SELECTED PAPERS (by subject):
Smooth extensions of convex functions:
-
D. Azagra, Locally C1,1 convex extensions of 1-jets, Rev. Mat. Iberoam. 38, 131-174 (2022).
-
D. Azagra and C. Mudarra, Prescribing tangent hyperplanes to C1,1 and C1,ω convex hypersurfaces in Hilbert and superreflexive Banach spaces, J. Convex Anal. 27 (2020), no.1, 79-102.
-
D. Azagra and C. Mudarra, Convex C^1 extensions of 1-jets from compact subsets of Hilbert spaces, Comptes Rendus Mathématique 358 (2020) no. 5, 551-556.
-
D. Azagra and C. Mudarra, Whitney Extension Theorems for convex functions of the classes $C^1$ and $C^{1, \omega}$, Proc. London Math. Soc. 114 (2017), no.1, 133-158.
-
D. Azagra, E. Le Gruyer, C. Mudarra, Explicit formulas for $C^{1,1}$ and $C^{1, \omega}_{\textrm{conv}$ extensions of 1-jets in Hilbert and superreflexive spaces, J. Funct. Anal. 274 (2018), 3003-3032.
-
D. Azagra and C. Mudarra, Global geometry and $C^1$ convex extensions of 1-jets, Analysis and PDE 12 (2019) no. 4, 1065-1099.
Smooth approximation of convex functions:
-
D. Azagra, Global and fine approximation of convex functions, Proc. London Math. Soc. 107 (2013) no. 4, 799–824.
-
D. Azagra and J. Ferrera, Every closed convex set is the set of minimizers of some $C^{\infty}$ smooth convex function, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3687-3692.
-
D. Azagra and J. Ferrera, Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpositive curvature, Rev. Mat. Complut., 19 (2006), no. 2, 323-345.
-
D. Azagra and P. Hajlasz, Lusin-type properties of convex functions and convex bodies, J. Geom. Anal. 31 (2021), p. 11685-11701.
-
D. Azagra, A. Cappello, and P. Hajlasz, A geometric approach to second-order differentiability of convex functions., Proc. Amer. Math. Soc. Ser. B 10 (2023), 382-397.
-
D. Azagra, M. Drake, and P. Hajlasz, C^2-Lusin approximation of strongly convex functions, Inventiones Math. 236 (2024), no. 3, 1055-1082.
-
D. Azagra and C. Mudarra, Global approximation of convex functions by differentiable convex functions on Banach spaces, J. Convex Anal. 22 (2015), 1197-1205.
-
D. Azagra and D. Stolyarov, Inner and outer smooth approximation of convex hypersurfaces. When is it possible?, Nonlinear Anal. 230 (2023), Paper No. 113225, 20 pp.
Extension of functions:
-
D. Azagra, R. Fry and L. Keener, Smooth extensions of functions on separable Banach spaces, Math. Ann. 347 (2010) no. 2, 285-297.
-
D. Azagra and C. Mudarra, C^{1, omega} extension formulas for 1-jets on Hilbert spaces, Advances in Math., 389 (2021), Paper No. 107928, 44 pp.
-
D. Azagra, E. Le Gruyer, C. Mudarra, Explicit formulas for $C^{1,1}$ and $C^{1, \omega}_{\textrm{conv}$ extensions of 1-jets in Hilbert and superreflexive spaces, J. Funct. Anal. 274 (2018), 3003-3032.
-
D. Azagra, E. Le Gruyer, C. Mudarra, Kirszbraun’s theorem via an explicit formula, Canadian Math. Bull. 64 (2021), no.1, 142-153.
Smooth approximation of functions:
-
D. Azagra and J. Ferrera, Regularization by sup-inf convolutions on Riemannian manifolds: an extension of Lasry-Lions theorem to manifolds of bounded curvature, J. Math. Anal. Appl. 423 (2015), 994-1024.
-
D. Azagra, J. Ferrera, M. García-Bravo and J. Gómez-Gil, Subdifferentiable functions satisfy Lusin properties of class $C^1$ or $C^2$, J. Approx. Theory 230 (2018), 1-12.
-
D. Azagra, J. Ferrera, F. López-Mesas and Y. Rangel, Smooth approximation of Lipschitz functions on Riemannian manifolds, J. Math. Anal. Appl. 326 (2007), 1370-1378.
Critical points of differentiable functions on Banach spaces:
-
D. Azagra, J. Ferrera and J. Gómez-Gil, The Morse-Sard Theorem revisited, Quarterly J. Math. 69 (2018), 887-913.
-
D. Azagra, J. Ferrera and J. Gómez-Gil, Nonsmooth Morse-Sard theorems, Nonlinear Analysis 160 (2017), 53-69.
-
D. Azagra and M. Cepedello, Uniform approximation of continuous mappings by smooth mappings with no critical points on Hilbert manifolds, Duke Math. J. 124 (2004) no. 1, 47-66.
-
D. Azagra, T. Dobrowolski, and M. García-Bravo, Smooth approximations without critical points of continuous mappings between Banach spaces, and diffeomorphic extractions of sets, Advances in Math. Volume 354, 1 October 2019, 106756.
-
D. Azagra and M. Jiménez-Sevilla, Approximation by smooth functions with no critical points on separable infinite-dimensional Banach spaces, J. Funct. Anal. 242 (2007), 1-36.
-
D. Azagra, M. García-Bravo, and M. Jiménez-Sevilla Approximate Morse-Sard type results for non-separable Banach spaces. J. Funct. Anal. 287 (2024), no. 4, Paper No. 110488.
Geometry of Banach spaces:
-
D. Azagra, Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces, Studia Math. 125 (1997) no. 2, 179–186.
-
D. Azagra and R. Deville, James’s theorem fails for starlike bodies in Banach spaces, J. Funct. Anal. 180 (2001), 328-346.
-
D. Azagra and T. Dobrowolski, Smooth negligibility of compact sets in infinite-dimensional Banach spaces, with applications, Math. Annalen 312 (1998), no. 3, 445–463.
-
D. Azagra and M. Jiménez-Sevilla, The failure of Rolle’s theorem in infinite-dimensional Banach spaces, J. Funct. Anal. 182 (2001), 207-226.
-
D. Azagra and M. Jiménez-Sevilla, Approximation by smooth functions with no critical points on separable infinite-dimensional Banach spaces, J. Funct. Anal. 242 (2007), 1-36.
-
D. Azagra, E. Le Gruyer, C. Mudarra, Explicit formulas for $C^{1,1}$ and $C^{1, \omega}_{\textrm{conv}$ extensions of 1-jets in Hilbert and superreflexive spaces, J. Funct. Anal. 274 (2018), 3003-3032.
Viscosity solutions to PDE:
-
D. Azagra, J. Ferrera and F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal. 220 (2005) no. 2, 304-361.
-
D. Azagra, J. Ferrera and B. Sanz, Viscosity solutions to second order partial differential equations on Riemannian manifolds, J. Differential Equations 245 (2008) no. 2, 307-336.
-
D. Azagra, M. Jiménez-Sevilla, F. Macià, Generalized motion of level sets by functions of their curvatures on Riemannian manifolds, Calculus of Variations and PDE 33 (2008) no. 2, 133-167.