u.(r) are continuous and
u (2, 1(e, 0(x))) = v{x) for a.e. {t,x)e(.

Finally, if ue L'(0, T; W' (Q)), 1<p< + oo, then 1, e L'(0, T; WIl 7(Q,)) (see, for
instance, [17,33,33]); in that case, for a ﬁxed te(0,T), we shall write ()

for the derivative "“:1;” {remark that this is the notation employed in the definition of

G(u) in ().

Still, we need to recall another notion; the relative rearrangement of a function
which, as we show in Appendix A (see (48)), is closely related to the concept of
averaging over a magnetic surface largely used in the study of magnetically confined
plasmas (see, e.g., [20,22]). In order to introduce this concept we consider, for a given
beLf((0,T) x 2), 1<p< + w, the function w defined on (0, T) % (0,|Q|) by

] o~ |u() = u, (1,7}
W(t’ 6) - / b(t’x) dx + / (b( )|[u(t) x)==ut, { 1(')}) (S) (lS,
xu()(x} = (o)} S0

where b(f)|{n=n o)y 15 the restriction of h(f) to the set {x: u(t)(x) = u.(t,0)}

(= P(u.(t,0))). Then the relative rearrangement of b with respect to u is the function
b e L'((0, T} x 2.) given by

ow(t, o)
do

rrio.1y%0,) S8l (g (see, for instance, [17,30,31]).

The notion of relative rearrangement of a function was first introduced by
Mossino and Temam (see [31]) for the study of some stationary differential equations
arising in plasma physics, and it was later extended by Mossino and Rakotoson [30]
for time-dependent functions. In [31], it is shown that the relative rearrangement b.,
can be regarded as the directional differential of the mapping i+ u, in the direction

bt o) =

This function satisfies ||&

U
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of b, In particular, if be L7(R2) and ue L'(2) then

W—\bw weakly in LF(Q,) when 1-+0

(if p = <o, the above convergence takes place in the weakly-+ topology). Like before,
we note that here 7 plays the role of a parameter. In particular, for 1€ (0, T') fixed, the
relative rearrangement of # can be seen as

bult, 0) = (B(1)),(a)  for o€,

and shares the same properties as the relative rearrangement for time-independent
functions (see, for example, [30]). We point up that, in contrast with the usual
monotone rearrangement, the relative rearrangement mapping (for a fixed be L7 (0))
does not always present good continuity properties with respect to u (i.e., regarded as
the functional that maps ve L7(Q) b, e L' ((0, T) % Q,)) (see, e.g., [31]). Further
details on the relative rearrangement can be found, for instance, in [17,29,31,33,35].

Having discussed the nonlocal terms in problem (#?), let us proceed with the
statement of the existence results for this problem. Due to the complexity of the
nonlinear terms G and J appearing in the formulation of (£°), a natural approach to
this problem seems to use a Galerkin method. Here, the main difficulty that we
encounter is to guaraniee the continuity of these nonlinearities. In particular, a very
delicate point is that the continuity of these terms requires strong convergence of the
Galerkin sequences in Sobolev spaces. Indeed, the less restrictive result for the
continuity of the derivative of the decreasing rearrangement (u(#)), with respect to
u(t) for a fixed ¢ (i.e., regarded as the functional v ¢)) states that for any sequence
(), cOnverging to a function v in W'7(Q)-strong for p>2, then

(v,). — ¢ strongly in LY(Q) for any 1<g<g, =——F, (3)

1 -3+

1O | —

provided that ve W (Q) for some r>1 (see for instance [17,18,33]). Moreover, in
the case of the relative rearrangement it turns out that the only known results show
that if v, —v in W' (Q) for some 1 <r< + co, then

by, = by, strongly in LP(£.),
By (10> 0 ()} = bl o> v(-)]) strongly in I(2) (4)
when n— + oo, provided that
meas{xeQ: |Vu(x)| = 0} = meas{xeQ: |Vu,(x)| =0} =0. (5)

(for the proof of these results see, for instance, [17,18,33]). Therefore, the continuity
of the nonlinear term J in (£) requires a very restrictive (and noneasy to check)
condition given by (5); furthermore, this conditicn is not always satisfied.
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This fact will be reflected in the introduction of a special notion of weak solution
for problem ().

Going back to the question of the convergence of the Galerkin sequence in
the strong W'”-topology, we observe that this is usually obtained by combining

a priori estimates for u, its time derivative 2 and a compactness result of Lions-

ol
. . i .
Aubin’s type (see, e.g., [27]). However, since Q%(fi) vanishes whenever uz0, we

have not any information on the time derivative of u for u=0, and hence it is
not possible to obtain such estimates for problem (#). Let us point up that
this difficulty did not appear in previous works treating elliptic-parabolic
equations since, either the continuity of their nonlinear terms did not require
such a strong convergence, or they did not depend on the unknown u but on f{u},
for which it was possible to derive a priori estimate as well as for its time derivative
Q%(—;Q (see, for instance, [1,37] and the references therein). Also, we mention that
any other time-discretization scheme would be a useful tool to approach the
existence of solution for problem (#)—see, for instance, the one used by Alt and
Luckhaus [1]—, but in either case the difficulties that would appear would be of
similar nature.

In order to avoid the lack of information on %, rather than looking for solutions
of (#), we shall consider a family of uniformly parabolic problems (2,)

approximating {£), obtained by replacing f with §,, where
Bo(r) =—r_ 4wy, forO<a<l (=1 neN).

That is f,(r) = B(r) + ers and thus, (#,) approximates (#) as a— 0. In this way, the
study of the existence of a global weak solution of (£,) for «> 0 is the object of our
first main result. This is stated in the following terms:

Theorem 2.1. Let uyeH'(Q) and (o) = min(0,0) + oo, with O<a<l and
Bluo) e L7 (Q). Then there exists at least a couple (g, by), 1, € L2(0, T; HX(Q)) and

b,e L7 (0) satisfving:

) (1 —y) e L2(0, T; Hy(Q), GreL?(0),

(i) 28,(u) — Auy = aGu,) + Auy) |6 — bal,

B ()l _g = B.(uo) (or equivalently u,|,_y = up),
{iii) V¢b: R—=R continuous, ¥oe R

/ Byp(uty — ) dx = / bep(re, —y) dx
{xu (O (x) =0}

{xe, (D {(x) > 0}

Jor ae te)0, T and essinfg b < b, <esssupy b.

Moreover, if uye H'(Q) L™ (Q) then u,eL"(Q).
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We observe that the function u, above does not correspond to the standard notion
of weak solution for evolution problems (nor even mild solution in the sense of
Benilan (see, €.g., [5])), since the term ., (|us(f) >, (1, })|) does not appear in the
equation satisfied by u, (see (i) above), but it is replaced by a L™(Q) function by,
The connection hetween b, and the relative rearrangement b,.,, will be cleared up in
Section 4. As we have already mentioned, the presence of this function instead of b,,,
is motivated by the strong hypothesis (see (5)) required for the continuity of J.
In fact, since (5) is not always satisfied, throughout this paper we shall only

look for solutions of this type. More precisely, we shall use the following definition
of weak solution:

Definition 2.1. Let ﬁe(g (R) a nondecreasing function and denote by (&) the

problem obtained when f is replaced by f§ in (#). Then we will say that i is a weak

solution of (P if (71 — y)e L0, T; HY(Q)), & () e L*(0, T; H~'(Q)) and:

(1) (Relative rearrangement condition) there exists a bounded function b*e L% (Q),
satisfying for a.e. te(0, T), for all e R and for all pe C(R) with p(u(t))e L' (Q)
that

/ Bo(a(t, x) —y) dx = / b (a(t, x) — 7) dx
{xed(r,x) =0}

{xd(ev) >0}

and

ess i%f b<b <esssup b,
Q

(2) Lp(m) — A = aG(ﬁ) +A(@) + [b— "] in &' (Q) for a.e. 1, and B(T)],_, = Blup).

Remark 2.1. Notice that f(if) = —i_ = T" (v) —y where T7, is the truncation at
level (—y) function

. ro ifr< —y,
o) = {—v if rz—y.

On the other hand, since T~ () is a Lipschitz function, we have that 77 (# —y) e
I2(0, T; Hy(Q)). Then, using that condition 1 implies that &(7* (if—
7)) e L*0, T; H~'(Q)), by well-known interpolation results [39] we conclude that
T (i — ) and B()e C(I0, T}; L*(Q)) and so the restriction B(#)|,_, is well defined.

A detailed analysis of the relation existing between the notions of weak solution
introduced above and the standard one is carry out in Section 4. In particular, we

show that when 7(¢) does not possess flat regions for a.e. 1 (0, T), b" coincides in a
weak sense with the relative rearrangement b,;.
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In our second main result we finally address the question of existence of solution
for problem (£). As we said, this will be proved by taking the limit ¢—0 in the
sequence of solutions (i), given in Theorem 2.1. This result can be stated as
follows:

Theorem 2.2, Let (i), o be the sequence given in Theorem 2.1. For any ¢ e L*(Q) and
h>0, define

4+h
(plu / / ”..L(O',x (/J .l) dx do (6)
h o
and assume that for a.e. te(0,T) and Ve L*(Q):
lhn}) hm (1) = lm‘(a) 11m b (D). (7)

Then there exists (u,b") being a weak solution to problem (P), Furthermore,
ueL*(0,T;%4(Q)) and P(u)e%(0,T]; [*(Q)).

To end this section, let us make some remarks on the theorem above. First, we
observe that assumption {7) provides a sufficient condition for passing to the limit
«-+0 in the sequence (u,),., Indeed, (7) together with the compactness result
obtaining by Rakotoson and Temam [36] yields to the convergence u, —u in the
strong topology of L*((0, T') x L?(Q)). However, we note that this convergence is
not enough for taking the limit in the nonlinear terms G and J (see (3) and (5)) and
that some further work will be needed. We also point up that assumption {7) replaces
the strong concentration condition—usually given by estimates of (‘)“*)DO indepen-
dent of o—required in the compactness result of Aubin—Lions type (see, e.g., [39]);
furthermore, hypothesis (7) seems to be sharp in this framework for the solvability of

(2) (see [38]).

3. Proof of the main results

As we have said in the preceding section, the proofs of Theorems 2.1 and 2.2 are
based in the use of a Galerkin method as well as in passing to the limit « — 0 for the
sequence of solutions (1), ,. We have devoted the first part of this section to the
obtention of some estimates, since the use of the above mentioned tools deeply relies
on the obtention of suitable a priori estimates. We point out that these results are
stated for weak solutions in the sense of Definition 2.1 of a generic problem (2),
obtained when f is replaced in (#) by some 5. Also in this first subsection, we have
included a result on the continuity of the nonlinearity G, which will be used all along
the section.

Finally, in the second and third parts of this section we carry out the proofs of
Theorems 2.1 and 2.2, respectively.
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3.1. Some a priori estimates for weak solutions

First of all, let us remark that the nonlinear term G is uniformly bounded since
0<G(r)<F,, VreR (see definition (1)). Moreover, the following result concerning
the continuity of this term holds:

Theorem 3.1. Let v* be a sequence in WH3(Q), for some §>0 and ve H*(Q) such
that v* converges to v in WY(Q) as e—0. Then, limgvg G(o* +y}{x) = G(v +7)(x)
for ae xeQ.

Proof. Let 0 be the characteristic function of the set P(v.). From the above

] . . . . N 1t
convergence we get %"% in L9(Q,) as e %0 with ¢ given in (3). Thus lim, o 052 =0

in L9(€Q.). Arguing as in [34], we conclude that
(1 = Nby—(1 — 0)b,, weakly-star in L™ (.). (8)

Now, if we set I(v*(x)) the interval given by [[v*> % (x)[, |[v°>0]], then for all 6.,
g0, (x)|, o#|v>0|, one has

lim (1= 0)x0e(y (@) = (1 = O)taqop) (0): 9)
From relation (8) and (9) and the fact lim, |6 ‘ff‘ = 0, one finds (for a.e. xeQ, using
*lg

the fact that o, (¢) — vy in L7(Q,), r<co) that

e o
iy [ G w0 as
o= N gy, ,
- | S (0)(1 = 0)*b.of(0)p (ve)) do
Jp=0| do

i

ooy (x)] d
j 2 (p(ex(0))ba() do.

lo=0]

The above limit implies the result. O

Remark 3.1. Let us emphasize that, although the weak convergence of the sequence
(bi),~p i G(1*) is only known for (v*), , not having flat regions (see, e.g., [17,31]),
theorem above establishes that the continuity of G holds without assuming such
condition.

We start the study of the a priori estimates by showing that any weak solution w,
to problem (#,) is uniformly bounded (with respect to «) in L*-norm. First, we
prove that g, (u,)(1) is bounded in L® (@) for every ¢ [0, T']. This result is stated in a
more general framework.
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Theorem 3.2. Let fe%(R) be a nondecreasing Lipschitz continuous fumetion. Then,
any weak solution of the problem (2) associated to this i satisfies

|B((6)) = B\ oy el Fot + | Bluto) = B oy V2€10, T,
Proof. Let 7. be the truncation operator at level ke N given by
if |ol<k,
T:’c(U) - 7 . I |0—3 )
ksigno if |o|=>k,

and let g,,(0) = |o]"

o, for any integer m2. Then, if 7 is a weak solution of (#)
then

Wk = gmUTk(ﬁ(ﬁ) - ﬁ(y)) GLDO(Q)HLE(Or T; Hé (Q))

Let us multiply the equation satisfied by wv(¢) =(t) — 7 by wy.(¢). Then, by the
relative rearrangement condition, one has:

o .
<E ﬂ(U + ’})): "Vm,k(z)> + VU(I, x) : vwm,/\'(t: JC) dx = [ GG(U + '}’)Wm,/'c dx, (10)
JO JQ

where (-,-> denotes the duality between H~'(Q) and H( (). Define

ooyt
y:rr,k(f) = / dx / gmeTi(o) do.
Ja Jo

Then, we can use the integration by parts formula (see [1]) obtaining

%ym‘_k(f) = <'g} B(U(t) +7), w,,,y,c(t)> . (11)

Also, ]Q Vu(t, x) - Vi (t, x) dx 20 since g,, and the truncation operator T are
nondecreasing. Thus, from the estimate 0 G(v + ) < F,, (10) and (11), we get via
the Hélder inequality, that

|
d ' Lrf _w N _
ay,,,k([)<|a|wﬂ,/g ]1.1),,“/((1,,\‘) dx<|a|wFU{Q|m (]Q |1/v,,,y/;(t,x) m—|> . (12)

A simple calculation allows us to write the above integral as

/ (£, )
19}

which, with (12), yields

Tt =yl = e (B = Bl = ), dx, (13)
J 0

L1 _1
J’;u.k(f)smli”‘1Q|’”i” wEJJ’m,k(f)l a. (14)
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Therefore, integrating

L
}f’:;;f( )<Wl m|Q}m|a| byt +ym (0)

nk

Finally, using (13} and letting mi— -+ o0 and k£— + oo we get the desired result. [

Let us see next that, when f§ = f, for 0<a <1, it is possible to obtain an uniformly
in time estimate for (i), (f) in the L® -norm, which implies that the whole solution is
bounded in the L™ topology.

Theorem 3.3. Assurne that E(U) = —g_. Then, for any wealk solution ii, one has
. 1 .
14(0)|0 Sz lal Pl for all £2[0, ],

If[;’( )= —0_+ ooy, O<a<l, the above result holds, provided that < ‘9" eL'(Q). In
particular Te L* (Q).

Proof. We shall first consider the case o = 0. Since a/;(;t) ~ e 120, T; H-1(Q)),
one gets that for all >0 and for ae. 1€]0, T[

(% @)=, ) =0 (13

Then, multiplying the equation satisfied by @ by (i(z) — ), and using the
rearrangement condition we obtain

f Vi, (1) dx = f aGa)(@. () — 0), dx. (16)
{ii (0) >4} Q

Differentiating this last relation with respect to ¢ and using the fact that
0< G(d) < F,, we get, after applying the Holder inequality

d

T g |V dxSlals Bl (>0,
[ }

Arguing as in [40] (see also the exposition made in [29]) and using the De Giorgi
isoperimetric inequality we derive that, for a.e. 10, 7],

. 1
0] S5 lal R (17)

In particular, combining Theorem 3.2 and this result, we get #e L™ (Q). Now, let
0<a<1. We argue as before (see also, [30]), multiplying by (i#(¢) —y), and
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differentiating with respect to the parameter ¢, we obtain for a.e, >0

a/ L1, (f) dx ——/ Vi (t)]” chm/ aG(d) dx.  (18)
{i. (>0} {iT.(1) >0} (i ()= 0}

We use again the bounds for & and Talenti’s method mentioned before (see also [15],
for an analogous argument) to arrive to

a S a
—47Ss — iy < y— — 1y
TS ER u_H_(t, s) |atF,)5 oc/o St”‘ (t,o)do (19)

for all s€(0,]Q). Let K(t,5) = f; d+.(t,0) do; (19) leads to the following partial
differential inequality:

O(,QK(Z 5) ——47:5‘8—2[((1‘ s} <l Fos

a7 Tosr T ey
K

K(tv(}) _O: E(IJ‘QD "”""

We consider the function K'(s) satisfying the ordinary differential equation

K dK
tal o, Fos = —dns = K(0) =0, —=(|Q]) =
that is, K(s) = M ale 2 4 Wols i”l“ "21Q|. Then, we can apply a comparison principle

between the problems S’ltisﬁed by K and K (see [15]) to get that K(z,s) < K(s) for all
€0, |€2|]. In particular we deduce that

[

N dR FlQ
1 ()] gy < ’ _ o Foj@l

E(O) dn

We finish this section giving an energy estimate for the weak solutions of ().

Theorem 3.4. Any weak solution iI of (52’) satisfies the following estimate

ug(x)
/ /]Vuax| dxd0'+/ dxf plo+vy)do
o
vl .
< [Ltoﬁ(ltg+y)+|aIwF,,/ d(f/ |7 — y|(o, x) dx
Jo 0 @
Jor all tel0, T}

Proof. Let v =1 —7y. Multiplying the equation by v(f), using the relative
rearrangement condition and the integration by parts formula (see the proof
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of Theorem 3.2) one has

G Lo+ s+ [ veeaf = [ aeq + e @)

where

g . . . d u(t,x) |
_mem+mw=wamew~Lm£ f(o +7)do

(notice that y" is just the Legendre transform of the term f g) da). Integrating (20)

with respect to ¢, dropping some nonnegative term and using the relation 0< G(v +
y) < F, we derive the stated result. [

Finally, combining the Sobolev Poincaré inequality and the Schwartz inequality,
we easily derive,

Corollary 3.1. For all 1[0, T|

IQI

eIl

g , v (X)) L
/ / |Vii(o, x)|” +2 / / Blo+y)dodn<2 / up ) dx + .
0 Jo Ja Jo Jo A

witere Ly is the first eigenvalue of the homogeneous Dirichlet prablem assaciated to the
Laplace operator.

3.2. Existence of solution to problem (2} for «>0: Proof of Theorem 2.1

For the proof of this Theorem we shall proceed in the following way: first, for a
fixed o> 0, we shall consider a more regular family of problems (#,) approximating
(#2,), which we shall solve by means of a Galerkin method; later, we shall look for
estimates of the sequence (u,),. , uniform in &. The solutions to (£%,) will be found as
the limit of this sequence when ¢—0.

Thus, let >0 be fixed. For 0<g<1 (countable), we consider the family of
functions 8, ¢ C™ (R) satisfying

W) a<f,<l+a, f,(0) =0, f,—peH(R).
(ii) |P.(0) — Blo)] <2, for any oeR.
We have

Theorem 3.5. Assume uye H'(Q)nL*(Q). Then there exist (w*,b')eL™(Q)
satisfying the following problem (2,):

(i) we e L2(0, T; H{Q) N HYQ)), 2el(Q),

(D) 2B (W 4 ) — An® = aG(w" +7) + A(w" + ), [b — 7],
B0 o = B.(uo — ) {or equivalently w*|,_y = uy — y),
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(iil) Yo : R— R continuous, V0e R

] BEp(wh) dx = / bep(w) dx
{1 (x) >0} {aemet () (x) >0}

for a.e. t€]0, T[ and essinfq b< b <esssupy, b.

Remark 3.2. Notice that the above result states that u, = w* + y is a weak solution

in the sense of Definition 2.1 of problem (%) when j = f§, and that we are to prove
that the sequence u, converges in some sense to wu,, where u, is the solution to
problem (#,) given in Theorem 2.1.

Remark 3.3. For the sake of simplicity in the exposition, throughout this section we
shall always use the notations w* = u, — 7 and w, == u, —y since these functions
belongs to L'(0, T; Hj(2)).

The proof will be divided into several steps.

3.2.1. The Galerkin method I Existence of solution for a family of finite dimensional
problems (P, )

Let (A, @1)rs, be the eigenvalues and eigenfunctions associated to the Laplacian
operator —A on Q with zero Dirichlet boundary conditions, i.e.

Mgk = My, @pEHy(Q).

We denote by V), the vector space spanned by {¢,,...,¢,} For all veV,, v=
S v'e;. We consider the following approximate problem: find
m
WIHELI(Oa T; Vnr)a Wm(t) = Z W;n(t)(/)ia

i=|

satisfying

. .
j (5 B.(w(t) + y))rp,i dx + / Vwp(t) - Vo dx
o Ja

= / a(x)G(wy -+ )@, dx + / J (W + p) ey, dx (Pem)
JQ

for £ =1,...,m and the initial condition w,,(0) = P, (up — y}, where P, is the
orthogonal projection operator from £*(Q) onto V.

Theorem 3.6. There exists w,, solution of problem (#,,,). Furthermore, if a0 then
there exists ky such that w,,=0 for mzky.
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Proof. The above problem can be written as a nonlinear ordinary differential system
for the functions w! (), ..., w (), wu(f) =", w) (e, Indeed, wi (r) with
i=1,..,m, verify

n 1

Z ay (W (£)) wm Y Z b,leV,” Jﬂ(w,,,( ), k=1,..,m,

i=l

w! (0) = the ith component of P, (u —7), (21)

where for i, k=1, ...,m we have set

A (Wm(t)) = / ﬁ::(wm + )iy dx,
JQ

bir 2=/V(Pf'v<¥’fc dx,
Q

Felwa() = /Q a(%) Gl (1) + )y dx + /Q T0em(®) + 7). dx.

To prove the existence of a solution of the above initial value problem we need the
following result:

Lemma 3.1, The function 5y : V,— R is contimious, k=1, ..., m.

Proof. Let ve V,,. Then

Futo) = [ a6+ g v | T+ )opd

with G and J given by (1) and (2). Indeed, we observe that if ve ¥,\{0} then v has
not flat regions since it is an analytical function. Therefore, the map
ve Vy\{0} > by (Jo>v(-)|[) e LF () is strongly continuous for any finite p (see, for
instance, [17,18,33]). Moreover, as J(y) = 0 (we recall that y<0) and |b.,|, . <|b]
we deduce that the map ve V,, > J(v + y) e LP () is strongly continuous.
Next, we proceed to show that the map ve Vi [o i (@) (0 + )y (@) (v +
) (0)b1s(0) do is continuous in L7(2) for some p=1, where y,, ., denotes the
characteristic function of the interval I(v,x)={[lv+y>(+7y), (%), v+
p>0]], xeQ. Arguing as before, ve V,\{0} b, e L/(R,) and ve F,\{0}— (v +
y)ﬂr*(u + 7)., €LI(R,) are strongly continuous for any finite p and ge[1,2) (see (3)),
and since y<0, we obtain that ve V(v +7), (v +7) bwell(R,) is also
continuous. So, let (Uj)jzl be a sequence of ¥, converging to v, if v#0 we have
that XI{vx) CONVETZEs tO 7y, v in L'(&,) for every r finite and every xe{2. Hence,

ot
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using again that y <0 we deduce that for every xeQ:

tin [ 1,00 o0+ 7 (0)b o) do

Jj=+m

- ] X110 (@) P (0s + )] (0)b0(0) o

"

Noting that (v 47), = vs + 7, bu(ery) = by (see, for instance, [17]) we find
G(v; +7)(x) P G +7y)(x), ae xel.

Now, as 0< G(v; + y) € F,, the Lebesgue dominate convergence yields the continuity
of the map ve ¥, — [,a(x)G(v+y)p,dx. O

We still need some a priori estimate for the sequence (W), y:

Lemma 3.2. If wy, is a solution of (#,,,) then

() Vop: R—R Borelian with ¢p(w, (1)) e L' (Q) we have
/ J(Wn (1) + ) (wp(1)) dx =0
Ja

() wy, remains in a bounded set of L*(0, T; HN(Q)) as m— + oo and satisfies the
Sfollowing estimates, for alf 1[0, T)

/ /|Vw,,, g, %) dra’a+2/d‘c/ . Blo+7v)do
0

Q¢
< [ (008,00 (0) 4 ) -+ LTI
2 =

Proof. Since w20 (we recall that az£0), then for all ¢, meas{xeQ: |Vw,{t,x)| =
0} = 0. Thus, the properties of the relative rearrangement {see Lemma 4.1
in Section 4) yield

/ s (8 > (8, 3 (w1, X)) = ] b (t, %)) dx
Q Q

from where (i) follows. For the proof of (ii), we take w,,(f} as test function in the
equation (#,,,) and using the above property:

d 7
f E[)’“(w,,,(t) + P (1) dx +/ [y, (8, %)|" dx = ] aG{wy, +7)w, (1)
Q o Q

Now, the proof follows exactly the same idea as for the proof of Corollary 3.1. [
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End of the proof of Theorem 3.6. Since {¢,,...,q,} is free and f, verifies
B.e CH(R), 0<a<f, <2, the matrix of coefficients ay(w,,(¢)) is invertible. So, by
Cauchy-Peano’s theorem, the nonlinear differential system (21) has a maximal
solution defined on some interval [0, T},]. The above a priori estimates on w,, show
that in fact T, = T, Vm=1. Finally, if a0, then [, a(x)p; (x) dx+#0 for some ko;
therefore, if we assume that w,, = 0 for some m=ky, as G(0 +y) = F,, we would
arrive to [, a(x)@y, (x) dx = 0 which is a contradiction. [

3.2.2. The Galerkin method II: Additional a priori estimates for (P ,,)
In order to pass to the limit m1— oo and to obtain a sclution to (#,) we need some
information on the time derivative of wy,

Lemma 3.3. The sequence % remains in a bounded set of L?(Q) as m— o. More

precisely
T
J

1 2 2
< Va3 + ;(IIHII@FSIQIT + A (050 b) IIWmIlzmc_n) :

2

Wy,

| i
n dar + ess sup — vam(t)g

2 1ef0, 7] %

where osco b denotes the oscillation of b in 0.

Proof. Multiplying (#,,.) by Dalt) gnd adding these equations for j=1,...,m,
b dr q
we get

[+ )i 0F s+ 45, [ [9maF ds
Q “dt Jo

= / a(x)G(wy, + p)w,, (¢) dx + f J(wy, + y)w:” dx,
o Q

where w) (f) =%=  The first assumption on f, and the estimates
0 G<F, |J(wn(t) + )| < A(wy(t) +7),0sc0 b yield

, 1d
e, (O +5 5T (0

Sl Bl O+ 4 030 b [ (0431, 0,0) o
2

m

<lal 2] ), ()]s + 2 050 Bl (0)
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where we have used the Holder inequality and the fact that y<0. Applying the
Young inequality,

ld 1
(D) + 5 [V (0B <EColw], ()5 + E(mumm 2k ose bm,,,(z)@) :
From the choice of d and integrating in |0, #[, < T, we have
i , N l )
[ i) s+ V(o)
Jo
1 2 1 1/2 ! 2
S& [Vwm(0)[5 + ] Col lal,, FlQl7" + 4 OSC b [ |wn(o)lsda ),
4 JO
which leads to the estimate stated in the lemma, [

Corollary 3.2. The sequence (wy),, remains bounded in H'(0,T,L*(Q))
NLHO, T; H(Q)) n%([0, T]; Hy(Q)).

Proof. The bound in H'(0, T; L*(Q)) " L™ (0, T; H}(Q)) follows from the estimates
obtained in the two precedent lemmas, In order to show that w,, remains in a
bounded set of L*(0, T; H*(R)), we consider the orthogonal projection of L2(£2)
onto V,,. The equation satisfied by w,, is equivalent to

d
Py, (a Bolwi(2) + V)) — Awy = Pp(aG(wy,(£) +7) + J(w,(£) + )
Wi(t) g V,, for ae. te(0,T).

(22)

Lemma 3.2 and the estimate 0 < G< F, ensure that aG(w,, (1) + y) + J(w,, (1) + 7) lies
in a bounded set of L*(Q). Also, since 0<f,<2, Lemma 3.3 implies that
4 B.(w,(£) + ) is bounded in L*(Q). From Eq. (22), we infer that Aw,, remains in
a bounded set of L?(Q), and thus w,, is bounded in L*(0,T; H*(Q)). Finally, by
using standard results (see, e.g., [28, Chapter 1]}

Y = H'(0,T;L*(Q)) n L*(0, T; H*(Q) " H} (R)) ([0, TT; Hy (Q)),

we obtain the remaining estimates. [

3.2.3. The limit m— w: Existence of solution for (#,)

End of the proof of Theorem 3.5. The estimates above show that there exist a
subsequence of (W), , which we also denote by (wy),,..;, and w*eY such that
w,—w" weakly in ¥, and so, by compactness results (see, for instance, [27]) we get

Wi —w* strongly in L2 (0, T; W, 7 (R)), with pe[2,+w). (23)
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From the uniform bound essinfg 6 < b,y .y (1w (£) > Wi (8; }|) S esssupg b, we obtain
the existence of 5 e L® (Q) such that

Btuinty) ([Wai (8) > Wi (2, )= weakly-star in L™ (Q).

Analogously, as |G(wy(f,x) + 7)|<F, a.e. in O, there exists G!, € L™ (@) such that

G(w,, +7)—G" in L (Q} weakly-star. Thus, w* is a solution of the following limit
problem:

-

g—tﬁ,;(w*’ +79) — Aw* = aGE 4+ A(w' + ), [b— b,

w(0) = up — ¥, (24)

we Y nL* (0, T; H*(Q)).

Therefore, to finish the proof it remains to identify the term G, and to check that

the limit function &* satisfies the rearrangement condition. This will be done in the
following two lemmas:

Lemma 3.4. G*, = G(w" + 7).

Proof. Indeed, from (23) we can deduce that there exists a subsequence of w,,,, which
we will denote also by w,, such that w,(¢f)—w(t) strongly in W (Q) for
pef2,+m), ae. t, and w'()eH>(Q); thus, we may appeal to Lemma 3.1 to
conclude. [

Lemma 3.5. For any e C(R) and ¥0eR

/ lf;”qﬁ(wg) dy = / bp(wydx for ae. tel0, T,
S {xwe(1,x) > 0) L (r,x) > 0}

and

-~

BSSislzlf[J <hi(t, xy< esssupb ae. in Q.
2

Proof. For fixed 1, it suffices to prove the equality for 6 such that [w'(f) = 0] = 0. Let
b (t,x) = Ba, (|Wn(£) >wp(t,x)|). By the properties of the relative rearrangement
(see Lemma 4.1 in Appendix A), we know that

/ b, (8, x)p(wy (2, x)) dx = [ b (wi (2, x)) dx. (25)
{xwy{tx) >0}

J{anw (1,x5) > 0}

Thus, we deduce the result from (25), since ¢(wn(t))—p(w(#))eL*(Q) and
lim X{_\‘:H,ﬂ'([)>0}(x) = X{.\':H'“(I)>U}('x) forae. xeQ ae. [E]O, T[, L]
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3.2.4. Proof of Theorem 2.1: The limit £ -0

First, we observe that, since w* is a weak solution of (£,), it satisfies the estimates
obtained in the preceding section (see Theorems 3.2, 3.3 and 3.4) and these are
uniform in & and in o (note that these estimates were not obtained for w® but for

u, = w* + 7). Therefore, there exists a positive constant ¢, independent of « and &,
such that

T o
/0 ]Q|Vw*‘(fr,x){“dadx§c and |[)’n(w“+y)|_w(g)gc.

Thus, since 0< G(w* + 7)< F,, we may assume the existence of w, and G, such that
wh—w, weakly in L2(0, T; H}(Q)) and G(w* + y)—G, weakly-star in L% (Q) as e—0,
for a subsequence of (), , that we have denoted again (w*),. On the other hand,
the following estimate holds:

[
Jo 10

.00 +)

dt < |V +2(|a|2mF3|Q|T+ M os%'; b) (26)
2

for a positive constant M. Indeed, multiplying in (#,) by £ f,(w* +7) and applying

the Holder inequality, we get
J
d\—\—/Vw rﬁ(w +7) | dx

< (I Pl + oo b0+ ) [ 070+

L0+

2

Then, the identity

- ‘ Ly _ . ,
j V' -V i()/)’“(w*' +7y) | dx= ——/ B (2) +7) 9 [Vwe(t, x)|” dx,
a at 2 /n ar

and the assumption < <2, yield

+—~|w o)

7] .
SR 0) )| o

< (ia!wFulQI”Z 20 B0 () +9); ) [ A4+

Estimates (26) follows from the above, after applying Poincare’s and Young’s
inequalities. Moreover, since o<, <2, we obtain from (26) that

2

dt

I 2
<~ |V —i——,(]zz|2m1ﬂ,2|£2|1“+le2 osc’ b).
g * ¥ ¢
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In particular, (26) implies that (% B.(w(t) + y))n> o remains in a bounded subset of
L*(Q). Hence, from the equation in {#;) and using the above estimates we deduce
that Aw®e L*(Q) uniformly bounded in &, which, by elliptic regularity, implies that
(W), is in a bounded subset of L*(0, T; H*(2)). Hence, since w'—w, in L*(Q), we
obtain that in fact w*—w, weakly in L*(0, T; H*(Q)) as ¢ 0. Furthermore, by the
Rellich--Kondrachov compact embedding and using a standard compactness result

(see, for instance, [27]), we deduce that w*—w, strongly in L*(0, T; WOI"’J(Q)) for
p=2. This last strong convergence allows us to pass to the limit ¢é—0 in the term

G(w* -+ ). Indeed, since w'(z) —w,(¢) strongly in WOl Q) p=2, forae. te(0,T), by
Theorem 3.1 we get

G +9){,x) = Glwy, +9)(8, %) ae. (,,x)eQ, as ¢—0.

Finally, the uniform bound essinfg h<h* <esssup, b implies the existence of
bye L*(Q) such that b'—b, weakly-star in L®(Q) as £¢—0. Arguing as in Lemma

3.5 we obtain that the couple (um,b;) with u, = w, + y satisfies the rearrangement
condition. O

3.3. Existence of solution for problem (#) (o = 0). Proof of Theorem 2.2

In Theorem 2.1 we have proved the existence of a couple (L{m,f;m) being

a weak solution to problem (£,) for a>0; ie., if w, = uy+y, then (w,,by)
verifies

d d
~ 5 (we +7)_+ aa(wa + 7). — Aw,

(@)1 =aGlwy, +9) + Awy +7),[b~ b in (0,T) x @,
w, =0 on (0,T) % 09,
wy(0, %) =1y —y in Q.

Therefore, collecting the estimates proved in Section 3.1, we can conclude that
(Wy),q remains in a bounded subset of L?(0,7; H{(RQ))~L*(Q). Thus, we can
extract a subsequence of (w,), again denoted by (w,), such that

w,—w weakly in L2(0, T; Hy(Q)) and weakly-star in L™ (Q). (27)

Also, from the uniform bound of the terms G and b;, we deduce the existence of
he L*(Q) such that

aG(wy +7) + 2w, +7) b - by = h weakly-star in L% (Q). (28)
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Moreover, the following estimate holds:

Lemma 3.6. The sequence (w, -+ y)_ remains in a bounded set of L*(0,T; H{(2))
NHY0, T; L*(Q)) as o goes to zero. Furthermore,

[s
JO

5 (a0 +7).

2

do + f IV (wo(£) +7)_I* dx
L3(6) Q

<IVro +9) g + TIRIal, F

Proof, We multiply by dr(w +y)_ the equation satisfied by w, and we use the
integration by parts formula:

2dz‘/|v we () + )| d\—/a wo (1) + 7)) _Awy(2) dx,

that can be justified, thanks to the above regularity, by using a smooth
approximation (see, e.g., [42]). We find

5 00

—H—[Ww)+ﬂ|m<ng(HW

L'(Q).

Applying the Young inequality and infegrating, we arrive to

[k
J0

= (wal) + 7).

2

m+/wwwwwﬁﬁ
(g Ja

<|V{wo + 3’)“&1(9) + T|Q|M?
from where the desired result follows. [

Hence, the above lemma and using a standard compactness result (see, e.g., [27] or
[42]) we deduce the existence of zeL?(Q) and of a subsequence of {(w, +7)_),

denoted again by ((wy, +7)_), such that —(w, +y)_—z in L*(Q) as « goes to zero.
In fact:

Lemma 3.7. The following identity is verified:
2= —(w+7)_ = Blw ).

Proof, The R>-graph f generates a maximal monotone operator A4 on
L2(0, T, L(Q)) (see [8, Chapter II)), defined as

Av=~(o+7)_ Voel*(0,T;L}Q)).
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From the weak convergence of (w,+7y),., in L*(0,7; H}(2)) and the strong
convergence of (B(w, +7)),., in L*(0, T; L*(Q)) we know that

(wo +7)—w + 7 weakly in L*(0Q),
B(wy +7) -z strongly in L*(Q).

Thus, using the properties of the maximal monotone operators (see [8]) we arrive to
{(wy +7),2) e and so z = f(w, 4+ y) which ends the proof of the lemma. O

Therefore, using the lemma above and the convergences (27) and (28), it is clear
that w satisfies the following limit problem ()

—%(W—l—y)__ —Aw=h,
weL2(0, T3 HY(@) L (0),
(w+7y)_ =u_.

Furthermore, from Lemma 3.6 and Agmon-Douglis—Nirenberg’s elliptic regularity,
we deduce from the equation above that

we L*(0, T; H*(Q)). (29)

We are to prove that u = w - y is a weak solution to (). To this end, it remains to
identify the function 4. For this purpose we need (see Theorem 3.1) the strong
convergence of w,(f) in WH**(Q) with §>0 and a.e. (0, T). As we announced in
Section 2, we shall obtain this convergence by using a compactness result due to
Rakotoson and Temam [36], for what we shall need the following proposition:

Proposition 3.1. Given ¢ € L>(Q) and h>0, let ¢, be defined by (6). Then, w,(t)—w(r)
in LX(Q) for a.e. te(0,T) if and only if (7) holds.

Proof. Assume (7) then, from the boundedness of (w,),. , given in Theorem 2.1 it
follows the existence of a subsequence, that we still denote by (w,), ., such that

w,—w weakly in L2(0, T: L2(£2)).

In particular,

/O-Tan(t,x)J’(t)fb(x) dx dt — /n'r/;w(t,x)'/f(t)qb(x) dx dt

Ve L2(0,T) and Ve L7(Q2), when «—0. Let us fix #e(0, T),A>0 small enough
and define the sequence (Y1), L*(0,T) as

l//’l(z) - % X[m,iu-iﬂflg (Z) '
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where |, .+ denotes the characteristic function of [tg, fo + /2]. Then,

AT/Q wo (4, XY, (D) h(x) dx di— /OT-[Q\“’(frx)‘/’rr(t)ﬁb(x) dx dt

when 4—0 and by (7) this convergence is uniformly in /4. Then, passing to the
limit #—0 in the above expression and taking into account that for any integrable
function the complementary of its Lebesgue points is a set of zero measure (see,
e.g., [8, p. 140]) we get

/lfva(t(),x)(/)(x) dx—+] w(tg, xX)p(x) dx when a—0, ae. He(0,T),
o o

and thus w,(1)—w(7) in L*(Q)-weak a.e. te(0, T'}. Assume now that the L?(02)-weak
convergence of (wy(f)),., to w(¢) holds for a.e. re(0, T). We always have

/llnj}) il_r}l Ppat) = }P({L / w(t, XY, (£ (x) dx dt]
= [w(t,x)qb(x) dx ae. re(0,T).
Ja

Moreover, by the Lebesgue theorem,

lim lim / /w(y (&, xWpr, () p(x) dx dt = llm /vt}d(f,x)r/)(x) dx
a0 =0 Jy -0

Q

mjw(t,x)(/J(x) dx a.e. te(0,T),
Q
and so (7) holds. O

End of the proef of Theorem 2.2. From assumption (7) it follows that w,(#)}—w(¢) in
L*(Q) for a.e. te(0, T). We can then appeal to the compactness result given in [36]

and we deduce that w,—w in L*(Q) and for a.e. t€]0, T[. Then, Lemma 3.6 and the
bound of w, in L™ ((Q) yield:

lim] Wy 9 (we +y)_dxdi= [ W 9 (w+7)_dxdt (30}
o Ot Jo Ot

o0

and
o}

lim ot/ vvag(wa—}—y)erxclt:O.
p Ot

Since the second member in (2,) converges weakly to / in L*(Q), then

lim / wa{aG(wy +9) + A(wy +7),.[6 — b)) dx dt = ] wh dx dt.
0

a0 0
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Multiplying by w, the first equation of (#,) one deduces from (%):

llm] |Viwy|* dx dt = / v-g(v—i-y) dxdr+/ hwdx dt = / |Vw|* dxdr. (31)
0

Thus, the weak convergence of w, to w in L*(0, T; H}(Q)) and (31) implies that
wy(t) = w(?) in H,(Q) for ae. t€]0, T

Q)

In fact, as w, remains in a bounded set of L*(0,T;H*(Q2)), from the above
convergence we deduce, by the Gagliardo—Nirenberg interpolation, that

wa(t) == w(f) in W'(Q) for ae. 1¢]0, T[ and 2<p<4.
Since w(t)e H?(Q), we may appeal Lemma 3.1 to derive that
lim GOw, (1) +7)(x) = G(w(2) +3)(v)

for ae. (f,x)e@. From the boundedness of l;a, there exists by such that B,—bo
weakly-star in L™ (0), essinf b< by <esssupy, b and

] bep(w(1) dx = lim ] B (W, (1)) dx
xov(f)(x) =0} {xa (O)(x) >0}

_ / bof/)(w(;)) dx
o) (x) > i}

for a.e. t€]0, T, for any ¢e C(R) and for all #eR. Then, passing to the limit in
Z'(Q)

lil‘%(aG(wm +7) + Awy + 7). 00— l;a]) =aG(w+y)+{(w+y),[b- Zi,]

which implies that: & = aG(w +7) — (w + ), |6 — ] Using the equation in problem
(2#y) we deduce that (i, By), u = w-+17, is a weak solution of (#). By arguing as in
Lemma 3.3, we deduce that f(u)e%([0, T); L*(Q)) and ue L*(0, T; H*(Q)), we can
then use Sobolev embedding to conclude that ue L2(0, T; %' (Q)). O

Remark 3.4. We conjecture that condition (7) holds under stronger regularity on the
initial datum (and so on the approximating solutions wy,).

4. On the weak solution for problem (%)

In this section we analyze the relation between the notion of the wealk solutions
that we are considering here (Definition 2.1) and the standard notion of weak
solutions (satisfying (2) in the sense of distributions %'(Q)). We start with a lemma,
already used in the preceding section, that sstablishes the connection between the
relative rearrangement b,; and function 7 appearing in Definition 2.1:
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Lemma d.1. Let v be in L'(Q) without any flat zones, ie. meas(P(v)) =0, and
be L(Q). For all $c C(R), we have

/ boo(|o > 0(x) )b (5) (x) i = / beb (o) dix.
JQ

Q

In particular, if it = (v +7y) is a weak solution to (#) then,

/l b (i) (¢t, x) dx = / b (la(t) > a(t, X)) (@) (¢, x) dx  ae. 1€(0,T).
Jao Q

Proof. Since v does not have flat regions it follows that v, {;i(v)) = v and so

| / b v = [ U)o o)) .

The mean value operator property proved in [31] (see also [29]) allows us to write the
above integral as an integral over £, by using the relative rearrangement in the
following way:

[ b0 e de = | bule)b(o.(o) do.
Since the function ¢ is continuous, it is a Borel function and the identity ¢(v,) =

[p(v)],, holds (see, e.g., [31]). Thus, using once more that meas(P(v)) = 0 and the
mean value operator property we get

J O 2

)00 dr = [ (b0 dr = [ bullo> o)) d
which end the proof. {1

Thus, the relation between the notion of the weak solutions and the standard
netion of weak solutions is given by

Theorem 4.1. Let ite L*(0, T; H'(Q)) such that 1(t,-) has not flat regions for a.e.
te]0, T7:

(8) If & is a weal solution of () (in the sense of Definition 2.1) and there exists a
Borel map ¢" :R—R such that g"ii = b% then it satisfies (#) in the sense of
distributions 9'(Q).

(b) Conversely, if i satisfies (P) in the sense of distributions %' (Q), then it is a wealk
solution in the sense of Definition 2.1.

Proof. For the first part of the theorem it suffices to show that #7(z,x) =
b.a(lii(t) > (s, x)|) for a.e. (¢,x)e Q. First, let us observe that since @ satisfies the
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rearrangement condition {see (i) in Definition 2.1) we deduce, by an approximating
argument, that for any Borel function ¢ on R with p(v(#))e L'(Q)

/' B (i(t, x)) dx = / b (i, x)) dx, (32)
Q JO

and, since #(¢,-) does not have any flat regions a.e. te(0, T), from Lemma 4.1 we
have:

] be(ii(t, x)) dx = / b {|a(t) > (s, X))o (a(t, x)) dx. (33)
Q 0
We consider now the function

o(o) = bu(|a()>0]) — g"(6), oeR (34)

which is a Borel function in R for almost every ¢ Thus, from (32), (33) and (34) it
follows

/ (balii(0) > 4i(1, X)) — goii(t, x))? dlx = 0.
o

In order to prove the second result in the statement, let 7 be a wsual weak solution of
(#). That is, G L>(0, T; H'(RQ)) such that f(i) e H' (0, T; H~'(Q)) satisfying (%) in
the sense of Z'(Q). We set b(t, x) = b.z(|#(¢) > (¢, x)|), for (¢,x)e Q. It remains to
check that this choice of b" verifies the relative rearrangement condition. Indeed, as

iZ(¢, ) has not flat region, we can argue as in Lemma 4.1 obtaining that, for a.e.  and
for all e,

] Bt x) dx = / byl {t, o)) do
[ o{tx) =07 Har fG.(,0) =0}
= ] bo(i(t, x)) dx.
{x: d(e,x} >0}
The estimate essinfpb<h"<esssupg b follows from the bound of the relative

rearrangement (see, e.g., the definition of the relative rearrangement in Section 2 or
[30,31]) and from the fact that be L™ (Q). &

Next, we provide a sufficient condition for the weak solution u of problem (#) not
having flat regions:

Theorem 4.2. Let u be a weak solution of (#) and assume that a(x) does not have any
Aat regions. Then, if

2]

I —v\. )
bi|w<< . )H{l)f a, (35)
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where v .=
te]0, T1.

2—'Jw<l and S = |uy|,, it follows that u(t) has not flat regions jor a.e.

Proof. Suppose that there exists [ <0, T|, |{|>0, and a constant ceR such that
meas{xeQ: u(t,x) = c}>0, forae. rel.

Then, if ¢<0, by Stampacchia’s theorem we can deduce that Au(f) =0 a.e. on

S, = {xeQ: u(t,x) = c¢}. Let us denote by v = v e H'(0, T; L*(Q)), then it follows

(see, e.g., [30, p. 63]) that there exists a constant K. such that % = K, a.e. on S,.

Thus, necessarily

K, =a(x)F, forae xeS., ae. tel,

and so a has a flat region of positive measure ({x: ¢ = 0} if K, = 0, and {x: a= f\—}

otherwise), whose measure is at least meas(S,). Hence, the assumption on a is
violates. Let us assume now that ¢>0. In this case, necessarily

0 =aG(u) + duy(b—b") ae. on S., and a.e. rel.

But then, using the estimates that we have on G{u), u, and 5", we arrive to
2 : 2r 2 2
(AUl o llz il )" > ik @ [F7 = 220181 e ][5,

which Is in contradiction with (35). [
Furthermore, the following corollary holds:

Corollary 4.1, Ler us  assume  that  meas{xe@: |Vw(s,x)| =0} =0,
meas{xeQ: [Vw,(t,x)] = 0} = 0 and meas{xe Q: |Vw(t,x)| =0} =0 for a.e. t, then
W, Wy and w satisfy the equations of the respective problems (2.), (#y) and (P) in the
sense of distributions &'(Q).

Proof. Following Lemma 4, as the sequence w,, given in Theorem 3.6 satisfies
that meas{xeQ: |Vw,(t,x)] =0} =0 for ae. ¢el0,T], then the condition
meas{xeQ: |Vw'(t,x)| = 0} = 0 implies that

b:'r.w,,,(r)(|wm(t) > Wm(t: )|) —+[J*n.,:(,)(|WH(Z) > Wﬁ(tv )i) n LP(Q)’
as m— + o, for 1 <p< + o. Thus, we obtain that

b:: = bzk1\*"(l)(|wﬂ(f) >wi(t, X))



LI Diaz et al. | J. Differential Equations 198 (2004) 321-355 349

Repeating the same argument for w,, we get b, = by (| Wa () > wy (£, x)|) and by =
bawin (Jw(#) >w(t, x)]), and so the conclusion is reached. [l
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Appendix A. Derivation of (%)

In this section we shall briefly describe the derivation of problem (#2), through the
modeling of the guasi-stationary processes occurring in a Stellarator machine. Let us
start saying that the Stellarators are a class of torcidal devices for the confinement of
fusion plasmas by means of magnetic fields (for a detailed description of this
machine and of the processes taking place in it the reader is referred to [11,19,26]).
The nuclear fusion plasma used in these reactors is assumed to be an ideal fluid and
so the ideal incompressible MHD system is used to derive our model, since it
provides a single-fluid description of the macroscopic plasma behavior. The
equations of MHD are given by

%-—*JXB—VP, (A.1)

1 OB
E B=—J E=—— 2
+vx pat V x E B (A.2)
VxB=J, V-B=0 (A.3)

In these equations the eleciromagnetic variables are the electric field E, the
magnetic field B and the current density J. We denote by v the fluid velocity, p
the fluid pressure and % = %Jr v-V the convective derivative. The
parameter u represents the electric conductivity. In Stellarators machines the plasma
is assumed to occupy an unknown region of the toroidal cavity (the plasma region),
surrounded by another region which is vacuous (the vacuum region). In the plasma
region we shall assume g =0, iLe., the plasma is a perfect conductor and so
Eqgs. (A.1)-(A.3) become the system of ideal MHD. In the vacuum regicn we shall
take u=1.

Quasi-stationary processes in a Stellarator device appears when we work in a slow
reference time-scale: the resistive diffusion time-scale. In this characteristic times
scale’s, plasma would evolve through a series of states each of which would be very
near to an equilibrium, i.e., at each instant ¢, plasma can be regarded as being in
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MHD equilibrium (see, e.g., [21]). Following [6, Chapter IV] (see also [21]) a
dimensional analysis is done in order to neglect some quantities in the MHD system
(A.1}-(A.3) and to retain only the principal ones. In particular, it follows that the
term 241) in (A.1) is negligible compared to Vp(r) in the plasma region at time .
Thus,

Vp(t) = J(t) x B(1) (A.4)

is satisfied at each instant ¢ in this region and so, at each instant ¢, plasma is in MHD
equilibrium. We point out that very little is known about the existence of solution for
the equilibria equation (A.4) in a 3D nonsymmetric torus; in particular, we mention
the work of Bruno and Laurence [9] for configurations close to axisymmetry (see
also, [12] for the case of a axisymmetric Stellarator). From (A.4) it follows that, for
any instant f,

B(t)-Vp(t)=0 and J{z)-Vp(r)=0. (A.5)

Then, the pressure is constant on each magnetic surface (i.e., surface generated by
the magnetic field lines) and they have to be (see, for instance, [19]) nested toroids,
but not necessarily symmetric or of circular cross-section. Thus, in order to get a
better description of it is useful to introduce a set of special toroidal coordinates
Boozer vacuwin coordinates system ([7]) (p, 0, ¢}, where p = p(x, y, z) is an arbitrary
function which is constant on each nested toroid and € = 6(x, y,z) is the poloidal
coordinate which is constant on any toroidal circuit but changes by 2x over a
poleidal circuit (here by a toroidal circuit we mean any closed loop that encircles the
axis of the torus once, and by a poloidal circuit a closed loop that encircles the minor
axis once) and ¢ = ¢(x,y, z) is the toroidal coordinate. For a vacuum configuration
(i.e. without any plasma) the magnetic field B, may be written (see [11]) in covariant
form as

B, = F,V¢, (A.6)

where [, is a constant (which customary is taken as positive).

The Stellarators-type configurations are very complicated due to the fully three-
dimensional nature of the device (see, for instance, [11,23] or [26]). To simplify the
model to a two-dimensional problem different averaging methods were used for the
study of stationary models, such as the methods developed by Greene and Johnson
[21], and by Hender and Carreras [23]. Following the last reference we may
decompose the magnetic field in terms of its toroidally averaged and rapidly varying
parts. For a general function f this decomposition takes the form

- 1 In
f= T it =5 [ s

Using a suitable assumption on the Stellarator geometry (the Stellarator expansion
hypothesis) Hender and Carreras [23] show that the second equation in {A.3) leads (o
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)4 -

where B are the contravariant components of the vacuum magnetic field, i = p, 9, ¢,
and D is the Jacobian of the Boozer coordinate system. Thus, it follows the existence
of a potential function, the averaged poloidal flux function fy = i(t, p,0), defined at

each instant ¢ by
BP(ON 1 oy(r) Bt o ay(1)
< D >_E o nd <T> =T e (A7)

the equation

They also show that, when MHD equilibrium (A.4) exists, then {(By) is a
function v alone and the same for {p)> (recall (A.5)). Thus, in our case, as
Eq. (A.4) is satisfied in the plasma regicn, by introducing the usual notation F(if) :
= (B4 and p(f) = {p>, and following Hender and Carreras [23], we obtain that
i satisfies the following Grad-Shafranov type equation in the plasma region £,(¢),
at each 120

AW = aF(p) + FODF' () + b (). (A8)

That is, ¥ satisfies, at each instant, the above equilibrium equation in Q,, where a
and b are bounded functions that depend on geometrical aspects of the device and
such that 5> 0.

In fact, in [23] the above equation is obtained for a different second order
elliptic operator %, but here, for the sake of simplicity we have replaced
it by the Laplacian one. A study of the case of % would follow the same
arguments that we have developed in this paper, with the addition of some technical
details (see [17]).

As we have already pointed out, Eq. (A.8) only holds on the (averaged) region
occupied by the plasma. In order to analyze the processes that takes place in the
vacuum region at time 7, Q,(¢), we follow once more [6, Chapter IV], obtaining, after
using (A.2), (A.3) and relation (A.6), that the equation satisfied by ¥ in Q, =

Ureory {13 % Qu(2) 1

o

Ay = aF, En
Once obtained the equations satisfied by i in the plasma and vacuum regions, we
can give a global formulation as a free boundary problem by using that in the
vacuum region Vp = 0. Indeed, the free-boundary, that separates the plasma and
vacuum regions, is a magnetic surface, and thus, as p = p(), we can identify (after
normalizing) the free boundary as the level line {i/(¢} = 0}, the plasma region as
Q,(t) = {y(1) >0} (and thus {p>0}) and the vacuum region by @,() = {i(¢) <0}
(and {p = 0}). It is well-known that it is not possible to obtain the pressure from the
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MHD system and some constitutive law must be assumed. Here, for simplicity, we
shall assume the quadratic law (see, e.g., Temam [41])

W) =21, b, = max{y,0) (A9)

which is compatible with the above normalization. Finally, to give an unified
formulation for the present model, we extend the umknown function F(yr) for
negative values of i by using (A.6) and so we must find ¥(f,x) and F: R— R, such
that F(s) = F, for any s<0, satisfying

il
— % — Ay = aF () + FW)F () + Abyr . (A.10)
The above equation is satisfied in a bidimensional open set € obtained after
averaging the physical three-dimensional domain. The boundary condition that must
verify i results as a consequence of assuming that the wall of the device is perfectly
conducting and it is expressed as (see [11])

w(r) =y on |0, T[x84, (A1)

where y is a negative constant.

In order to complete the formulation of the problem under consideration
we must add the Stellarator condition imposing a zero net current within
each flux magnetic surface. This condition, which comes from the
design of the external conductors in Stellarators, conforms one of the
characteristic of this type of reactors for nuclear fusion. According to the averaging
method by Hender and Carreras [23] this condition can be expressed (see [11]} for
ae. te]0, T as

/ [FW)F () + by Jpdpdf =0 for any te[inf iy, sup . (A.12)
(W)=}

Summarizing we arrive to the mathematical formulation of the model describing
the evolution of equilibria in a plasma confined in a Stellarator, as the following
inverse problem (#;): Let Q be a bounded open regular set of R? and 70, find
u: 0,7 xQ-R and F:R-R, such that F(s)=F, for any s<0 and (u,F)
satislying (A.10)-(A.12) and the boundary condition u(0, x)_ = (uy(x))_ for a given
iy 2—R.

In order to determine the unknown nonlinearity ¥ we can reformulate problem
(#;) by means of the notion of relative rearrangement, as it was done in [11,17] for
the stationary case. Here, we shall just give some indications on how to arrive to
problem (#) and we shall omit the Lemmas and proofs needed for this derivation,
since they are slights modifications of the results appearing in [17]. In this sense,
following [11] (see also [17]) we can differentiate (formally) in the Stellarator
condition (A.12) with respect to @ and using the notation in (A.9) (notice that we
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have also use the notation u =), we find that

" b(x) - 3
Juo o) i THI ()

fu(l)’]((J) (o)l

F(OYF(0) = —p'(6) ae. te(0,7), (A.13)

where H, is the one-dimensional Hausdorf measure, We remark that functions of
similar nature to (A.13) appears very often in the mathematical treatment of the
study of equilibria in magnetically confined plasmas and they are related with the
concept of averaging over wmagnetic surfaces (see 16,21-23,26]). From the
mathematical point of view, (A.13) can be expressed in terms of the relative
rearrangement b,,. In particular, in (A.4) it was proved that when wu is regular
enough (i.e., [Vu(d)| e LU(Q)) we can set 0 =wu.(f,0), cef,, and thus (A.13)
becomes

Flu.(t,0))F (u,(t,0)) = —p' (. (t,0))b(t,6) ae. (¢,0)e(0,T) x &y,

from where we obtain (#). More precisely, we have the following result (whose
proof follows the same arguments of the one of Theorem 6 in [17]):

Theorem 5.1. Let u:[0,7] x Q-+R a measurable function such that, for ae.
te(0,T), u(t)e Whte(Q) and meas{xeQ: [Vu(t,x)| = 0} = 0 and set it = essinf u
and M = esssupu. Assume that h(f) = infou(t)<0 ae te(0, 7). If (w,F) is a
solution of (P) such that Fe W= (i, M) and F(0) = F, for 0<0, then u is a solution
of (#) and

1/2

0,
FO)= 622 [ b uo>as]
O +

for ae. t and for all 0 (#(r), M(1)). Conversely, if u is a solution of (P}, then the pair
(u, @) is a solution of (P;) and Ge WL (m(t), M (1)) for a.e. te(0,T).
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